17 December 2007 File No. 08-205686.00

Ms. Rose Bache Rice Oil Company, Inc. P.O. Box 1497 34 Montague City Road Greenfield, Massachusetts 01301

Re: Fall 2007 Quarterly Sampling Letter Report Londonderry Citgo, Londonderry, Vermont

(VT DEC Site No. 96-2015)

Dear Ms. Bache:

Enclosed are the quarterly results for the Londonderry Citgo fall quarterly sampling event conducted by Environmental Compliance Services, Inc. (ECS) on 19 September 2007. The event included sampling of nine onsite monitoring wells, the Main Supply Well point of entry treatment (POET) system for the Mountain Marketplace Shopping Center, and the Rogers' residential supply well (Figure 1a). The Thorne-Thompson POET system could not be accessed during this sampling round. The services outlined were conducted in accordance with the work plan and cost estimate dated 26 January 2006.

SAMPLING RESULTS - SUPPLY WELLS

In the influent sample collected from the Main Supply Well POET system of the Mountain Marketplace Shopping Center, MTBE was detected at 11.9 micrograms per liter ($\mu g/L$), below the Vermont Groundwater Enforcement Standard (VGES) for this compound. Additionally, tert-amyl-methyl ether (TAME) was detected at 0.8 $\mu g/L$. This compound does not have an Action Level, Health Advisory, or Maximum Contaminant Level established by the state of Vermont. Both detections are consistent with past results. Analytical results are attached and also summarized in Table 1.

No target volatile organic compounds (VOCs) were detected in the effluent sample from this system, nor from the two sampled system midpoints, indicating that the system is effectively removing the contaminants.

The Thorne-Thompson POET system was not accessible during this sampling round.

The Rogers residential supply well was sampled, and no target VOCs were detected.

Prior to all sample collections, the water was allowed to run for approximately 10 minutes to purge water from the lines and pressure tanks, and facilitate communication with the bedrock aquifer. The supply well samples were transported under chain of custody procedures in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts, where they were analyzed for the possible presence of volatile petroleum compounds by EPA Method 524.2 and 504.1 for the Mountain Marketplace Main Supply Well Influent, Effluent, and Midpoint B, and by EPA Method 8021B and 504.1 for Midpoint G. The Rogers residential supply well was sampled by EPA Method 8021B and 504.1.

SAMPLING RESULTS – SURFICIAL AQUIFER MONITORING WELLS

Groundwater flow continues to flow in a southerly direction towards the West River (Fig.3, Table 2). Groundwater contouring and contaminant distribution does indicate the possibility that undulations in the bedrock surface and water and sewer lines leading to the plaza may be influencing groundwater movement and are potentially acting as a preferential pathway for MTBE migration to downgradient monitoring wells.

Target VOCs were detected in four of the nine monitoring wells sampled (Figures 5-16). The distribution of BTEX contamination is shown in Figure 4A. The distribution of MTBE contamination is shown in Figure 4B. The benzene concentration exceeded the VGES in MW-10. There were no other VGES exceedances in the sampled wells. MW-4 and MW-11 were both dry during this round, and MW-6 could not be located, and is likely destroyed.

Analytical results from the quality assurance and quality control (QA/QC) samples indicate that adequate QA/QC was maintained during sample collection and analysis. No contaminants were detected in the trip blank. The blind field duplicate sample results for monitoring well MW-10 (designated as Duplicate) were within the EPA recommended relative percent difference for field duplicate samples.

Conclusions and Recommendations

Onsite VOC concentrations are stable or declining in all shallow monitoring wells. However, the site does not meet the criteria of a Sites Management Activities Completed (SMAC) designation due to the presence of gasoline related VOCs in nearby residential supply wells. Though the Thorne-Thompson POET system was not accessible during this round, the MTBE concentration in the influent exceeded the VGES during the March 2007 sampling round, and MTBE has consistently been detected in the Thorne-Thompson influent. ECS recommends the following:

- Continue with the monitoring plan outlined in the work plan dated 7 March 2007 for the impacted surficial groundwater aquifer and drinking water supply wells.
- Discontinue analysis of groundwater for lead scavengers via EPA method 504.1, as these compounds have not been detected onsite.

Please feel free to contact me at (802)434-4500 if you have any questions or concerns regarding the enclosed information.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Elizabeth K. Erickson Project Scientist Thomas P. Murphy Senior Scientist

205686_Sept_2007

Tables: Table 1. Treatment System and Supply Well Summary with QA/QC

Table 2. Groundwater Elevation Calculations

Figures: Figure 1. Site Location Map

Figure 1a. Residential Supply Well Location Map

Figure 2. Site Plan

Figure 3. Groundwater Elevation Map

Figure 4A. Contaminant Distribution Map w/ BTEX Is concentrations Figure 4B. Contaminant Distribution Map w/ MTBE Isoconcentrations

Figures 5-16. VOC Concentration Tables and Graphs

Appendix A: Laboratory Reports

Cc: Mr. Tim Cropley, VTDEC

Mr. Robert Waite, Londonderry Ventures

Table 1 Treatment System and Supply Well Summary and QA/QC Results

Londonderry Citgo Londonderry, Vermont

Monitoring Date: 19 September 2007

Supply Well	Total BTEX	MTBE	TAME	Benzene	Toluene	Ethyl Benzene	Xylenes	Total TMB	Naphthalene	EDB	1,2-DCA
Shopping Center Main - Influent	BRL	11.9	8.0	BRL<0.5	BRL<0.5	BRL<0.5	BRL<1.0	BRL<1.0	BRL<0.5	BRL<0.01	BRL<0.5
Shopping Center Main - Mid B	BRL	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.01	BRL<0.5
Shopping Center Main - Mid G	BRL	BRL<1.0		BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL<2.0	BRL<1.0	BRL< 0.01	BRL<1.0
Shopping Center Main - Effluent	BRL	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<0.5	BRL<1.0	BRL<1.0	BRL<0.5	BRL<0.01	BRL<0.5
Thorne-Thomsen - Influent	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Thorne-Thomsen - Mid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Thorne-Thomsen - Effluent	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Rogers	BRL	BRL<1.0		BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL<2.0	BRL<1.0	BRL<0.01	BRL<1.0
					QA/G	C					
Trip Blank	BRL	BRL<1.0		BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL<2.0	BRL<1.0	BRL<1.0	BRL<1.0
MW-10	33.4	36.6		27.1	BRL<1.0	1.4	4.9	12.2	BRL<1.0	BRL<0.01	BRL<1.0
Duplicate (Rogers)	32.7	34.2		26.3	BRL<1.0	1.5	4.9	12.5	BRL<1.0	BRL<1.0	BRL<1.0
Difference	2.1%	6.6%		3.0%		7.1%	0.0%	2.4%			
MCL				5	1,000	700	10,000			0.05	5
VHA		40			-			350*	20		
VAL				1	-		-				0.5

Notes:

Results given in micrograms per liter (µg/L).

NS - Not Sampled

BRL - Below indicated reporting limit

MCL-Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water.

VHA-Vermont Health Advisories- guidelines for concentrations of chemicals in drinking water that do not have MCLs

VAL-Vermont Action Levels for eight chemicals of specific health concern in public water systems, established by the Vermont Dept. of Health.

Shopping Center Samples Influent, Mid B, and Effluent analyzed by EPA Method 524.2

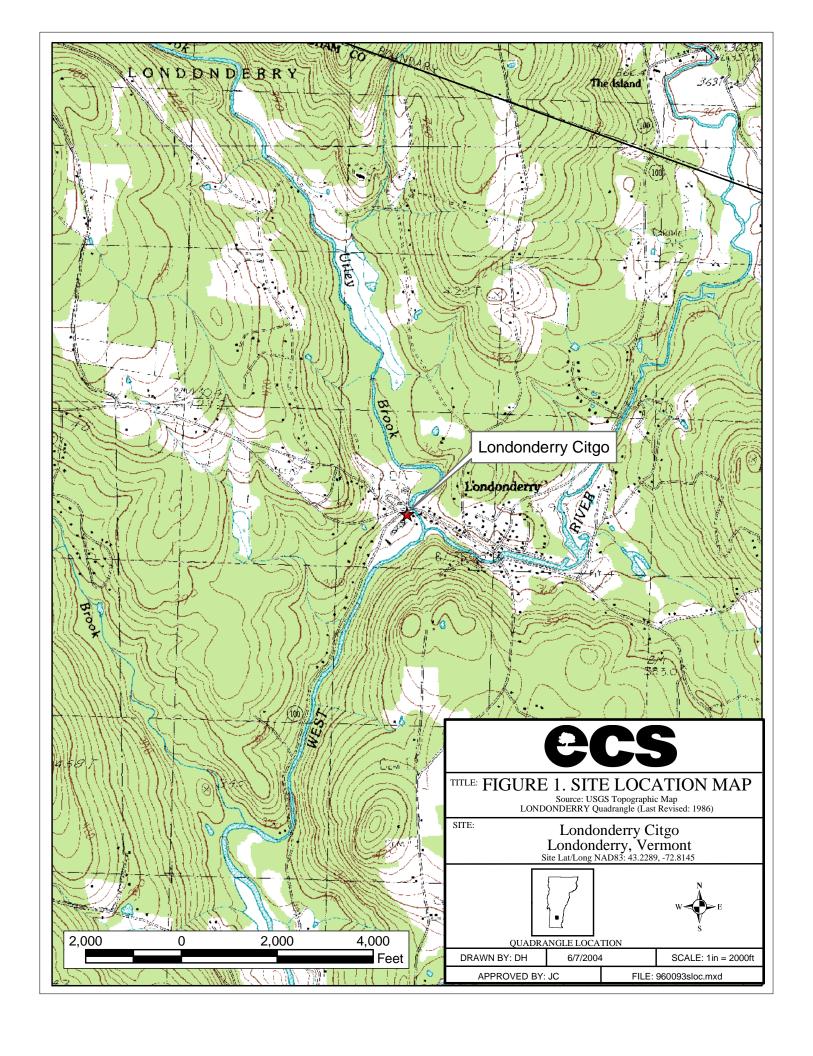
Shopping Center sample Mid G, supply well sample Rogers, MW-10 and its Duplicate analyzed by EPA Method 8021B

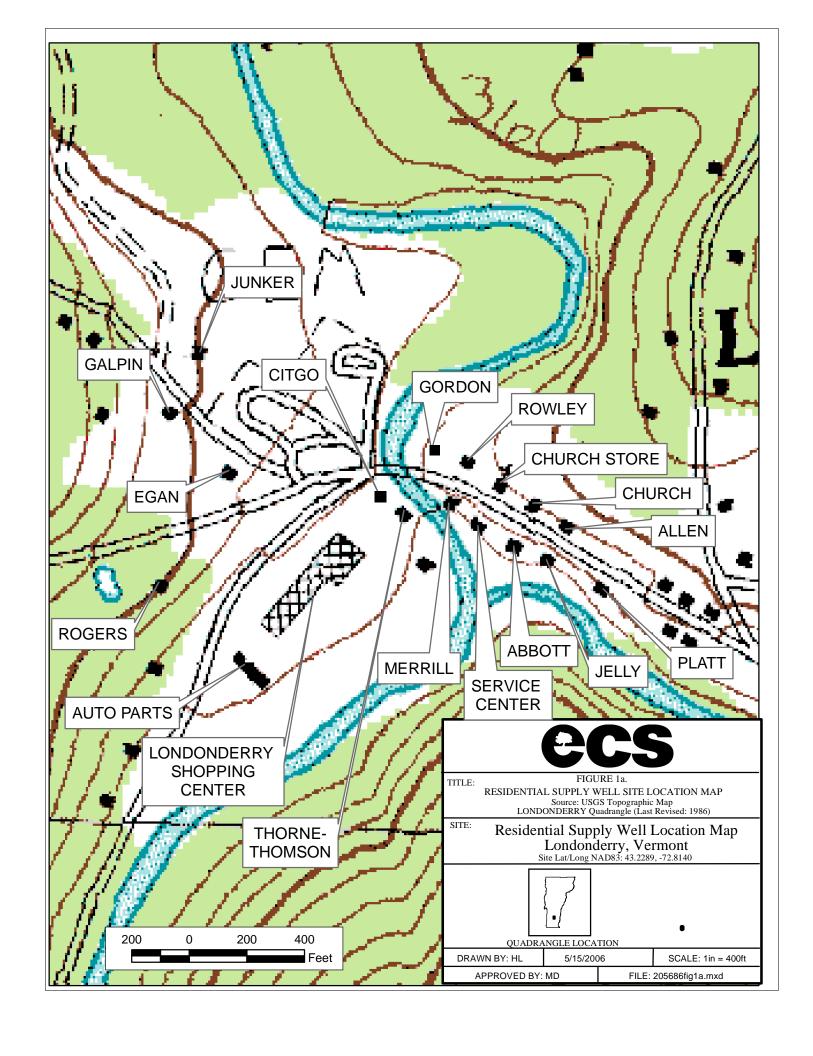
All samples (with the exception of Duplicate and Trip) were also analyzed by EPA Method 504.

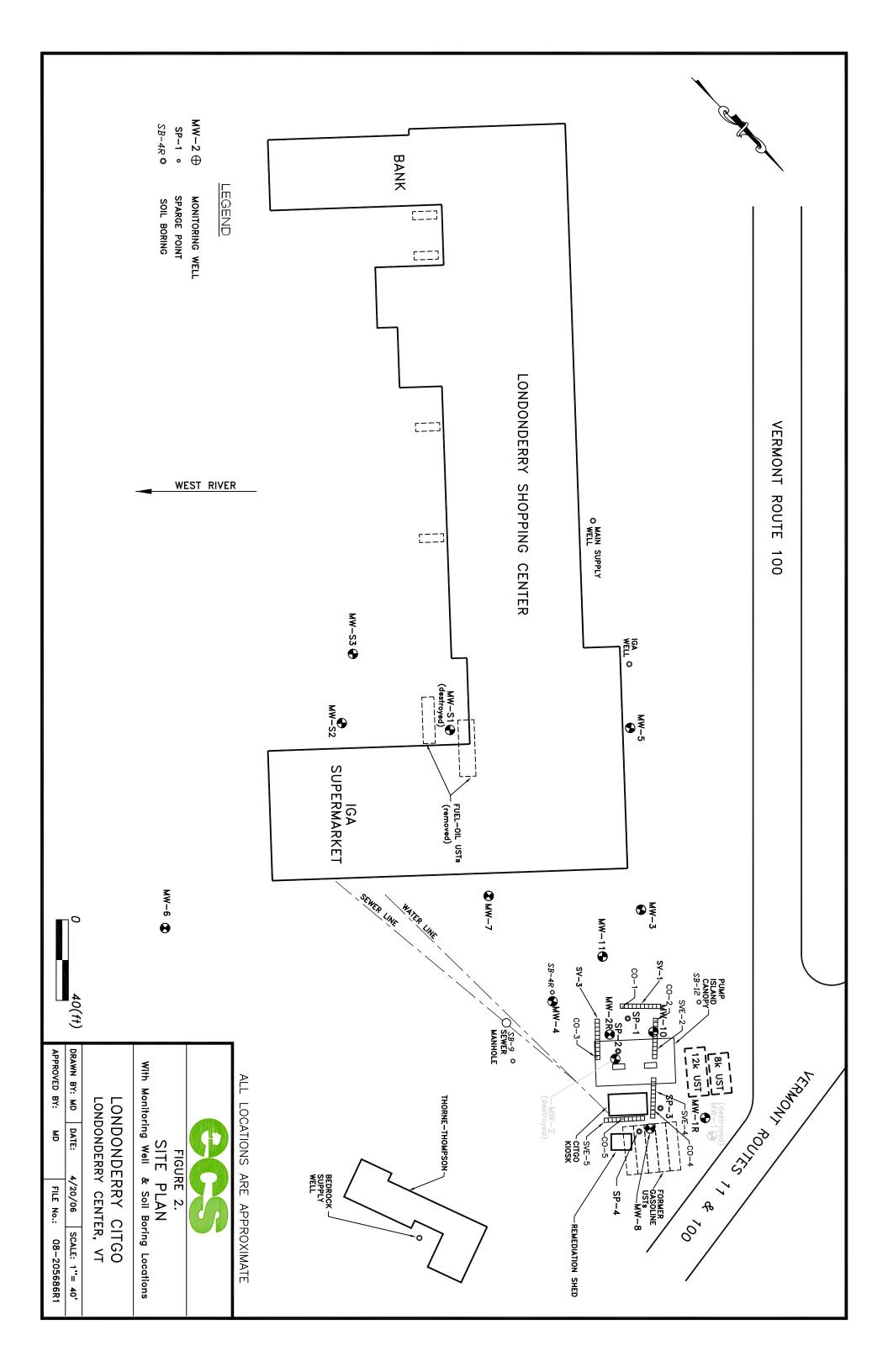
Thorne-Thomsen residential POET system not accessible on 9/21/2007

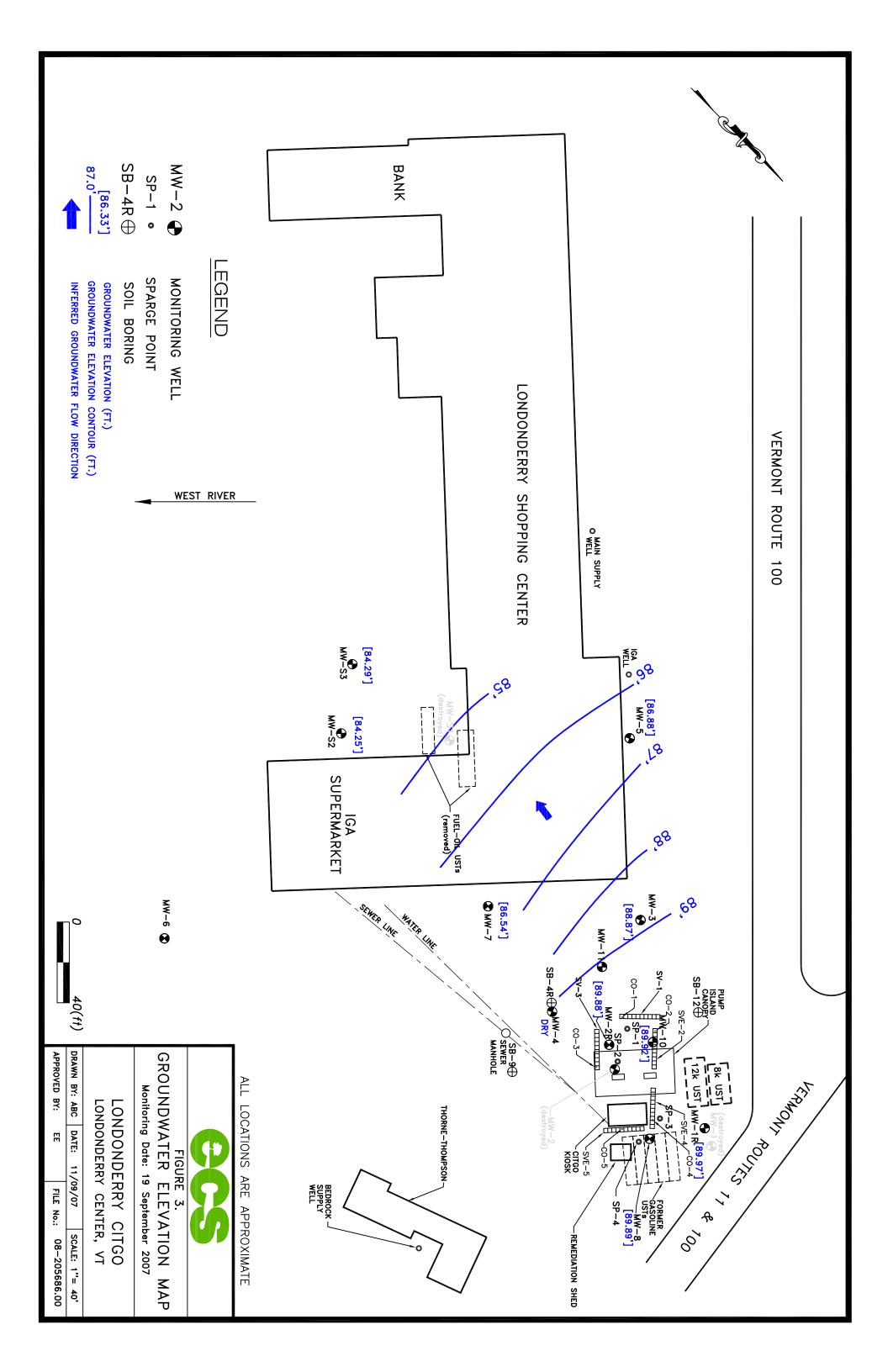
 $^{^{\}star}$ Effective on 2/28/07, TMB enforcement standards increased to 350 μ g/L total 1,2,4,TMB and 1,3,5,TMB

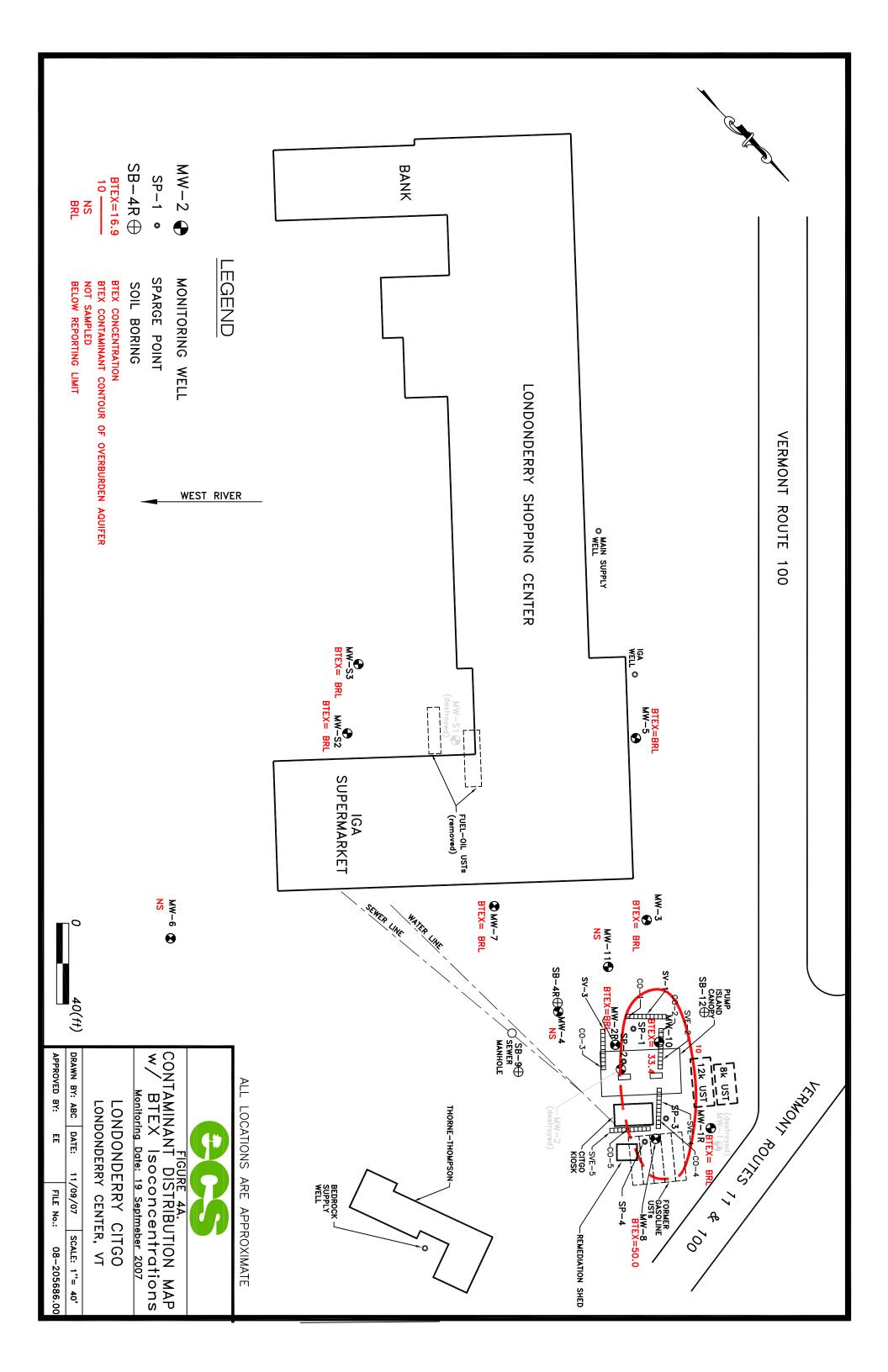
TABLE 2. GROUNDWATER ELEVATION CALCULATIONS

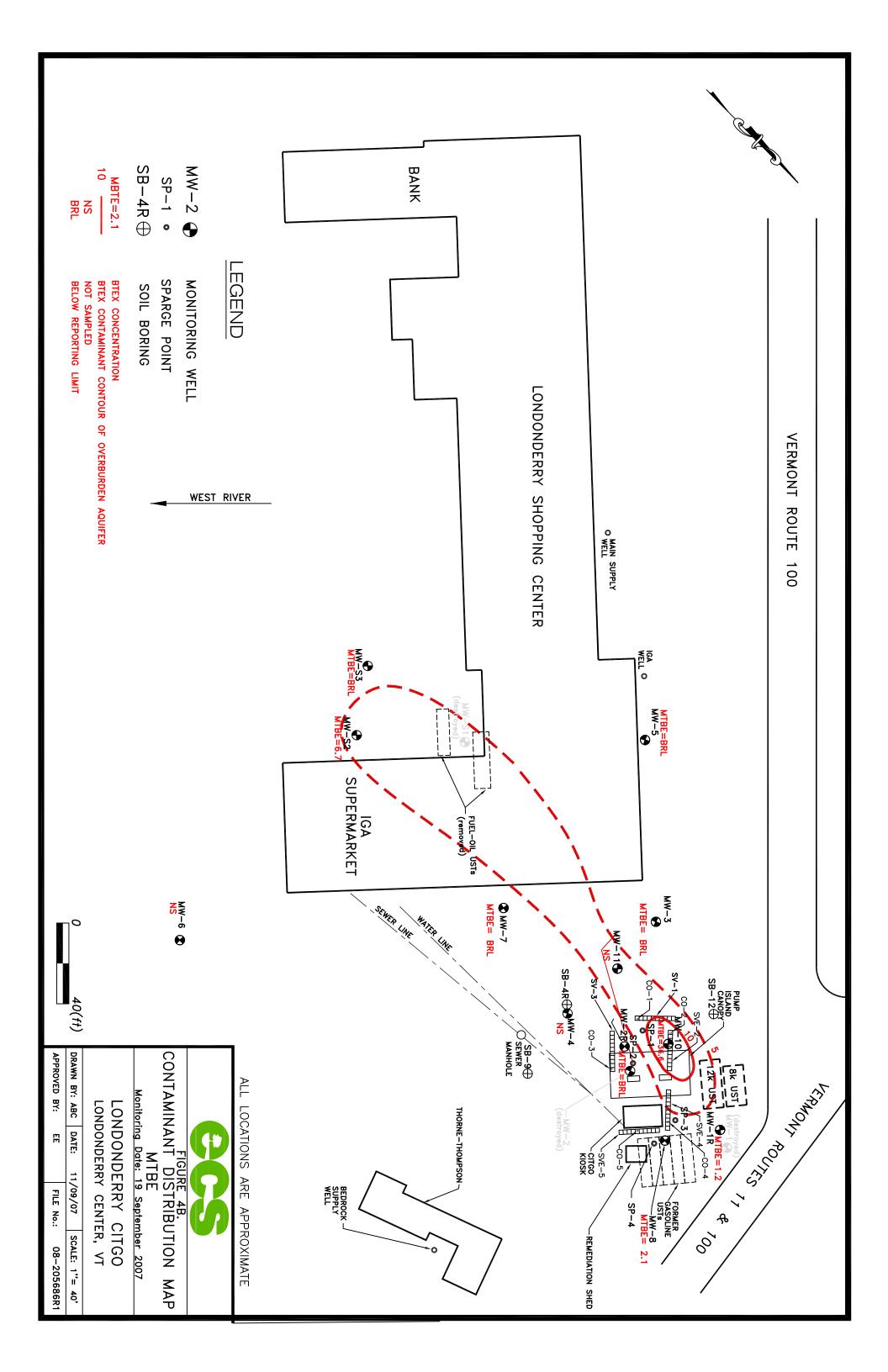

Londonderry Citgo Londonderry, Vermont


Monitoring Date: 19 September 2007


Well I. D.	Top of Casing Elevation *	Depth to Water (feet, TOC)	Ground Water Elevation
MW-1R	100.53	10.56	89.97
MW-2R	99.28	9.40	89.88
MW-3	98.69	9.82	88.87
MW-4	98.32	Dry	Dry
MW-5	98.48	11.60	86.88
MW-6	95.13	NG	NG
MW-7	98.40	11.86	86.54
MW-8	99.66	9.77	89.89
MW-S2	94.89	10.64	84.25
MW-S3	94.41	10.12	84.29
MW-10	99.60	9.68	89.92
MW-11	98.70	Dry	Dry

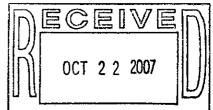

^{*}Top of casing (TOC) and ground water elevations are relative to an arbitrary site datum of 100.00 feet.


NG = Not Gauged



APPENDIX A
LABORATORY REPORTS

Report Date: 04-Oct-07 14:57



SPECTRUM ANALYTICAL, INC.

Featuring
HANIBAL TECHNOLOGY

Laboratory Report

☑ Final Report
☐ Re-Issued Report
☐ Revised Report
☐ CEIVED

Project: Londonderry Citgo - Londonderry, VT

Project 08-205686.00

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Beth Erickson

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA68509-01	MW-7	Ground Water	19-Sep-07 10:50	21-Sep-07 11:15
SA68509-02	MW-5	Ground Water	19-Sep-07 11:00	21-Sep-07 11:15
SA68509-03	MW-3	Ground Water	19-Sep-07 11:10	21-Sep-07 11:15
SA68509-04	MW-2R	Ground Water	19-Sep-07 11:15	21-Sep-07 11:15
SA68509-05	MW-10	Ground Water	19-Sep-07 11:25	21-Sep-07 11:15
SA68509-06	MW-1R	Ground Water	19-Sep-07 11:45	21-Sep-07 11:15
SA68509-07	MW-8	Ground Water	19-Sep-07 11:41	21-Sep-07 11:15
SA68509-08	MW-S3	Ground Water	19-Sep-07 10:15	21-Sep-07 11:15
SA68509-09	MW-S2	Ground Water	19-Sep-07 10:25	21-Sep-07 11:15
SA68509-10	DUP	Ground Water	19-Sep-07 00:00	21-Sep-07 11:15
SA68509-11	Trip Blank	Aqueous	19-Sep-07 00:00	21-Sep-07 11:15
SA68509-12	Rogers	Drinking Water	19-Sep-07 12:35	21-Sep-07 11:15
SA68509-13	MM INF	Drinking Water	19-Sep-07 00:00	21-Sep-07 11:15
SA68509-14	MM MID1	Drinking Water	19-Sep-07 00:00	21-Sep-07 11:15
SA68509-15	MM MID2	Drinking Water	19-Sep-07 00:00	21-Sep-07 11:15
SA68509-16	MM EFF	Drinking Water	19-Sep-07 00:00	21-Sep-07 11:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met

Please note that this report contains 30 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777

Florida # E87600/E87936

Maine # MA138

New Hampshire # 2538/2972

New Jersey # MA011/MA012

New York # 11393/11840

Rhode Island # 98

USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initia

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NH-2972, NY-11840, FL-E87936 and NJ-MA012).

Sample Identification MW-7 SA68509-01

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 10:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile O	rganic Compounds by 8260B										
	d by method SW846 5030) Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120) ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	1.0	1	•	•		•	•
107-06-2	1,2-Dichloroethane	BRL		μgΊ	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgΊ	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μgʻì	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μgʻl	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgΊ	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μgî	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg⁄i	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μg⁄l	2.0	1	•	•	•		•
95-47-6	o-Xylene	BRL		μgʻl	1.0	11	•			•	
Surrogate	recoveries:										
450-00-4	4-Bromofluorobenzene	91		70-1	30 %		•	•	•	*	•
2037-26-5	Toluene-d8	101		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	106		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	104		70-1	30 %		•	•	•	•	•

Sample Identification MW-5 SA68509-02

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
	ed by method SW846 5030	Water MS				1					
71-43-2	Benzene	BRL		μgʻi	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻl	1.0	1	n	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μg⁄l	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μgʻi	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μgl	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg⁄l	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻl	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻl	1.0	11	•		•	·	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	92		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	101		70-1	30 %		•		•	•	•
17060-07-0	1,2-Dichloroethane-d4	104		70-1	30 %			•	•	•	•
1868-53-7	Dibromofluoromethane	104		70-1	30 %		•	•	•	•	•
Microe	ctractable Organic Compou	nds									
Microextr	actables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.0100	1	•	•	•	•	•

Sample Identification MW-3 SA68509-03

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
- Volatile	Organic Compounds										
	rganic Compounds by 8260B										
	d by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μgΊ	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄i	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μg⁄l	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μg⁄l	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg⁄l	1.0	1	1	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg⁄i	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻi	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μg⁄l	2.0	1	•		•	*	•
95-47-6	o-Xylene	BRL		µg⁄i	1.0	1		•	•		•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	<i>9</i> 5		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	103		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	109		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	113		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
Microextra	actables by EPA 504.1	•									
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1.2-Dibromoethane (EDB)	BRL		µg/l	0.0100	1	•	•		•	•

Sample Identification MW-2R SA68509-04

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:15

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds					_					
	rganic Compounds by 8260B										
	ed by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μg⁄l	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgΊ	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgſl	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μg⁄l	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg⁄l	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		µg∕l	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		µg/l	1.0	1	•	•	•	и	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	<i>9</i> 3		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	107		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	107		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	110		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
	actables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μgʻl	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgΊ	0.0100	1	•	•	•	•	•
	•										

Sample Identification MW-10 SA68509-05

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:25

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds									-	
Volatile C	rganic Compounds by 8260B										
	ed by method SW846 5030	Water MS									
71-43-2	Benzene	27.1		µg/l	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻi	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	1.4		μgʻl	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	36.6		μgʻl	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μgʻl	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg⁄l	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	9.2		μg⁄i	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	3.0		μgʻi	1.0	1	•	•	•		•
1330-20-7	m,p-Xylene	4.9		μgʻl	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻi	1.0	1			•	•	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	93		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	<i>9</i> 8		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	<i>9</i> 7		70-1	30 %			•	•	•	•
1868-53-7	Dibromofluoromethane	<i>9</i> 5		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
Microextr	actables by EPA 504.1										
Prepare	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		þĝj	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.0100	1	•		•	•	•

Sample Identification MW-1R SA68509-06

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:45

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
	Organic Compounds by 8260B										
Prepare	ed by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μgʻl	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻi	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgʻi	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgʻl	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	1.2		μgʻl	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μgΊ	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻi	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g ⁄l	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻl	1.0	1		•	•	•	•
1330-20-7	m,p-Xylene	BRL		μg⁄l	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻl	1.0	1	· · · · · · · · · · · · · · · · · · ·	•		•	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	93		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	100		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	103		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	106		70-1	30 %		•	•	•	•	•
Microex	ktractable Organic Compou	nds									
Microextr	ractables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄i	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.0100	1	•	•	•	•	•
	. ,										

Sample Identification MW-8 SA68509-07

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 11:41

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds					•					
Volatile C	Organic Compounds by 8260B										
	ed by method SW846 5030	Water MS									
71-43-2	Benzene	1.7		µg/l	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		h g /l	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μ g /l	1.0	1	•	•	•		•
100-41-4	Ethylbenzene	43.7		μgʻl	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	2.1		μg⁄l	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	4.4		μg/l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg/l	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	4.5		μg/l	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	2.2		μgΊ	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	4.6		μgʻl	2.0	1	•	•	•	•	•
95 -47-6	o-Xylene	BRL		μgʻl	1.0	1	•			•	<u> </u>
Surrogate	recoveries:				. —						
460-00-4	4-Bromofluorobenzene	96		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	99		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	99		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	98		70-1	30 %		•	•	•	•	•
Microex	xtractable Organic Compou	nds									
	ractables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.0100	1	•	•	•	•	•

Sample Identification MW-S3 SA68509-08

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 10:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds					 -					
Volatile O	rganic Compounds by 8260B										
	d by method SW846 5030	Water MS		•							
71-43-2	Benzene	BRL		μg⁄I	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgΊ	1.0	1		•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgʻl	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgʻi	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μgΊ	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻi	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	8RL		μgʻl	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻi	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μg/l	1.0	1			•		'
Surrogate :	recoveries:										
460-00-4	4-Bromofluorobenzene	<i>9</i> 5		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	104		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	109		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	112		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compour	nds									
Microextra	actables by EPA 504.1										
Prepare	ed by method SW846 3510	С									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μgΊ	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.0100	1	•	•	•	•	•

Sample Identification MW-S2 SA68509-09

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 10:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile O	rganic Compounds by 8260B										
Prepare	d by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μgʻi	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgΊ	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgʻl	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgʻl	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	6.7		μ gʻi	1.0	1	•	•	1	•	•
91-20-3	Naphthalene	BRL		μgʻl	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg⁄l	1.0	1	•	•	•	•	•
95-63 -6	1,2,4-Trimethylbenzene	BRL		μgʻl	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻl	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻi	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		hQJ	1.0	1		<u> </u>		•	
Surrogate :	recoveries:										
460-00-4	4-Bromofluorobenzene	94		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	101		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	105		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	110		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
Microextra	actables by EPA 504.1										
	d by method SW846 3510	С									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010) SM
106-93-4	1.2-Dibromoethane (EDB)	BRL		μg/l	0.0100	1	•		•	•	•

Sample Identification DUP SA68509-10

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 19-Sep-07 00:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds	<u> </u>									
Volatile C	rganic Compounds by 8260B										
	ed by method SW846 5030	Water MS									
71-43-2	Benzene	26.3		μgʻi	1.0	1	SW846 8260B	02-Oct-07	02-Oct-07	7100120) ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻi	1.0	1	#	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	1.5		μgʻi	1.0	1	ı	•	•	•	•
1634-04-4	Methyl tert-butyl ether	34.2		μg/i	1.0	1	•		•	•	•
91-20-3	Naphthalene	BRL		μgʻl	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻi	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	9.4		µgʻl	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	3.1		μgΊ	1.0	1		•	•	•	•
1330-20-7	m,p-Xylene	4.9		μg⁄I	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μg⁄I	1.0	1				•	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	98		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	96		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	<i>9</i> 5		70-1	30 %		•	•	•	•	•

Sample Identification Trip Blank SA68509-11

Ŧ

Client Project # 08-205686.00

Matrix Aqueous Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile Q	rganic Compounds by 8260B										
Prepare	d by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Sep-07	28-Sep-07	7091845	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgΊ	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgʻi	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μgΊ	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-88-3	Toluene	8RL		μgή	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μgʻi	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻi	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μg⁄l	1.0	11	• 	<u> </u>	•		
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	93		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	104		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	105		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	110		70-1	30 %		•	•	•	•	•

Sample Identification Rogers SA68509-12

•

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 12:35

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile O	rganic Compounds by 8260B										
	ed by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μg⁄l	1.0	1	SW846 8260B	28-Sep-07	28-Sep-07	7091845	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μg⁄l	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μg⁄l	1.0	1		•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μgʻl	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg/l	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μgΊ	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgΊ	1.0	1	•		•	•	•
1330-20-7	m,p-Xylene	BRL		μgΊ	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻi	1.0	1			•		
Surrogate	recoveries:		-								
460-00-4	4-Bromofluorobenzene	95		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	103		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	104		70-1	30 %		•	¥	•	•	•
1868-53-7	Dibromofluoromethane	111		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
Microextr	actables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.0100	1	•	•	•	•	•

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile (Organic Compounds				-		•				
524.2 Purc	geable Organic Compounds										
^o repared	d by method SW846 5030 Wa	ater MS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon	BRL		μgΊ	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
37-64-1	Acetone	BRL		þgʻl	10.0	1	•	•	•	•	'
07-13-1	Acrylonitrile	BRL		μgΊ	1.0	1	•	•	•	•	•
1-43-2	Benzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
08-86-1	Bromobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
4-97-5	Bromochloromethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
5-27-4	Bromodichloromethane	BRL		μg⁄i	0.5	1	•	•	•	•	•
5-25-2	Bromoform	BRL		μg¶	0.5	1	•	•	•	•	•
4-83-9	Bromomethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	•	•	•	•	•
	n-Butylbenzene	BRL		μg/l	0.5	1	•	•	•	•	•
	sec-Butylbenzene	BRL		μgΊ	0.5	1	•	•	•	•	•
	tert-Butylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
75-15-0	Carbon disulfide	BRL		μgΊ	0.5	1	•	•	•	•	•
6-23-5	Carbon tetrachloride	BRL		μg/l	0.5	1	•	•	•	•	•
108-90-7	Chlorobenzene	BRL		μgΊ	0.5	1	•	•	•	•	•
	Chloroethane	BRL		μg⁄l	0.5	1	Ī	•	•	•	•
7-66-3	Chloroform	BRL		μg/l	0.5	1	•	•	•	•	•
4-87-3	Chloromethane	BRL		µg/l	0.5	1	•	•	•	•	•
	2-Chlorotoluene	BRL		µg∕l	0.5	1	•	•	•	•	
06-43-4	4-Chlorotoluene	BRL		μg/l	0.5	1	•	•	•	•	•
5-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5	1	•	•	•	•	
24-48-1	Dibromochloromethane	BRL		hā,	0.5	1	•	•	•	•	•
	1,2-Dibromoethane (EDB)	BRL		hā. hā.	0.5	1	•				•
06-93-4	Dibromomethane	BRL		hāj	0.5	i					
4-95-3		BRL		μgʻi	0.5	1	•		•		
5-50-1	1,2-Dichlorobenzene	BRL			0.5	1	•				
41-73-1	1,3-Dichlorobenzene	BRL		µg∕l ua†i	0.5	1					
06-46-7	1,4-Dichlorobenzene			µg/l	0.5	1					
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		µgʻi				•			
5-34-3	1,1-Dichloroethane	BRL		μg⁄l	0.5	1					
107-06-2	1,2-Dichloroethane	BRL		hãj	0.5	1	•				
5-35-4	1,1-Dichloroethene	BRL		hãj	0.5	1					
56-59-2	cis-1,2-Dichloroethene	BRL		hð.	0.5	1					
56-60-5	trans-1,2-Dichloroethene	BRL		μg⁄l	0.5	1	-	•			
8-87-5	1,2-Dichloropropane	BRL		μgΊ	0.5	1		•			
42-28-9	1,3-Dichloropropane	BRL		μg⁄l	0.5	1		•			
94-20-7	2,2-Dichloropropane	BRL		μg⁄i	0.5	1	-				
63-58-6	1,1-Dichloropropene	BRL		μgʻl	0.5	1	-	-			
0061-01-5	cis-1,3-Dichloropropene	BRL		hãj	0.5	1	-				•
0061-02-6	trans-1,3-Dichloropropene	BRL		hã,	0.5	1		•			
00-41-4	Ethylbenzene	BAL		μgʻi	0.5	1	•	•	•		_
7-68-3	Hexachlorobutadiene	BRL		μ g ĩ	0.5	1	•	•	-	-	
91-78-6	2-Hexanone (MBK)	BRL		μg⁄l	10.0	1	•	•	•	•	•
8-82-8	Isopropylbenzene	BRL		μgʻl	0.5	1	•	• -	•	•	•
9-87-6	4-Isopropyltoluene	BRL		μgΊ	0.5	1	•	•		-	•
634-04-4	Methyl tert-butyl ether	11.9		μgʻl	0.5	1	•	•	•	•	•
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μgΊ	10.0	1	•	•	•	•	•
5-09-2	Methylene chloride	BRL		μ g /J	0.5	1	•	•	•	•	•
1-20-3	Naphthalene	BRL		μgʻi	0.5	1	•	•	•	•	•
103-65-1	n-Propylbenzene	BRL		μg/l	0.5	1	•	ı.	•	•	•

Sample Identification MM INF SA68509-13

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds	-			-						
524.2 Pu	rgeable Organic Compounds										
Prepare	ed by method SW846 5030 W	ater MS									
100-42-5	Styrene	BRL		μgʻi	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
127-18-4	Tetrachloroethene	BRL		μgʻl	0.5	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻl	0.5	1	•	•	•	•	•
67-61-6	1,2,3-Trichlorobenzene	BAL		μgʻl	0.5	1	•	•	•	•	•
120-82-1	1,2,4-Trichlorobenzene	BRL		μgΊ	0.5	1	•	•	•	•	•
71-55-6	1,1,1-Trichloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
79-00-5	1,1,2-Trichloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
79-01-6	Trichloroethene	BRL		μg⁄l	0.5	1	•	•	•	•	•
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μgʻi	0.5	1	•	•	•	•	•
96-18-4	1,2,3-Trichloropropane	BRL		μgʻl	0.5	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	0.5	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
75-01-4	Vinyl chloride	BRL		μgʻl	0.5	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μg⁄l	0.5	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻi	0.5	1	•	•	•	•	•
109-99-9	Tetrahydrofuran	BRL		μ g /l	10.0	1	•	•	•	•	•
994-05-8	Tert-amyl methyl ether	8.0		μg/l	0.5	1	•	•	•	•	•
637-92-3	Ethyl tert-butyl ether	BRL		μg⁄l	0.5	1	•	•	•		•
108-20-3	Di-isopropyl ether	BRL		μg⁄i	0.5	1	•		•	•	•
75-65-0	Tert-Butanol / butyl alcohol	BRL		μgʻi	10.0	1			•	'	•
Surrogate	recoveries:	· ·									
460-00-4	4-Bromofluorobenzene	96		80-1	20 %		•	•	•	•	•
2037-26-5	Toluene-d8	102		80-1	20 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	103		80-1	20 %		•		•	•	•
1868-53-7	Dibromofluoromethane	110		80-1	20 %		•	•	•	•	•
Microe	ktractable Organic Compounds	5									
Microextr	ractables by EPA 504.1										
	ed by method SW846 3510C										
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.0100	1					

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
	Organic Compounds										
	geable Organic Compounds										
repare	d by method SW846 5030 Wa	ater MS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon	BRL		μg⁄i	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
7 -6 4-1	Acetone	BRL		μg⁄l	10.0	1			•	•	•
07-13-1	Acrylonitrile	BRL		μgʻl	1.0	1		•		•	•
-43-2	Benzene	BRL		μgʻi	0.5	1	•		•	•	•
8-86-1	Bromobenzene	BRL		μgʻi	0.5	1	•		•	•	•
1-97-5	Bromochloromethane	BRL		μg⁄i	0.5	1	•	11	•	•	•
5-27-4	Bromodichloromethane	BRL		μgʻl	0.5	1			•	•	•
5-25-2	Bromoform	BRL		μgʻi	0.5	1	•		•	•	•
1-83-9	Bromomethane	BRL		μgʻi	0.5	1	•		•	•	•
3-93-3	2-Butanone (MEK)	BRL		μgʻl	10.0	1	•	•	•	•	•
14-51-8	n-Butylbenzene	BRL		μgʻi	0.5	1	•	•	•	•	•
35-98-8	sec-Butylbenzene	BRL		μgʻi	0.5	1	•	•	•	•	•
3-06-6	tert-Butylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
5-15-0	Carbon disulfide	BRL		μgΊ	0.5	1	•		•	•	•
3-23-5	Carbon tetrachloride	BRL		μgʻi	0.5	1	•	•	•	•	•
08-90-7	Chlorobenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
5-00-3	Chloroethane	BRL		μgΊ	0.5	1	•	•	•		
7-66-3	Chloroform	BRL		μgʻi	0.5	1	•	•	•	•	•
l-87-3	Chloromethane	BRL		μgʻi	0.5	1	•	•	•	•	•
-49-8	2-Chlorotoluene	BRL		μgʻi	0.5	1	•	•	•	•	•
6-43-4	4-Chlorotoluene	BRL		µg⁄i	0.5	1		•	•	•	•
-12-8	1,2-Dibromo-3-chloropropane	BRL		μgl	0.5	1	•	•	•	•	•
4-48-1	Dibromochloromethane	BRL		րցՈ	0.5	1	•	•	•	•	. •
6-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.5	1	•	•	•	•	•
l- 95 -3	Dibromomethane	BRL		μgʻl	0.5	1	•	•	•	•	•
-50-1	1,2-Dichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
11-73-1	1,3-Dichlorobenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
06-46-7	1,4-Dichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
5-71 - 8	Dichlorodifluoromethane (Freon12)	B RL		μg⁄l	0.5	1		•	•	•	•
5-34-3	1,1-Dichloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
07-06-2	1,2-Dichloroethane	BRL		μgΊ	0.5	1	•	•	•	•	•
5-35-4	1,1-Dichloroethene	BRL		μg/i	0.5	1	•	•	•	•	•
6-59-2	cis-1,2-Dichloroethene	BRL		μg/l	0.5	1	•	•	•	1	•
6-60-5	trans-1,2-Dichloroethene	BRL		μgʻl	0.5	1	•	•	•	•	•
3-87-5	1,2-Dichloropropane	BRL		μg⁄l	0.5	1	•	N	•	•	•
2-28-9	1,3-Dichloropropane	BRL		μgʻi	0.5	1		•	•	•	•
4-20-7	2,2-Dichloropropane	BRL		μg/l	0.5	1	•	•	•	•	•
3-58-6	1,1-Dichloropropene	BRL		µg/l	0.5	1	•	•	•	•	•
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	•		•	•	•
061-02-6	trans-1,3-Dichloropropene	BRL		μgʻl	0.5	1	•	*	•	•	•
0-41-4	Ethylbenzene	BRL		μgʻi	0.5	1	•	•	•	•	•
-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	•	•	•	•	•
)1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	•	•	•	•	•
8-82-8	Isopropylbenzene	BRL		μg/l	0.5	1	•	•	•	•	•
9-87-6	4-Isopropyltoluene	BRL		μg/l	0.5	1	•	•	•	•	•
534-04-4	Methyl tert-butyl ether	BRL		μg/l	0.5	1		•	•	•	•
8-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1		•	•	•	
5-09-2	Methylene chloride	BRL		μg/l	0.5	1	w	•	•	•	•
	Naphthalene	BRL		μg/l	0.5	1	•		•	•	•
1-20-3											

Sample Identification MM MID1 SA68509-14

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
524.2 Pur	geable Organic Compounds										
Ргераге	d by method SW846 5030 W	ater MS									
100-42-5	Styrene	BRL		μgʻl	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μgŤ	0.5	1	•	•	•	•	•
127-18-4	Tetrachloroethene	BRL		μg⁄l	0.5	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻl	0.5	1	•	•	•	•	•
87-61-6	1,2,3-Trichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
120-82-1	1,2,4-Trichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
71-55-6	1,1,1-Trichloroethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
79-00-5	1,1,2-Trichloroethane	BRL		μgʻi	0.5	1	•	•	•	•	•
79-01-6	Trichloroethene	BRL		μgΊ	0.5	1	•	•	•	•	•
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg1	0.5	1	•	•	•	•	•
96-18-4	1,2,3-Trichloropropane	BRL		μgf	0.5	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
75-01-4	Vinyl chloride	BRL		µg⁄l	0.5	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻl	0.5	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻi	0.5	1	•	•	•	•	•
109-99-9	Tetrahydrofuran	BRL		μgΊ	10.0	1	•	•	•	•	•
994-05-8	Tert-amyl methyl ether	BRL		μgʻi	0.5	1	•	•	•	•	•
637-92-3	Ethyl tert-butyl ether	BRL		рgJ	0.5	1	•	•	ı	•	•
108-20-3	Di-isopropyl ether	BRL		μg⁄l	0.5	1	•		•	•	•
75-65-0	Tert-Butanol / butyl alcohol	BRL		μgʻi	10.0	1			•		
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	91		80-1	20 %		•	•	•	•	•
2037-26-5	Toluene-d8	102		80-1	20 %		•		•	•	•
17060-07-0	1,2-Dichloroethane-d4	104		80-1	20 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	105		80-1	20 %		•	•	•	•	•
Microex	tractable Organic Compounds	3									
	actables by EPA 504.1										
	d by method SW846 3510C										
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻl	0.0100	1	•	•	•	•	•

Sample Identification MM MID2 SA68509-15

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds								· · · · · ·		. —
	rganic Compounds by 8260B										
Prepare	ed by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μg⁄l	1.0	1	SW846 8260B	28-Sep-07	28-Sep-07	7091845	ek
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgΊ	1.0	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgΊ	1.0	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μg⁄l	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μg⁄l	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μg⁄i	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μg/l	1.0	1	•	•	•	•	
95-63-6	1,2,4-Trimethylbenzene	BRL		h ն յ	1.0	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g ň	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻl	2.0	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgſ	1.0	1	•	•	•	•	•
Surrogate	recoveries:			*			•				
460-00-4	4-Bromofluorobenzene	98		70-1	30 %		•	•	•	•	•
2037-26-5	Toluene-d8	104		70-1	30 %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	1 0 5		70-1	30 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	113		70-1	30 %		•	•	•	•	•
Microex	tractable Organic Compou	nds									
Microextra	actables by EPA 504.1										
	ed by method SW846 3510	C									
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.0100	1	•	•	•	•	•

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
524.2 Pur	geable Organic Compounds										
Prepared	d by method SW846 5030 Wa	ater MS									
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon	BRL		μgʻl	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
67-64-1	Acetone	BRL		μgʻi	10.0	1	•	•	•	•	•
107-13-1	Acrylonitrile	BRL		μgʻl	1.0	1	•	•	•	•	•
71-43-2	Benzene	BRL		µg⁄l	0.5	1	•	•	•	•	•
108-86-1	Bromobenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
74-97-5	Bromochloromethane	BRL		μgʻl	0.5	1	•	•	•	•	•
75-27-4	Bromodichloromethane	BRL		μgʻl	0.5	1	•	•	•	•	•
75-25-2	Bromoform	BRL		μgʻi	0.5	1	•	•	•	•	•
74-83-9	Bromomethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
78-93-3	2-Butanone (MEK)	BRL		μgʻl	10.0	1	•	•	•	•	•
104-51-8	n-Butylbenzene	BRL		μgſl	0.5	1	•	•	•	•	•
135-98-8	sec-Butylbenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
98-06-6	tert-Butylbenzene	BRL		µg⁄l	0.5	1	•	•	•	•	•
75-15-0	Carbon disulfide	BRL		μgʻi	0.5	1	•	•	•	•	•
56-23-5	Carbon tetrachloride	BRL		μgʻl	0.5	1	•		•	•	•
108-90-7	Chlorobenzene	BRL		hal	0.5	1	•	•	•	•	•
75-00-3	Chloroethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
67-66-3	Chloroform	BRL		μgʻl	0.5	1	•		•	•	•
74-87-3	Chloromethane	BRL		μgʻl	0.5	1	•		•	•	•
95-49-8	2-Chlorotoluene	BRL		μgΊ	0.5	1	•	•	•	•	•
106-43-4	4-Chlorotoluene	BRL		μg⁄l	0.5	1	•	•	•	•	•
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg⁄i	0.5	1	•	•	•	•	•
124-48-1	Dibromochloromethane	BRL		hQJ	0.5	1	•	•	•	•	•
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgʻi	0.5	1	•	•	•	•	•
74-95-3	Dibromomethane	BRL		μg⁄l	0.5	1	•	•	•	•	•
95-50-1	1,2-Dichlorobenzene	BRL		μgΊ	0.5	1		•	•	•	•
541-73-1	1,3-Dichlorobenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
106-46-7	1,4-Dichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		μgΊ	0.5	1	•	•	•	•	•
75-34-3	1,1-Dichloroethane	BRL		μgʻi	0.5	1	•	•	•	•	•
107-06-2	1,2-Dichloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
75-35-4	1,1-Dichloroethene	BRL		μg⁄l	0.5	1	•	•	•	•	•
156-59-2	cis-1,2-Dichloroethene	BRL		μgʻl	0.5	1	•	•	•	•	•
156-60-5	trans-1,2-Dichloroethene	BRL		μgΊ	0.5	1	•	•	•	•	•
78-87-5	1,2-Dichloropropane	BRL		μgʻi	0.5	1	•	•	•	•	•
142-28-9	1,3-Dichloropropane	BRL		μgʻì	0.5	1	•	•	•	•	•
594-20-7	2,2-Dichloropropane	BRL		μgʻl	0.5	1	•	•	•	•	•
563-58-6	1,1-Dichloropropene	BRL		μgʻl	0.5	1	•	•	•	•	•
10061-01-5	cis-1,3-Dichloropropene	BRL		hã	0.5	1	•	•	•	•	•
10061-02-6	trans-1,3-Dichloropropene	BAL		hã,	0.5	1	•	•	•	•	•
100-41-4	Ethylbenzene	BRL		μgʻi	0.5	1	•	•	•	•	•
87-68-3	Hexachlorobutadiene	BRL		hãj	0.5	1	•	•		•	-
591-78-6	2-Hexanone (MBK)	BRL		μg⁄l	10.0	1	•	•			-
98-82-8	Isopropylbenzene	BRL		μgʻi	0.5	1	•	•	-		
99-87-6	4-Isopropyltoluene	BRL		hã,	0.5	1	•	•	•	:	:
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	0.5	1	• -	•	•		•
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μgʻi	10.0	1	•	•	•		•
75-0 9- 2	Methylene chloride	BAL		μg⁄l	0.5	1	•		•	:	
91-20-3	Naphthalene	BRL		þgl	0.5	1	•	•	-	·	
103-65-1	n-Propylbenzene	BRL		μgʻì	0.5	1	•	•	•	•	•

Client Project # 08-205686.00

Matrix Drinking Water Collection Date/Time 19-Sep-07 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile (Organic Compounds					 *					
	geable Organic Compounds										
	d by method SW846 5030 W	ater MS									
100-42-5	Styrene	BRL		µg/l	0.5	1	EPA 524.2	02-Oct-07	02-Oct-07	7100120	ek
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μ g ⁄l	0.5	1	•	•	•	•	•
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	•	•	•	•	•
127-18-4	Tetrachloroethene	BRL		μg⁄l	0.5	1	•	•	•	•	•
108-88-3	Toluene	BRL		μgʻi	0.5	1	•	•	•	•	•
87-61-6	1,2,3-Trichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
120-82-1	1,2,4-Trichlorobenzene	BRL		μg⁄l	0.5	1	•	•	•	•	•
71-55-6	1,1,1-Trichloroethane	BRL		hãj	0.5	1	•	•	•	•	•
79-00-5	1,1,2-Trichloroethane	BRL		μgʻl	0.5	1	•	•	•	•	•
79-01-6	Trichloroethene	BRL		μgʻl	0.5	1	•	•	•	•	•
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg⁄i	0.5	1	•	•	•	•	•
96-18-4	1,2,3-Trichloropropane	BRL		μg⁄l	0.5	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg⁄i	0.5	1	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μgʻl	0.5	1	•	•	•	•	•
75-01-4	Vinyl chloride	BRL		μgʻl	0.5	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μgʻl	0.5	1	•	•	•	•	•
95-47-6	o-Xylene	BRL		μgʻi	0.5	1	•	•	•	•	•
109-99-9	Tetrahydrofuran	BRL		μg⁄l	10.0	1	•	•	•	•	•
994-05-8	Tert-amyl methyl ether	BRL		h&J	0.5	1	•	•	•	•	•
637-92-3	Ethyl tert-butyl ether	BRL		μgʻi	0.5	1	•	•	•	•	•
108-20-3	Di-isopropyl ether	BRL		μg⁄l	0.5	1	•	•	•	•	•
75-65-0	Tert-Butanol / butyl alcohol	BRL		μgʻl	10.0	1	•		•	•	•
Surrogate r	recoveries:	-					-				
460-00-4	4-Bromofluorobenzene	95		80-12	20 %		•	•	•	•	•
2037-26-5	Toluene-d8	103		80-1	20 %		•	•	•		•
17060-07-0	1,2-Dichloroethane-d4	107		80-12	20 %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	112		80-1	20 %		•	•	•	•	•
Microex	tractable Organic Compounds	;									
	actables by EPA 504.1										
_	d by method SW846 3510C										
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.0100	1	EPA 504.1	01-Oct-07	01-Oct-07	7100010	SM
106-93-4	1,2-Dibromoethane (EDB)	BRL		μgΊ	0.0100	1		•	•	•	•

Analyte(s)	Result Fl	ag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 7091845 - SW846 5030 Wa	nter MS								
Blank (7091845-BLK1)									
Prepared & Analyzed: 28-Sep-07									
Benzene	BRL	μg/l	1.0						
Chlorobenzene	BRL	μg/l	1.0						
1,2-Dibromoethane (EDB)	BRL	μg/l	1.0						
1,2-Dichloroethane	BRL	μg/l	1.0						
1,1-Dichloroethene	BRL	µg/l	1.0						
Ethylbenzene	BRL	μg/l	1.0						
Methyl tert-butyl ether	BRL	μg/l	1.0						
Naphthalene	BRL	µg/l	1.0						
Toluene	BRL	μ g/ Ι	1.0						
Trichloroethene	BRL	μg/l	1.0						
1,2,4-Trimethylbenzene	BRL	μg/l	1.0						
1,3,5-Trimethylbenzene	BRL	μg/l	1.0						
m,p-Xylene	BRL	μ g/ l	2.0						
o-Xylene	BRL	μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	47.5	μg/l	1.0	50.0		95	70-130		
Surrogate: 4-bromonuoropenzene Surrogate: Toluene-d8	47.3 52.3	μ 9 /l		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.2	μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	57.1	μg/l		50.0		114	70-130		
LCS (7091845-BS1)									
Prepared & Analyzed: 28-Sep-07									
Benzene	21.4	μg/l		20.0		107	70-130		
1,2-Dibromoethane (EDB)	19.5	μg/l		20.0		98	70-130		
1,2-Dichloroethane	19.8	μg/l		20.0		99	70-130		
Ethylbenzene	21.7	μ g/ l		20.0		109	70-130		
Methyl tert-butyl ether	18.4	μ g/ 1		20.0		92	70-130		
Naphthalene	18.9	μ g /l		20.0		95	70-130		
Toluene	20.0	μ g /l		20.0		100	70-130		
1,2,4-Trimethylbenzene	21.0	μg/l		20.0		105	70-130		
1,3,5-Trimethylbenzene	20.9	μg/l		20.0		104	70-130		
m,p-Xylene	41.0	μg/l		40.0		103	70-130		
o-Xylene	23.0	μg/I		20.0		115	70-130		
Surrogate: 4-Bromofluorobenzene	48.4	μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	49.4	μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.0	hð\j		50.0		98	70-130		
Surrogate: Dibromofluoromethane	51.4	μg/l		50.0		103	70-130		
LCS Dup (7091845-BSD1)									
Prepared & Analyzed: 28-Sep-07									
Benzene	20.7	μg/l		20.0		104	70-130	3	30
1,2-Dibromoethane (EDB)	18.8	μg/l		20.0		94	70-130	4	25
1,2-Dichloroethane	19.3	μ g /l		20.0		97	70-130	2	25
Ethylbenzene	21.0	µg/l		20.0		105	70-130	3	30
Methyl tert-butyl ether	18.3	μg/l		20.0		91	70-130	0.5	30
Naphthalene	18.4	μg/l		20.0		92	70-130	3	30
Toluene	19.5	μg/l		20.0		98	70-130	3	30
1,2,4-Trimethylbenzene	20.8	μg/l		20.0		104	70-130	0.9	30
1,3,5-Trimethylbenzene	20.7	μg/l		20.0		104	70-130	0.9	30
m,p-Xylene	41.0	μg/l		40.0		102	70-130	0.1	30
o-Xylene	22.1	µg/l		20.0		111	70-130	4	30
Surrogate: 4-Bromofluorobenzene	48.4	μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	49.9	μg/l		50.0		100	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 7091845 - SW846 5030 Water	r MS									
LCS Dup (7091845-BSD1)										
Prepared & Analyzed: 28-Sep-07										
Surrogate: 1,2-Dichloroethane-d4	49.0		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.8		µg/l		50.0		102	70-130		
Matrix Spike (7091845-MS1) Source	e: SA68509-12									
Prepared: 28-Sep-07 Analyzed: 29-Sep-07										
Benzene	21.3		µg∕l		20.0	BRL	107	70-130		
Chlorobenzene	21.3		μg/l		20.0	BRL	106	70-130		
1,1-Dichloroethene	20.0		μg/l		20.0	BRL	100	70-130		
Toluene	21.2		μg/l		20.0	BRL	106	70-130		
Trichloroethene	21.9		μg/l		20.0	BRL	110	70-130		
Surrogate: 4-Bromofluorobenzene	49.4	-	µg/l		50.0		99	70-130		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		µg/l		50.0 50.0		100	70-130 70-130		
Surrogate: Dibromofluoromethane	53.9		μg/l		50.0		108	70-130		
Matrix Spike Dup (7091845-MSD1) Source	e: SA68509-12									
Prepared: 28-Sep-07 Analyzed: 29-Sep-07									_	_
Benzene	21.0		µg/l		20.0	BRL	105	70-130	2	30
Chlorobenzene	20.7		µg/l		20.0	BRL	104	70-130	3	30
1,1-Dichloroethene	19.3		μg/l		20.0	BRL	96	70-130	4	30
Toluene	20.6		μg/l		20.0	BRL	103	70-130	3	30
Trichloroethene	21.1		μg/l		20.0	BRL	105	70-130	4	30
Surrogate: 4-Bromofluorobenzene	48.6		µg/l		50.0		97	70-130		
Surrogate: Toluene-d8	50.2		μ g /l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.7		μg/l		50.0 50.0		101 104	70-130 70-130		
Surrogate: Dibromofluoromethane	52.2		hð/J		00.0					
Batch 7100120 - SW846 5030 Water	r MS									
Blank (7100120-BLK1)										
Prepared & Analyzed: 02-Oct-07										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	0.5						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL	•	μg/l	1.0						
Benzene	BRL		μg/l	0.5						
Benzene	BRL		μg/l							
	D			1.11						
Rromohanzona	BRI			1.0 0.5						
Bromobenzene Bromochloromethane	BRL BRI		µд/1	0.5						
Bromochloromethane	BRL		h ā /J	0.5 0.5						
Bromochloromethane Bromodichloromethane	BRL BRL		hð\J hð\J hĝ\J	0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform	BRL BRL BRL		hâ\J hâ\J hâ\J	0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane	BRL BRL BRL BRL		hôy hôy hôy hôy	0.5 0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	BRL BRL BRL BRL BRL		hây hây hây hây hây	0.5 0.5 0.5 0.5 0.5 10.0						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây	0.5 0.5 0.5 0.5 0.5 10.0						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây	0.5 0.5 0.5 0.5 0.5 10.0 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây	0.5 0.5 0.5 0.5 0.5 10.0 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butytbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5 0.5 0.5						
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây hây hây	0.5 0.5 0.5 0.5 10.0 0.5 0.5 0.5 0.5 0.5 0.5						

				Spike	Source		%REC		RPD
Analyte(s)	Result Fla	g Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 7100120 - SW846 5030 Wat	ter MS								
Blank (7100120-BLK1)									
Prepared & Analyzed: 02-Oct-07									
4-Chlorotoluene	BRL	μ g /l	0.5						
1,2-Dibromo-3-chloropropane	BRL	μg/l	0.5						
Dibromochloromethane	BRL	μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL	µg/l	0.5						
1,2-Dibromoethane (EDB)	BRL	μg/l	1.0						
Dibromomethane	BRL	μg/l	0.5						
1,2-Dichlorobenzene	BRL	μg/l	0.5						
1,3-Dichlorobenzene	BRL	μg/l	0.5						
1,4-Dichlorobenzene	BRL	μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL	μg/l	0.5						
1,1-Dichloroethane	BRL	μg/l	0.5						
1,2-Dichloroethane	BRL	hā\J	0.5						
1,2-Dichloroethane	BRL	μg/l	1.0						
1,1-Dichloroethene	BRL	μg/l	0.5						
1,1-Dichloroethene	BRL	μg/l	1.0						
cis-1,2-Dichloroethene	BRL	μg/l	0.5						
trans-1,2-Dichloroethene	BRL	µg/l	0.5						
1,2-Dichloropropane	BRL	μg/l	0.5						
1,3-Dichloropropane	BRL	μg/l	0.5						
2,2-Dichloropropane	BRL	μg/l	0.5						
1,1-Dichloropropene	BRL	μg/l	0.5						
cis-1,3-Dichloropropene	BRL	μg/l	0.5						
trans-1,3-Dichloropropene	BRL	μg/l	0.5						
Ethylbenzene	BRL	µg/l	0.5						
Ethylbenzene	BRL	µg/l	1.0						
Hexachlorobutadiene	BRL	μ g/ l	0.5						
2-Hexanone (MBK)	BRL	μg/l	10.0						
Isopropylbenzene	BRL	μg/l	0.5						
4-Isopropyltoluene	BRL	μ g /l	0.5						
Methyl tert-butyl ether	BRL	μg/l	0.5						
Methyl tert-butyl ether	BRL	μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	μg/l	10.0						
Methylene chloride	BRL	μg/l	0.5						
Naphthalene	BRL	μg/l	0.5						
Naphthalene	BRL	μg/1	1.0						
n-Propylbenzene	BRL	μ g /l	0.5						
Styrene	BRL	μg/l	0.5						
1,1,2-Tetrachloroethane	BRL	μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL	μg/l	0.5						
Tetrachloroethene	BRL	µg∕l	0.5						
Toluene	BRL	μg/l	0.5						
Toluene	BRL	μg/l	1.0						
1,2,3-Trichlorobenzene	BRL	µg/l	0.5						
1,2,4-Trichlorobenzene	BRL	μg/l	0.5						
1,1,1-Trichloroethane	BRL	μg/l	0.5						
1,1,2-Trichloroethane	BRL	μg/l	0.5						
Trichloroethene	BRL	μg/l	0.5						
Trichloroethene	BRL	μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	μ g /l	0.5						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 7100120 - SW846 5030 Water										
Blank (7100120-BLK1)										
Prepared & Analyzed: 02-Oct-07										
1,2,3-Trichloropropane	BRL		µg/l	0.5						
1,2,4-Trimethylbenzene	BRL		μ g/ Ι	1.0						
1,2,4-Trimethylbenzene	BRL		μ g/ Ι	0.5						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μ g/ Ι	0.5						
Vinyl chloride	BRL		μg/l	0.5						
m,p-Xylene	BRL		μg/l	2.0						
m,p-Xylene	BRL.		μg/l	0.5						
o-Xylene	BRL		μg/I	0.5						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Tert-amyl methyl ether	BRL		μg/l	0.5						
Ethyl tert-butyl ether	BRL		μg/l	0.5						
Di-isopropyl ether	BRL		μg/l	0.5						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
Surrogate: 4-Bromofluorobenzene	46.4		μg/l		50.0		93	80-120		
Surrogate: 4-bromofiborobenzene	46.4		μg/l		50.0		93	70-130		
Surrogate: Toluene-d8	50.6		μ g/ l		50.0		101	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	80-120		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	51.7 51.7		hā\J		50.0 50.0		103 103	80-120 70-130		
Surrogate: Dibromofluoromethane	52.1		µg/I µg/I		50.0		104	80-120		
Surrogate: Dibromofluoromethane	52.1		µg/l		50.0		104	70-130		
LCS (7100120-BS1)										
Prepared & Analyzed: 02-Oct-07										
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.1		μg/l		20.0		115	80-120		
Acetone	30.0	QC2	μ g/ l		20.0		150	70-130		
Acrylonitrile	21.8		μg/l		20.0		109	70-130		
Benzene	21.9		μg/l		20.0		109	70-130		
Benzene	21.9		μg/l		20.0		109	80-120		
Bromobenzene	20.9		μg/l		20.0		105	80-120		
Bromochloromethane	20.8		μg/l		20.0		104	80-120		
Bromodichloromethane	21.9		μg/l		20.0		110	80-120		
Bromoform	21.3		μg/l		20.0		106	80-120		
Bromomethane	21.8		μ g/ l		20.0		109	80-120		
2-Butanone (MEK)	24.1		μg/l		20.0		120	70-130		
n-Butylbenzene	20.6		μ g/ 1		20.0		103	80-120		
sec-Butylbenzene	21.0		μg/l		20.0		105	80-120		
tert-Butylbenzene	20.5		μ g/ l		20.0		103	80-120		
Carbon disutfide	20.3		μ g/ l		20.0		102	70-130		
Carbon tetrachloride	22.1		μg/l		20.0		111	80-120		
Chlorobenzene	21.6		μ g/ Ι		20.0		108	80-120		
Chloroethane	21.0		μ g/ Ι		20.0		105	80-120		
Chloroform	21.5		μ g/ l		20.0		107	80-120		
Chloromethane	23.0		µg/1		20.0		115	80-120		
	22.0				20.0		110	80-120		
2-Chlorotoluene	22.0		μg/l .ug/l		20.0		110	80-120		
4-Chlorotoluene	20.3		µg/l ug/l		20.0		101	80-120		
1,2-Dibromo-3-chloropropane	20.3 21.0		µg/l		20.0		105	80-120		
Dibromochloromethane			µg/l					70-120		
1,2-Dibromoethane (EDB)	20.0		μg/l		20.0		100	10-100		

Danult	Ela a	l Imita	*D <i>I</i> NI	Spike	Source	0/DEC	%REC	רום מ	RPD Limi
Result	riag	Units	*KDL	Level	Resun	%REC	Limits	KPD	Lim
r MS									
20.0		μg/l							
20.9		μg/l							
22.0		μg/l		20.0		110	80-120		
22.6		μg/l		20.0		113	80-120		
21.6		μg/l		20.0		108	80-120		
22.4		μg/l		20.0		112	80-120		
22.8		μg/l		20.0		114	80-120		
20.1		μg/l		20.0		100	80-120		
20.1		μg/l		20.0		100	70-130		
20.2		μg/i		20.0		101	80-120		
22.3		μg/l		20.0		112	80-120		
21.6		μg/l		20.0		108	80-120		
20.7		μg/l		20.0		104	80-120		
20.8		μg/l		20.0		104	80-120		
20.4				20.0		102	80-120		
20.8				20.0		104	80-120		
19.8				20.0		99	80-120		
20.5				20.0		103	80-120		
22.0				20.0		110	80-120		
				20.0		110	70-130		
				20.0		100	80-120		
						90	70-130		
							80-120		
						105	80-120		
						102	80-120		
						102			
						112	70-130		
						101	80-120		
						100	80-120		
						93	80-120		
						105			
						105	80-120		
				20.0		101	80-120		
						115	80-120		
						106			
						105			
21.0		ry.		~0.0					
	20.0 20.9 22.0 22.6 21.6 22.4 22.8 20.1 20.1 20.2 22.3 21.6 20.7 20.8 20.4 20.8 19.8	20.0 20.9 22.0 22.6 21.6 22.4 22.8 20.1 20.1 20.2 22.3 21.6 20.7 20.8 20.4 20.8 19.8 20.5 22.0 20.0 17.9 21.1 20.9 20.3 20.3 22.5 20.3 18.3 18.3 22.5 20.6 21.3 20.9 20.7 20.7 20.1 18.7 21.0 21.0 20.3 22.9 23.0 21.1 21.1 21.0	20.0	20.0	Result Flag Units *RDL Level T MS 20.0	Result Flag Units *RDL Level Result r MS 20.0 μg/l 20.0 <t< td=""><td> Result Flag Units *RDL Level Result %REC </td><td>r MS 20.0 μg/l 20.0 100 80-120 22.0 μg/l 20.0 110 80-120 22.6 μg/l 20.0 113 80-120 21.6 μg/l 20.0 112 80-120 22.8 μg/l 20.0 112 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 114 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 100 80-120 20.1 μg/l 20.0 101 80-120 20.1 μg/l 20.0 101 80-120 20.1 μg/l 20.0 104 80-120 20.1 μg/l 20.0 104 80-120 20.2 μg/l 20.0 104 80-120 20.8 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.5 μg/l 20.0 103 80-120 20.5 μg/l 20.0 103 80-120 20.5 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.1 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.3 μg/l 20.0 100 80-120 20.3 μg/l 20.0 100 80-120 20.3 μg/l 20.0 101 80-120 20.3 μg/l 20.0 102 80-120 20.3 μg/l 20.0 101 80-120 20.3 μg/l 2</td><td> Result Flag Units *RDL Level Result %REC Limits RPD </td></t<>	Result Flag Units *RDL Level Result %REC	r MS 20.0 μg/l 20.0 100 80-120 22.0 μg/l 20.0 110 80-120 22.6 μg/l 20.0 113 80-120 21.6 μg/l 20.0 112 80-120 22.8 μg/l 20.0 112 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 114 80-120 20.1 μg/l 20.0 112 80-120 20.1 μg/l 20.0 100 80-120 20.1 μg/l 20.0 101 80-120 20.1 μg/l 20.0 101 80-120 20.1 μg/l 20.0 104 80-120 20.1 μg/l 20.0 104 80-120 20.2 μg/l 20.0 104 80-120 20.8 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.5 μg/l 20.0 103 80-120 20.5 μg/l 20.0 103 80-120 20.5 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.1 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.0 μg/l 20.0 100 80-120 20.3 μg/l 20.0 100 80-120 20.3 μg/l 20.0 100 80-120 20.3 μg/l 20.0 101 80-120 20.3 μg/l 20.0 102 80-120 20.3 μg/l 20.0 101 80-120 20.3 μg/l 2	Result Flag Units *RDL Level Result %REC Limits RPD

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 7100120 - SW846 5030 Water	·MS									
LCS (7100120-BS1)										
Prepared & Analyzed: 02-Oct-07										
m,p-Xylene	41.6		μg/l		40.0		104	80-120		
m,p-Xylene	41.6		μg/l		40.0		104	70-130		
o-Xylene	23.1		μg/l		20.0		115 -	80-120		
o-Xylene	23.1		μg/i		20.0		115	70-130		
Tetrahydrofuran	22.1		μg/l		20.0		111	70-130		
Tert-amyl methyl ether	19.4		μg/l		20.0		97	70-130		
Ethyl tert-butyl ether	21.2		μg/l		20.0		106	70-130		
Di-isopropyl ether	21.1		μg/l		20.0		106	70-130		
Tert-Butanol / butyl alcohol	157		μg/l		200		79	70-130		
Surrogate: 4-Bromofluorobenzene	48.2	_	µg/l		50.0		96	80-120		
Surrogate: 4-Bromofluorobenzene	48.2		μg/l		50.0		96	70-130		
Surrogate: Toluene-d8	49.8		μg/l		50.0		100	80-120		
Surrogate: Toluene-d8	49.8 50.7		μg/l ug/l		50.0 50.0		100 101	70-130 80-120		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	50.7 50.7		μg/l μg/l		50.0		101	70-120		
Surrogate: Dibromofluoromethane	51.0		μg/l		50.0		102	80-120		
Surrogate: Dibromofluoromethane	51.0		μg/l		50.0		102	70-130		
_CS Dup (7100120-BSD1)										
Prepared & Analyzed: 02-Oct-07										
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.3		μg/l		20.0		106	80-120	8	20
Acetone	30.4	QC2	μg/l		20.0		152	70-130	1	30
Acrylonitrile	20.4		μg/l		20.0		102	70-130	6	30
Benzene	20.4		μg/I		20.0		102	80-120	7	20
Benzene	20.4		μg/l		20.0		102	70-130	7	30
Bromobenzene	19.9		μg/l		20.0		99	80-120	5	20
Bromochloromethane	20.1		μg/l		20.0		100	80-120	3	20
Bromodichloromethane	20.8		μg/l		20.0		104	80-120	5	20
Bromoform	20.3		μ g/ 1		20.0		101	80-120	5	20
Bromomethane	20.7		μg/l		20.0		103	80-120	6	20
2-Butanone (MEK)	23.7		μ g /l		20.0		118	70-130	2	30
n-Butylbenzene	19.9		μg/l		20.0		100	80-120	3	20
sec-Butylbenzene	20.5		μg/l		20.0		102	80-120	2	20
•	20.2				20.0		101	80-120	2	20
tert-Butylbenzene	17.6		μg/l ug/l		20.0		88	70-130	15	30
Carbon disulfide Carbon tetrachloride	20.0		μg/l		20.0		100	80-120	10	20
	19.8		μg/l		20.0		99	80-120	9	20
Chlorobenzene	19.6		μg/l		20.0		96	80-120	9	20
Chloroethane	21.0		hā\l		20.0		105	80-120	2	20
Chloroform			hā\l				106	80-120	9	20
Chloromethane	21.2		μg/l σ/l		20.0			80-120 80-120		20
2-Chlorotoluene	21.1		hā\J		20.0		106		4 5	20
4-Chlorotoluene	20.9		µg/l		20.0		104	80-120 80-120	5	20
1,2-Dibromo-3-chloropropane	20.6		µg/l		20.0		103	80-120	2	20
Dibromochloromethane	20.2		µg/l 1		20.0		101	80-120	4	
1,2-Dibromoethane (EDB)	19.1		μg/l		20.0		95	70-130	5	25
1,2-Dibromoethane (EDB)	19.1		µg∕l		20.0		95	80-120	5	20
Dibromomethane	20.4		μg/l		20.0		102	80-120	2	20
1,2-Dichlorobenzene	22.0		ha\j		20.0		110	80-120	0.09	20
1,3-Dichlorobenzene	21.2		μg/l		20.0		106	80-120	6	20
1,4-Dichlorobenzene	20.5		μg/l		20.0		102	80-120	5	20
Dichlorodifluoromethane (Freon12)	19.6		μg/l		20.0		98	80-120	13	20

				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 7100120 - SW846 5030 Wa	ter MS								
LCS Dup (7100120-BSD1)									
Prepared & Analyzed: 02-Oct-07									
1,1-Dichloroethane	21 .1	µg/l		20.0		105	80-120	8	20
1,2-Dichloroethane	19.4	μg/l		20.0		97	70-130	4	25
1,2-Dichloroethane	19.4	μg/l		20.0		97	80-120	4	20
1,1-Dichloroethene	18.5	μg/l		20.0		92	80-120	9	20
cis-1,2-Dichloroethene	20.9	μg/l		20.0		104	80-120	7	20
trans-1,2-Dichloroethene	19.2	μ g/ Ι		20.0		96	80-120	12	20
1,2-Dichloropropane	20.2	μg/l		20.0		101	80-120	2	20
1,3-Dichloropropane	19.5	μg/l		20.0		97	80-120	7	20
2,2-Dichloropropane	18.6	μ g/ l		20.0		93	80-120	9	20
1,1-Dichloropropene	18.2	μg/l		20.0		91	80-120	13	20
cis-1,3-Dichloropropene	19.2	μ g/ l		20.0		96	80-120	3	20
trans-1,3-Dichloropropene	19.2	μg/l		20.0		96	80-120	6	20
Ethylbenzene	20.5	μ g /l		20.0		103	70-130	7	30
Ethylbenzene	20.5	µg/I		20.0		103	80-120	7	20
Hexachlorobutadiene	17.9	μg/l		20.0		89	80-120	11	20
2-Hexanone (MBK)	16.7	μg/l		20.0		83	70-130	7	30
Isopropylbenzene	20.5	µg/l		20.0		102	80-120	3	20
4-Isopropyttoluene	20.9	μ g /l		20.0		104	80-120	0.3	20
Methyl tert-butyl ether	19.1	μ g /l		20.0		96	80-120	6	20
Methyl tert-butyl ether	19.1	μg/l		20.0		96	70-130	6	30
4-Methyl-2-pentanone (MIBK)	21.4	μg/l		20.0		107	70-130	5	30
Methylene chloride	19.1	μg/l		20.0		95	80-120	6	20
Naphthalene	17.5	μg/l		20.0		88	70-130	4	30
Naphthalene	17.5	μg/l		20.0		88	80-120	4	20
n-Propylbenzene	21.0	μg/l		20.0		105	80-120	6	20
Styrene	21.7	μg/l		20.0		108	80-120	4	20
1,1,1,2-Tetrachloroethane	20.6	μg/l		20.0		103	80-120	0.2	20
1,1,2,2-Tetrachloroethane	19.2	μg/l		20.0		96	80-120	11	20
Tetrachloroethene	19.0	μ g/ l		20.0		95	80-120	9	20
Toluene	19.2	μg/l		20.0		96	80-120	7	20
Toluene	19.2	μ g /l		20.0		96	70-130	7	30
1,2,3-Trichlorobenzene	19.2	μg/l		20.0		96	80-120	4	20
1,2,4-Trichlorobenzene	18.1	μg/l		20.0		91	80-120	3	20
1,1,1-Trichloroethane	19.7	μg/l		20.0		98	80-120	7	20
1,1,2-Trichloroethane	20.0	μg/l		20.0		100	80-120	5	20
Trichtoroethene	18.5	μg/l		20.0		92	80-120	9	20
Trichlorofluoromethane (Freon 11)	20.4	μg/l		20.0		102	80-120	11	20
1,2,3-Trichloropropane	22.5	µg∕l		20.0		113	80-120	2	20
1,2,4-Trimethylbenzene	20.8	μg/l		20.0		104	80-120	1	20
1,2,4-Trimethylbenzene	20.8	μg/l		20.0		104	70-130	1	30
1,3,5-Trimethylbenzene	20.2	μ g/ l		20.0		101	80-120	4	20
1,3,5-Trimethylbenzene	20.2	µg∕l		20.0		101	70-130	4	30
Vinyl chloride	22.4	μg/۱		20.0		112	80-120	13	20
m,p-Xylene	39.8	μg/l		40.0		99	80-120	4	20
m,p-Xylene	39.8	μg/l		40.0		99	70-130	4	30
o-Xylene	21.9	μg/l		20.0		109	70-130	5	30
o-Xylene	21.9	μg/l		20.0		109	80-120	5	20
Tetrahydrofuran	19.2	μg/l		20.0		96	70-130	14	30
Tert-amyl methyl ether	18.9	μg/l		20.0		94	70-130	3	30

	,				Spike	Source		%REC	555	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 7100120 - SW846 5030	Water MS									
CS Dup (7100120-BSD1)										
repared & Analyzed: 02-Oct-07										
Ethyl tert-butyl ether	20.1		μg/l		20.0		100	70-130	5	30
Di-isopropyl ether	20.4		μg/l		20.0		102	70-130	3	30
Tert-Butanol / butyl alcohol	134	QC1	μg/l		200		67	70-130	16	30
Surrogate: 4-Bromofluorobenzene	48.2		µg/l		50.0		96	70-130		
Surrogate: 4-Bromofluorobenzene	48.2		µg/l		50.0		96	80-120		
Surrogate: Toluene-d8	48.8		h ā /J		50.0		98	80-120		
Surrogate: Toluene-d8	48.8		μg/l σ./l		50.0 50.0		98 100	70-130 80-120		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	49.8 49.8		μg/1 μg/1		50.0		100	70-130		
Surrogate: 1,2-bichloroethane-u4 Surrogate: Dibromofluoromethane	49.7		μg/l		50.0		99	80-120		
Surrogate: Dibromofluoromethane	49.7		μg/l		50.0		99	70-130		
latrix Spike (7100120-MS1)	Source: SA68509-16									
repared & Analyzed: 02-Oct-07										
Benzene	21.8		μg/l		20.0	BRL	109	80-120		
Benzene	21.8		μg/l		20.0	BRL	109	70-130		
Chlorobenzene	21.2		μ g/ Ι		20.0	BRL	106	80-120		
Chlorobenzene	21.2		μ g /l		20.0	BRL	106	70-130		
	23.0				20.0	BRL	115	80-120		
1,1-Dichloroethene			μg/l /l		20.0	BRL	115	70-130		
1,1-Dichloroethene	23.0		μg/l				107	70-130		
Toluene	21.4		µg/l		20.0	BRL				
Toluene	21.4		µд∕1		20.0	BRL	107	80-120		
Trichloroethene	20.6		µg/l		20.0	BRL	103	80-120		
Trichloroethene	20.6		μg/l		20.0	BRL	103	70-130		
Surrogate: 4-Bromofluorobenzene	47.1		ha\j		50.0		94	80-120		
Surrogate: 4-Bromofluorobenzene	47.1		µg/l		50.0 50.0		94 100	70-130 80-120		
Surrogate: Toluene-d8	50.2 50.2		µg/l		50.0 50.0		100	70-120		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	50.2 52.4		μg/l μg/l		50.0		105	80-120		
Surrogate: 1,2-Dichloroethane-d4	52.4		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	53.4		μg/l		50.0		107	80-120		
Surrogate: Dibromofluoromethane	53.4		μg/l		50.0		107	70-130		
Matrix Spike Dup (7100120-MSD1)	Source: SA68509-16									
Prepared & Analyzed: 02-Oct-07										
Benzene	21.6		μ g /l		20.0	BRL	108	80-120	0.6	20
Benzene	21.6		μg/l		20.0	BRL	108	70-130	0.6	30
Chlorobenzene	22.4		μ g /l		20.0	BRL	112	80-120	6	20
Chlorobenzene	22.4		μg/l		20.0	8RL	112	70-130	6	30
1,1-Dichloroethene	24.5	QM7	μg/l		20.0	BRL	123	80-120	7	20
1,1-Dichloroethene	24.5		μg/l		20.0	BRL	123	70-130	7	30
•	21.7		μg/l		20.0	BRL	109	70-130	2	30
Toluene	21.7				20.0	BRL	109	80-120	2	20
Toluene			h@\J		20.0	BRL	105	80-120	2	20
Trichloroethene	21.0		μg/l 1			BRL	105	70-130	2	30
Trichloroethene	21.0		h@\J		20.0	BHL				
Surrogate: 4-Bromofluorobenzene	48.6		µg/l		50.0 50.0		97 97	80-120 70-130		
Surrogate: 4-Bromofluorobenzene	48.6 50.9		μg/l uα/l		50.0 50.0		102	80-120		
Surrogate: Toluene-d8 Surrogate: Toluene-d8	50.9 50.9		h 3 \J		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.0		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.0		μg/l		50.0		104	80-120		
Surrogate: Dibromofluoromethane	54.9		μg/l		50.0		110	80-120		
Surrogate: Dibromofluoromethane	54.9		µg/l		50.0		110	70-130		

Microextractable Organic Compounds - Quality Control

Apolyto(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Result	t tag	Unto	- RDE	1,0 (0)	resure	701020	- Dilittis		
Batch 7100010 - SW846 351	0C									
Blank (7100010-BLK1)										
Prepared & Analyzed: 01-Oct-07										
1,2-Dibromo-3-chloropropane	BRL		μg/l	0.0100						
1,2-Dibromoethane (EDB)	BRL		µg/l	0.0100						
LCS (7100010-BS1)										
Prepared & Analyzed: 01-Oct-07										
1,2-Dibromoethane (EDB)	0.217		µg/1	0.0100	0.200		108	50-150		
1,2-Dibromo-3-chloropropane	0.191		μg/l	0.0100	0.200		96	50-150		
Duplicate (7100010-DUP1)	Source: SA68509-02									
Prepared & Analyzed: 01-Oct-07										
1,2-Dibromoethane (EDB)	BRL		μg/Ι	0.0100		BRL				30
1,2-Dibromo-3-chloropropane	BRL		μ g/ l	0.0100		BRL				30

Notes and Definitions

QC1 Analyte out of acceptance range.

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample

QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analytes). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

9	
5	
5 A 68509	
V •	

Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	86.00	Cityo	M State: VT	Bet Brickian	OA Reporting Notes: (check if needed)	☐ Provide MA DEP MCP CAM Repor ☐ Provide CT DPH RCP Report	QA/QC Keporting Level Standard Other	State specific reporting standards:	0.8 9 # 1. m										Date: Time:		+3/2/0 11/6a	w(118)
	Project No. 08-205686.00	7	Location: Lond andern	Sampler(s): Jeff Giand +	Analyses:			J-os	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7		\ <u>\</u>	\ <u>\</u>	>	>	>		Received by:		100000	
OF CUSTODY RECORD Page / of A				RQN: 0002	Containers:	slai szalű	VACIVE OA V mber (lear G astic	NJ0#	GW 1, 2 3 4 HCK 500	7	7	7		7	7	>	>	V 2 3	Relinquished by:	John Kelu	X POP	
CHAIN OI	Invoice To:			P.O. No.:	O ₃ 5=NaOH 6=Ascorbic Acid	er WW=Wastewater SL=Sludge A=Air		Date: Time: Type	119/07 1050 GG	0011	0/ //	11/5	1/25	11.45	1/4//	10/5	1025	\ \ \		Suit coor	0	1 0°C 11°C, /
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	eport To: FOS	(let ST., S.	Richmand VT 05477	roject Mgr.: Beth Enckson	ANa ₂ S2O ₃ (2ACI 3=H ₂ SO ₄ 4=HNO ₃ =CH ₃ OH 8= NaHSO ₄ 9=	W=Drinking Water GW=Groundwater =Oil SW= Surface Water SO=Soil	()	Lab Id: Sample Id:	1/6 7-WM 10-802	102 MW-5	03 MW-3	OU. MW-2K		- M W	`+	NW-	09 MW-SA	10 Dwg	Towards who avoidable to	If Fax results when available to Example to Email to Eerickson Decseasuit. Cann	EDD Format	Condition upon receipt:

11 Almgren Drive • Agáwam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Let Standard TAT - 7 to 10 business days

C Rush TAT - Date Needed: · Samples disposed of after 60 days unless Special Handling: otherwise instructed. Project No. 08 - 205686.00 SA 68509 EM CHAIN OF CUSTODY RECORD Page 2 of 2 SPECTRUM ANALYTICAL, INC. Featuring
HANIBAL TECHNOLOGY

FC C %*∕∂* P_r

6

Keport Io. 1	}	İ	Invoic	Invoice 1o:						7		1			
65 Millet	65 Millet St., Suite 301		7						Site Nat	ne: Lo	Site Name: Londondery Citado	び至	fao		
Richmond VT	44.40 111				i				Location		wander	400		State: 1/7	
			_						LOCATIOII. –				la Columbia		
Project Mgr.:	Beth Enckson	san	P.O. No.:	10.:		RQN	RQN:0002		Sample	(S):	Sampler(s): Jeff Crimid	العرا	+ 204 11250	S. S	
1=Na ₂ S2O ₃ (2) 7=CH ₃ OH 8=	2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 8= NaHSO ₄ 9=	t=HNO ₃ 5=NaOH	OH 6=Ascorbic Acid	ic Acid		Cont	Containers:			Analyses:	es:		OA Reporting Notes: (check if needed)	ng Notes:	
DW-Drinking Water GW= O=Oil SW= Surface Water		roundwater WW: SO=Soil SL=Slu	WW=Wastewater SL=Sludge A=Air				sss	لا الحم					☐ Provide MA DEP MCP CAM Report ☐ Provide CT DPH RCP Report	MCP CAM Report CCP Report	
<u> </u>	XZ= G∋Grab C=C	C=Composite			əvitev iV AC			<u>1</u> 28	E				QA/QC Reporting Level Standard No QC	rting Level	
Lab Id:	Sample Id:	Date:	Time:	Type	Preser OV Yo #	A lo #	# 0{ CI	1208	4°S 40S				State specific reporting standards:	rting standards:	
11-60585	Trip Blank		1	1	7 %	,		7							
21 1	Rogers	4/14/05	1235	Ma by	(A 3 2)	140	Š	7	7						
13	AM INF			-	_				7						
7	MM Mid 1								7						
15	MM Mida							7	1						
71 /	MM EFF	A		→	> >				7						
>															
											-				
							-								
		,			Relinquished by:	ished by				Received by:	1 by:		Date:	Time:	
L Fax results	If Fax results when available to Decsconsult can	Gecscon	sult.com	Grah	ett	67									
EDD Format				7	•		Ĺ								

11 Almgren Drive • Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com