	PROJECT PHASE		SUBMITTAL TYPE
	(check one)		(check one)
	Site Investigation		Work Scope
	Corrective Action Feasibility Investigation	X	Technical Report
	Corrective Action Plan		PCF Reimbursement Request
	Corrective Action Summary Report		General Correspondence
X	Operations & Monitoring Report		

MAY 2013 WELL INSTALLATION AND GROUNDWATER SUMMARY REPORT LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER 5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

Prepared for:

Summit Distributing, LLC
240 Mechanic Street
Lebanon, New Hampshire 03766
Contact: Tom Frawley
Tel: (603) 448-8000
email: tomf@sumd.com

Prepared by:

GeoInsight, Inc.
186 Granite Street, 3rd Floor, Suite A
Manchester, New Hampshire 03101
Contact: Darrin L. Santos, P.G.
Tel: (603) 314-0820
email: dlsantos@geoinc.com

August 16, 2013

GeoInsight Project 5599-002
File: 5599/CVR

August 16, 2013

GeoInsight Project 5599-002

Tim Cropley Sites Management Section 1 National Life Drive - Davis 1 Montpelier, VT 05620-3704

RE: May 2013 Well Installation and Groundwater Summary Report

Londonderry Citgo/Londonderry Shopping Center – SMS #1996-2015

5700 Route 100

Londonderry, Vermont

Dear Mr. Cropley:

GeoInsight, Inc. (GeoInsight) prepared this report for Summit Distributing, LLC (Summit) to summarize the following activities completed at the Londonderry Citgo/Londonderry Shopping Center property located at 5700 Route 100 in Londonderry, Vermont: 1) decommissioning of air sparge wells SP-1 through SP-4; 2) installation of replacement monitoring wells MW-10R and MW-11R; and 3) a groundwater sampling event. A site locus map is presented as Figure 1 and a site plan is presented as Figure 2.

SPARGE WELL DECOMMISSIONING

On April 25, 2013, GeoInsight oversaw T&K Drilling, Inc. (T&K) of Fitzwilliam, New Hampshire decommission air sparge wells SP-1 through SP-4. The approximate locations of the former sparge wells are shown on a site plan in Attachment A. The wells were decommissioned by removing the roadboxes, cutting the polyvinyl chloride (PVC) well casings below grade, and filling the well casings with bentonite grout.

MONITORING WELL INSTALLATIONS

At the recommendation of GeoInsight, well MW-10R was installed to serve as a replacement well for MW-10, which had a severely damaged roadbox and several feet of silt accumulation in the well. At the request of the Vermont Department of Environmental Conservation (VTDEC) well MW-11R was installed to serve as a replacement well for MW-11, which had been previously decommissioned in June 2010. The former well location for MW-11 was selected because it was downgradient of the pump island and underground storage tanks (USTs) and elevated concentrations of volatile organic compounds (VOCs) were detected in this area in groundwater samples collected in 2012 at wells MW-8 and MW-10.

T&K installed the two monitoring wells on April 25, 2013 using standard hollow-stem auger drilling methods. Well MW-10R was installed after removing the existing 1-inch diameter PVC well casing from the subsurface and then advancing augers down the borehole to install a new 2-inch diameter well. Since the replacement well was installed in the same borehole as MW-10, split-spoon soil sampling was not conducted. However, a petroleum odor was noted in auger cuttings collected from an inferred depth of 10 to 13 feet below grade. A photoionization detector (PID) reading of 249 parts per million (ppm) was detected in the MW-10R auger-cutting sample.

Well MW-11R was also installed using hollow-stem auger methods. A soil sample collected with a split spoon sampler at 5 to 7 feet below grade was screened with the PID and did not register a reading above the instrument detection limit of 1 ppm. Additional details regarding the MW-10R and MW-11R well installations and associated construction details are documented on the Soil Boring / Well Construction Logs in Attachment B. The elevations of the PVC well casings of these two wells were surveyed relative to the existing site datum during the May 20, 2013 groundwater sampling event (Table 1).

GROUNDWATER SAMPLING AND ANALYSIS

GeoInsight performed a groundwater monitoring event at the site on May 20, 2013. Sampling activities included gauging groundwater elevations and collecting groundwater samples from monitoring wells MW-5, MW-8, MW-10R, MW-11R, and MW-S2. Groundwater elevations were measured at these wells using an electronic water level meter and gauging data are summarized in Table 1.

Groundwater samples were collected from the monitoring wells using new dedicated, disposable polyethylene bailers. Prior to sample collection, at least three times the volume of water in the wells was purged using the bailers or the wells were purged dry and allowed to recharge before sampling. After a short stabilization period (approximately 30 minutes), groundwater samples were collected from the monitoring wells for analyses of VOCs. The groundwater samples were submitted to Absolute Resource Associates of Portsmouth, New Hampshire. The samples were analyzed by United States Environmental Protection Agency (USEPA) Method 8260B, but were reported using the VTDEC USEPA Method 8021 list for selected petroleum constituents.

Table 2 provides a current and historical summary of groundwater VOC data for the site. The laboratory analytical report for the May 2013 monitoring event is presented in Attachment C. An updated discussion of groundwater impacts at the site is provided in the Updated Conceptual Model section of this report.

GROUNDWATER SAMPLING RESULTS

Laboratory analytical results for the May 2013 groundwater monitoring event indicated that VOCs were not detected above laboratory reporting limits in the five groundwater samples. Elevated concentrations of benzene (60 to 63 micrograms per liter [µg/L]) that were detected at

well MW-8 (March and September 2012) and well MW-10 (March 2012) have apparently attenuated approximately one year after the relatively high concentrations were detected.

QUALITY ASSURANCE / QUALITY CONTROL

A trip blank sample was included by the laboratory with the sample containers during this monitoring event. VOCs were not detected above the laboratory reporting limits in the trip blank sample submitted for the May 2013 monitoring event. The trip blank sample was comprised of a laboratory-prepared VOC vial containing deionized water, which accompanied the sample containers in a cooler from delivery from the laboratory through receipt by the laboratory. GeoInsight also reviewed the surrogate recovery data reported by the laboratory for the samples collected during the May 2013 monitoring event, which were within the acceptable limits listed by the laboratory in the analytical reports.

In general, the quality assurance / quality control samples indicated that the data collected were technically sound, usable, and meet the data quality objectives of on-going site investigation activities.

UPDATED CONCEPTUAL MODEL

Groundwater Elevations and Flow Direction

Using the groundwater elevation data collected in May 2013, GeoInsight plotted groundwater elevation contours, which are presented on Figure 3. The data indicated groundwater flow was to the south and southeast, which was generally consistent with flow patterns mapped for recent monitoring events performed by GeoInsight and the previous environmental consultant for the site.

Volatile Organic Compound Distribution and Trends

The March 2012 sampling data indicated that benzene was detected at concentrations exceeding Vermont Primary Groundwater Enforcement Standards (VPGESs) in monitoring wells MW-8 and MW-10, located within the vicinity of the pump island and former and current USTs. Prior to the March 2012 sampling event, detected VOCs had not exceeded applicable VPGESs in monitoring wells sampled at the site since the September 2007 monitoring event when benzene was detected at a concentration of 27.1 μ g/L at well MW-10. The apparent spike in benzene near the current and former USTs in 2012 was thought to possibly be related to flooding resulting from Tropical Storm Irene, which occurred in August 2011. The March 2012 sampling event was the first to include collection and analysis of groundwater samples from the site since major flooding occurred in the area of the station and across the State of Vermont.

The May 2013 groundwater sampling data indicate that VOCs are no longer present at detectable concentrations in monitoring wells located at the site and suggest that the detection of elevated benzene concentrations in 2012 was a short-term occurrence.

RECOMMENDATIONS

Because of the historical and recent detection of VOCs above laboratory reporting limits in the Shopping Center and Thorne-Thomsen supply well point-of-entry treatment (POET) systems, bi-annual sampling continues to be warranted for monitoring low-level residual VOCs at the site and in the POET systems. The next POET system monitoring event is set to occur in September 2013 (third quarter) under the currently approved monitoring program. The September 2013 event should include sampling of the five remaining site monitoring wells to confirm that VOCs remain at concentrations below applicable VPGES and/or laboratory reporting limits. Assuming VOCs concentrations in groundwater do not rebound above VPGESs, Sites Management Activity Completion should be evaluated by the VTDEC when VOC concentrations show decreasing or substantially stable concentrations at levels well below the applicable VPGESs in the POET systems influent samples.

GeoInsight was also recently made aware by the property owner that two bedrock supply wells are present on the property. These two wells include: Well #1, also referred to as the Former IGA Well, which is considered a backup well for the property and is currently inactive; and Well #2, also referred to as the Shopping Center Well, which is the currently active well connected the on-site POET (see site plan in Attachment A). The property owner recently rehabilitated Well #1 and requested that GeoInsight collect and analyze a sample from the well for VOCs during the next monitoring event. GeoInsight reviewed available historical documents for the site and, when previously active, VOCs were detected in samples collected from Well #1 (the Former IGA Well). Therefore, this additional supply well sampling requested by the property owner appears warranted.

If you have questions regarding the contents of this letter report, please call us at (603) 314-0820.

Sincerely,

GEOINSIGHT, INC.

Darrin L. Santos, P.G.

Senior Geologist

Peter D. Frank, P.G.

Associate/Senior Hydrogeologist

Attachments

cc: Summit Distributing, LLC

Robert Waite, Londonderry Ventures

p:\5599 summit londonderry vt\monitoring\2013\may2013 gw\5599may13gwreport-ltrhd.doc

FIGURES

USGS LONDONDERRY, VT QUADRANGLE

CLIENT:	SUMMIT DISTI	RIBUTING, LL	-C	
PROJECT:	5700 RC LONDONDERF	OUTE 100 RY, VERMON	Т	
TITLE:	SITE	Locus		GeoInsight
DESIGNED: CAE	DRAWN: STM	CHECKED: AWK	APPROVED: BDK	Practical in Nature
SCALE: 1" = 2000	DATE: 12/29/08	FILE NO.: 5599-LOCUS	PROJECT NO.: 5599-000	FIGURE NO.:

PLOT DATE: 7-28-10 FILE: I:\5599\5599-LOCUS.dwg

Practical in Nature

DATE: 7-31-13

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER 5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

WELL I.D.	REFERENCE ELEVATION (FT) (Note 2)	MONITORING DATE (Note 3)	DEPTH TO GROUNDWATER (FT)	RELATIVE GROUNDWATER ELEVATION (FT)
MW-1R	100.53	03/21/06	5.23	95.30
		09/12/06	8.93	91.60
		03/30/07	6.47	94.06
		09/19/07	10.56	89.97
		10/09/08	8.27	92.26
		04/16/09	5.72	94.81
		09/21/09	8.65	91.88
		03/23/10	4.91	95.62
		Decomm	issioned June 2010.	
MW-2R	99.28	03/21/06	5.20	94.08
		09/12/06	7.75	91.53
		03/30/07	5.30	93.98
		09/19/07	9.82	89.46
		10/09/08	6.93	92.35
		04/16/09	4.49	94.79
		03/23/10	3.36	95.92
		Decomm	issioned June 2010.	
MW-3	98.69	03/21/06	4.91	93.78
		09/12/06	7.63	91.06
		03/30/07	5.24	93.45
		09/19/07	9.82	88.87
		10/09/08	7.02	91.67
		04/16/09	4.45	94.24
		03/23/10	3.46	95.23
	1	Decomm	issioned June 2010.	
MW-4	98.32	03/21/06	4.01	94.31
		09/12/06	Dry	
		03/30/07	Dry	
		09/19/07	Dry	
		10/09/08	Dry	
		04/16/09	Dry	
		03/23/10	Dry	
		Decomm	issioned June 2010.	
MW-5	98.48	03/21/06	NS	
		09/12/06	NS	
		03/30/07	8.81	89.67
		09/19/07	11.60	86.88
		10/09/08	9.63	88.85
		04/16/09	6.82	91.66
		03/23/10	6.46	92.02
		03/28/11	7.41	91.07
		03/20/11	7.38	91.10
		09/19/12	11.32	87.16
		05/20/13	8.87	89.61
		03/20/13	0.07	07.01

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER 5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

WELL I.D.	REFERENCE ELEVATION (FT) (Note 2)	MONITORING DATE (Note 3)	DEPTH TO GROUNDWATER (FT)	RELATIVE GROUNDWATER ELEVATION (FT)
MW-6	95.13	03/21/06	8.91	86.22
		09/12/06	10.14	84.99
		03/30/07	NS	
		09/19/07	NS	
		10/09/08	9.82	85.31
		04/16/09	8.02	87.11
		03/23/10	6.91	88.22
	1	Decomm	issioned June 2010.	
MW-7	98.40	03/21/06	8.39	90.01
		09/12/06	10.37	88.03
		03/30/07	9.21	89.19
		09/19/07	11.86	86.54
		10/09/08	9.87	88.53
		04/16/09	7.51	90.89
		03/23/10	7.22	91.18
		Decomm	issioned June 2010.	
MW-8	99.66	03/21/06	5.65	94.01
		09/12/06	8.15	91.51
		03/30/07	5.65	94.01
		09/19/07	9.77	89.89
		10/09/08	7.40	92.26
		04/16/09	4.97	94.69
		09/21/09	7.84	91.82
		03/23/10	3.80	95.86
		03/28/11		'ell Inaccessible
		3/20/2012	3.92	95.74
		9/19/2012	9.57	90.09
		5/20/2013	7.01	92.65
		3/20/2013	7.01	72.00
MW-10	99.60	03/21/06	5.49	94.11
:,,v	,,,,,	09/12/06	8.04	91.56
		03/30/07	5.55	94.05
		09/19/07	9.68	89.92
		10/09/08	7.26	92.34
		04/16/09	4.75	94.85
		09/21/09	7.69	91.91
		03/23/10	3.63	95.97
		03/28/11	4.53	95.07
		03/20/11	4.50	95.10
		09/19/12	1	ged, sediment accumulation)
MW-10R	99.22	05/20/13	6.55	92.67

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER 5700 ROUTE 100 LONDONDERRY, VERMONT

SMS #1996-2015

WELL I.D.	REFERENCE ELEVATION (FT) (Note 2)	MONITORING DATE (Note 3)	DEPTH TO GROUNDWATER (FT)	RELATIVE GROUNDWATER ELEVATION (FT)
MW-11	98.70	03/21/06	6.01	92.69
		09/12/06	9.47	89.23
		03/30/07	5.95	92.75
		09/19/07	Dry	Dry
		10/09/08	Dry	Dry
		04/16/09	4.81	93.89
		03/23/10	3.52	95.18
	•	Decomm	issioned June 2010.	
MW-11R	98.46	05/20/13	7.07	91.39
MW-S2	94.89	03/21/06	8.75	86.14
		09/12/06	10.22	84.67
		03/30/07	8.56	86.33
		09/19/07	10.64	84.25
		10/09/08	9.93	84.96
		04/16/09	8.11	86.78
		09/21/09	10.21	84.68
		03/23/10	7.41	87.48
		03/28/11	7.93	86.96
		3/20/2012	7.89	87.00
		9/19/2012	10.65	84.24
		5/20/2013	9.45	85.44
MW-S3	94.41	03/21/06	8.19	86.22
		09/12/06	9.73	84.68
		03/30/07	8.56	85.85
		09/19/07	10.12	84.29
		10/09/08	9.45	84.96
		04/16/09	7.42	86.99
		03/23/10	6.81	87.60
		Decomm	issioned June 2010.	

NOTES:

- 1. Depth to groundwater measurements were from the top of polyvinyl chloride well casings.
- 2. Survey/reference elevations obtained from historical site investigation documents.
- 3. Prior to 10/10/08, measurements were performed by Environmental Compliance Services.
- 4. FT = feet; NS = not sampled.

TABLE 2 SUMMARY OF GROUNDWATER ANALY

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

					VOLATII	LE ORGAN	NIC COMPOUNI	OS (VOCs)		
Well ID	Sample Date	МТВЕ	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgran	ıs per liter (µg/L)			
\mathbf{V}	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-1R	03/21/06	298	176	170	9	169.4	13.7	ND(5)		
	04/17/06	72	66.6	34.8	ND(5)	47.4	6.8	ND(5)		
	06/23/06	18.4	43.7	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	09/12/06	10.5	8.5	ND(1)	9.2	2.9	22.7	3.3		
	12/22/06	7.1	24.3	ND(1)	6.6	ND(2)	85.2	6.5		
	03/30/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/19/07	1.2	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(0.01)	ND(1)
	03/04/08	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/24/08**	3	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	09/21/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ne 2010.		
MW-2R	03/21/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	04/17/06	1.1	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/23/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/12/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	2.2	ND(1)		
	12/22/06	7.2	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	03/30/07	ND(1)	ND(1)	ND(1)	2.4	ND(2)	7.8	ND(1)		
	09/19/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	03/04/08	1.5	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(1)	ND(1)
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09				Well r	emoved fro	om monitoring pr	ogram.		
	03/23/10	ND(2)	ND(2)	ND(2)	2	ND(2)	7	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ne 2010.		

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL DATA

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER 5700 ROUTE 100

					VOLATII	LE ORGAN	NIC COMPOUNI	DS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgran	ıs per liter (µg/L))		
V	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-3	03/08/00	27.9	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	1.7	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/25/01	1.83	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/26/02	798	3.2	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/05/02	106	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/27/03	118	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/25/03	80.2	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/16/04	1.5	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/14/04	44.6	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/29/05	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/02/05	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/21/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/12/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)		
	03/30/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)		
	09/19/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	03/04/08	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09				Well r	emoved fro	om monitoring pr	ogram.		
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ine 2010.		
MW-4	05/21/97	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)				
	03/13/98	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)				
	06/23/98	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)				
	03/21/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)				
	09/12/06	NS	NS	NS	NS	NS				
	03/30/07	NS	NS	NS	NS	NS				
	09/19/07	NS	NS	NS	NS	NS				
	03/04/08	NS	NS	NS	NS	NS				
	10/09/08			We	ell purged a	lry prior to	sampling and did	d not recharge.		
	04/16/09				Well r	emoved fro	om monitoring pr	ogram.		
	03/23/10				Well in	accessible	during monitorin	g event.		
					Monitor	ing well de	commissioned Ju	ine 2010.		

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100

					VOLATII	LE ORGAN	NIC COMPOUNI	OS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgran	ıs per liter (µg/L)			
V	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-5	03/08/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/25/01	NS	NS	NS	NS	NS	NS	NS		
	03/26/02	NS	NS	NS	NS	NS	NS	NS		
	09/05/02	NS	NS	NS	NS	NS	NS	NS		
	03/27/03	NS	NS	NS	NS	NS	NS	NS		
	09/25/03	NS	NS	NS	NS	NS	NS	NS		
	03/16/04	NS	NS	NS	NS	NS	NS	NS		
	09/14/04	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/29/05	NS	NS	NS	NS	NS	NS	NS		
	09/02/05	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/21/06	NS	NS	NS	NS	NS	NS	NS		
	09/12/06	NS	NS	NS	NS	NS	NS	NS		
	03/30/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(2)	ND(1)		
	09/19/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	03/04/08	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(1)	ND(1)
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09				Well r	emoved fro	om monitoring pr	ogram.		
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/28/11	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/20/12	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	09/19/12	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	05/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100

					VOLATI	LE ORGAN	NIC COMPOUNI	DS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgran	ıs per liter (µg/L)			
V	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-6	03/08/00	10.6	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	39	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	16.5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	31.7	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	35.3	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/05/02	1.5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/27/03	NS	NS	NS	NS	NS	NS	NS	ND(0.01)	ND(1)
	09/25/03	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	NS	NS
	03/16/04	NS	NS	NS	NS	NS	NS	NS	ND(2)	ND(2)
	09/14/04	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/02/05	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/21/06	2.7	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/12/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	03/30/07	NS	NS	NS	NS	NS	NS	NS		
	09/19/07	NS	NS	NS	NS	NS	NS	NS		
	03/04/08	NS	NS	NS	NS	NS	NS	NS		
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09				Well 1	removed fro	m monitoring pr	ogram.		
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ne 2010.		

TABLE 2 SUMMARY OF GROUNDWATER ANALY

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

					VOLATII	LE ORGAN	NIC COMPOUNI	OS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgran	ıs per liter (μg/L,			
V	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-7	03/08/00	84.3	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	10.2	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	5.1	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	22.3	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	85.5	ND(1)	ND(1)	ND(1)	2.4	ND(1)	ND(1)		
	03/26/02	10.4	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/05/02	4.9	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/27/03	77.5	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/25/03	1.72	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/16/04	19.4	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/14/04	1.3	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/29/05	16.3	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/02/05	1.6	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/21/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/12/06	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	03/30/07	2.2	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	09/19/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(1)**	ND(1)
	03/04/08	6.6	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(1)	ND(1)
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	09/21/09				Well inac	ccessible di	iring monitoring	program.		
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ne 2010.		

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100

VPGES MW-8 03 06 09 12 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03	mple Date 2S 3/08/00 6/12/00 9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	40 1.2 53.1 24.4 24.7 264 68.1 1,080 814 38.4 556 178 140	5 ND(1) 10.2 10.8 ND(1) 5.9 4.3 11.2 20.2 1 ND(25)	Toluene 1,000 ND(1) 7.9 117 ND(1) ND(2) 15.1 35.1 206 1.7	Ethyl benzene 700 ND(1) 31.1 129 ND(1) 18.6 116 178 588	Total Xylenes microgram 10,000 ND(1) 139 369 ND(1) 20 160 1,070	Total TMB* 25 per liter (μg/L) 350 ND(1) 84.7 134.5 ND(1) 22.9	20 ND(1) 10.9 19 ND(1) 4.2	0.05 	5
MW-8 03 06 09 12 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03	3/08/00 6/12/00 9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	1.2 53.1 24.4 24.7 264 68.1 1,080 814 38.4 556 178	ND(1) 10.2 10.8 ND(1) 5.9 4.3 11.2 20.2	ND(1) 7.9 117 ND(1) ND(2) 15.1 35.1 206	ND(1) 31.1 129 ND(1) 18.6 116 178	10,000 ND(1) 139 369 ND(1) 20 160	350 ND(1) 84.7 134.5 ND(1) 22.9	20 ND(1) 10.9 19 ND(1)		
MW-8 03 06 09 12 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03	3/08/00 6/12/00 9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	1.2 53.1 24.4 24.7 264 68.1 1,080 814 38.4 556 178	ND(1) 10.2 10.8 ND(1) 5.9 4.3 11.2 20.2	ND(1) 7.9 117 ND(1) ND(2) 15.1 35.1 206	ND(1) 31.1 129 ND(1) 18.6 116 178	ND(1) 139 369 ND(1) 20 160	ND(1) 84.7 134.5 ND(1) 22.9	ND(1) 10.9 19 ND(1)		
06 09 12 03 09 03 09 03 09 03 09	6/12/00 9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	53.1 24.4 24.7 264 68.1 1,080 814 38.4 556	10.2 10.8 ND(1) 5.9 4.3 11.2 20.2	7.9 117 ND(1) ND(2) 15.1 35.1 206	31.1 129 ND(1) 18.6 116 178	139 369 ND(1) 20 160	84.7 134.5 ND(1) 22.9	10.9 19 ND(1)		
06 09 12 03 09 03 09 03 09 03 09	9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	53.1 24.4 24.7 264 68.1 1,080 814 38.4 556	10.2 10.8 ND(1) 5.9 4.3 11.2 20.2	7.9 117 ND(1) ND(2) 15.1 35.1 206	31.1 129 ND(1) 18.6 116 178	139 369 ND(1) 20 160	84.7 134.5 ND(1) 22.9	10.9 19 ND(1)		
09 12 03 09 03 09 03 09 03 09 03 09 03 09 03 09 03	9/19/00 2/13/00 3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	24.4 24.7 264 68.1 1,080 814 38.4 556 178	10.8 ND(1) 5.9 4.3 11.2 20.2	117 ND(1) ND(2) 15.1 35.1 206	129 ND(1) 18.6 116 178	369 ND(1) 20 160	134.5 ND(1) 22.9	19 ND(1)		
03 09 03 09 03 09 03 09 03	3/13/01 9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	264 68.1 1,080 814 38.4 556 178	5.9 4.3 11.2 20.2	ND(2) 15.1 35.1 206	18.6 116 178	20 160	22.9	` '		
09 03 09 03 09 03 09 03	9/25/01 3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	68.1 1,080 814 38.4 556 178	5.9 4.3 11.2 20.2	ND(2) 15.1 35.1 206	18.6 116 178	20 160	22.9	` '		- -
03 09 03 09 03 09 03	3/26/02 9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	1,080 814 38.4 556 178	11.2 20.2	15.1 35.1 206	178			4.2		
09 03 09 03 09 03 09	9/05/02 3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	814 38.4 556 178	20.2	206		1.070	124.6	18.8		
03 09 03 09 03 09	3/27/03 9/25/03 3/16/04 9/14/04 3/29/05	814 38.4 556 178	1		599	1,070	602	146		
09 03 09 03 09	9/25/03 3/16/04 9/14/04 3/29/05	556 178	1 ND(25)	1.7	300	1,700	918	153		
03 09 03 09 03	3/16/04 9/14/04 3/29/05	178	ND(25)	±•,	5.9	46.6	24.2	4.1		
09 03 09 03	9/14/04 3/29/05			116	824	2,422	2,271	376		
03 09 03	3/29/05	140	12.6	16.9	217	294	544	77.2		
09 03		170	ND(10)	13.4	178	647	735	93.2		
03	0/02/05	213	40	ND(5)	35.6	96.1	386.4	29		
	9/02/03	2.4	1.2	ND(1)	2.1	7.7	10.3	1.4		
	3/21/06	22.8	ND(5)	ND(5)	17.5	34.6	278.8	27.5		
06	6/23/06	7.2	2.3	ND(1)	ND(1)	1.6	ND(1)	ND(1)		
09	9/12/06	16.7	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
12	2/22/06	8.5	4.6	ND(1)	1.1	ND(3)	13.5	2		
03	3/30/07	1.2	3	ND(1)	7.9	6	11.3	3		
09	9/19/07	2.1	1.7	ND(1)	43.7	4.6	6.7	4.4	ND(0.01)	ND(1)
03	3/04/08	6.1	1.6	ND(1)	2.5	4	65.3	4.6	ND(1)	ND(1)
10	0/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	4/16/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
09	9/21/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
03	3/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
03	3/28/11			, ,	Well inac		ring monitoring	program.		
03	3/20/12	ND(2)	60	4	ND(2)	3	57	ND(5)	ND(2)	ND(2)
09	9/19/12	ND(2)	63	2	15	34	134	8	ND(2)	ND(2)
05	5/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
MW-10 03	3/21/06	20.8	32.4	2.4	ND(1)	6.6	2.4	ND(1)		
	6/23/06	18.8	16.1	ND(1)	ND(1)	ND(3)	2.1	ND(1)		
	9/12/06	91.6	17.9	ND(1)	3.9	ND(3)	3.9	ND(1)		
	2/22/06	15.5	2.4	ND(1)	6.8	8.7	7.6	$\frac{ND(1)}{ND(1)}$		
	3/30/07	9.2	11.9	4.8	1.9	8.1	11.3	ND(1)		
	9/19/07	36.6	27.1	ND(1)	1.4	4.9	12.2	ND(1)	ND(0.01)	ND(1)
	3/04/08	5.6	ND(1)	ND(1)	ND(1)	ND(3)	3.3	ND(1)	ND(1)	ND(1)
	0/09/08	11	ND(1) ND(2)	ND(1) ND(2)	ND(1) ND(2)	ND(3)	ND(2)	ND(1) ND(5)	ND(1) $ND(2)$	$\frac{ND(1)}{ND(2)}$
	4/16/09	2	ND(2) ND(2)	ND(2) $ND(2)$	ND(2)	ND(2)	ND(2)	ND(5)	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$
	9/21/09	5	ND(2)	ND(2)	ND(2)	ND(2) $ND(2)$	ND(2)	$\frac{ND(5)}{ND(5)}$	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$
	3/23/10	ND(2)	ND(2) $ND(2)$	ND(2) $ND(2)$	ND(2)	ND(2)	$\frac{ND(2)}{ND(2)}$	$\frac{ND(5)}{ND(5)}$	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$
	3/28/11	$\frac{ND(2)}{ND(2)}$	4	7	ND(2) ND(2)	ND(2) $ND(2)$	ND(2) ND(2)	ND(5)	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$
	3/20/12	$\frac{ND(2)}{ND(2)}$	61	ND(2)	ND(2) $ND(2)$	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$	$\frac{ND(5)}{ND(5)}$	ND(2) $ND(2)$	$\frac{ND(2)}{ND(2)}$
	9/19/12	` ′		` ′	` /		` /	ng that sediment had	` '	` '
05	5/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	$\frac{19 \text{ that sediment had}}{\text{ND}(5)}$	ND(2)	ND(2)
MW-10R	5,20/15	1110(2)	110(2)	110(2)	110(2)	110(2)	1110(2)	110(3)	110(2)	110(2)

TABLE 2 SUMMARY OF GROUNDWATER ANA

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100 LONDONDERRY, VERMONT SMS #1996-2015

					VOLATII	LE ORGAN	NIC COMPOUNI	DS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
			•		•	microgram	ıs per liter (µg/L))	<u> </u>	
V.	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-11	03/21/06	6	2.8	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/12/06	6.4	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	03/30/07	5.5	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	09/19/07	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/04/08	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/09/08			Moni	toring well	was dry an	d, therefore, coul	ld not be sampled	l.	
	04/16/09					-	om monitoring pr			
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	ine 2010.		, ,
MW-11R	05/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
W - 11K										
MW-S2	03/08/00	76.8	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	22	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	51.3	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	40.7	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	43.9	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/25/01	29.6	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/26/02	15.6	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/05/02	11.6	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/27/03	41.6	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/25/03	17	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/16/04	16.5	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/14/04	NS	NS	NS	NS	NS	NS	NS		
	03/29/05	49.9	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/02/05	29.1	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/21/06	1	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/12/06	51.4	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	03/30/07	5.5	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)		
	09/19/07	6.7	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	03/08/08	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	09/21/09	4	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/28/11	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	03/20/12	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	09/19/12	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	05/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	05/20/13	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)		ND(2)

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL DATA LONDONDERRY CITGO/LONDONDERRY SHOPPING CENTER

5700 ROUTE 100

LONDONDERRY, VERMONT SMS #1996-2015

					VOLATII	LE ORGAN	NIC COMPOUNI	OS (VOCs)		
Well ID	Sample Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total TMB*	Naphthalene	EDB	1,2-DCA
						microgram	ıs per liter (μg/L)			
V	PGES	40	5	1,000	700	10,000	350	20	0.05	5
MW-S3	03/08/00	79.4	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	06/12/00	15.7	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/00	17.9	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	12/13/00	21.8	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/13/01	23.7	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/25/01	10.9	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/26/02	14.7	ND(1)	ND(1)	1.3	2.8	ND(1)	ND(1)		
	09/05/02	15.4	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/27/03	43.5	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/25/03	16.8	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/16/04	8.8	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/14/04	NS	NS	NS	NS	NS	NS	NS		
	03/29/05	3.1	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/02/05	1	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	03/21/06	121	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)		
	09/12/06	1.2	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	03/30/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)		
	09/19/07	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(0.01)	ND(1)
	03/04/08	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(2)	ND(1)	ND(1)	ND(1)
	10/09/08	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
	04/16/09				Well r	emoved fro	m monitoring pr	ogram.		
	03/23/10	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(5)	ND(2)	ND(2)
					Monitor	ing well de	commissioned Ju	me 2 <mark>010.</mark>		

NOTES:

- 1. Results reported in micrograms per liter (μ g/L).
- 2. NS not sampled.
- 3. ND(X) constituent not detected above the laboratory reporting limit noted.
- 4. VPGESs Vermont Primary Groundwater Enforcement Standards.
- 5. Concentrations in bold exceed VPGESs.
- 6. Prior to 10/10/08, samples were collected by Environmental Compliance Services.
- 7. EDB 1,2-dibromoethane; 1,2-DCA 1,2-dichloroethane; MTBE methyl tert butyl ether.
- 8. -- data not reported in historical reports or data no longer available.
- 9. * Effective on 02/28/07, trimethylbenzene (TMB) enforcement standards increased to 350 μ g/L, and includes 1,2,4-TMB and 1,3,5-TMB.
- 10. **Well MW-1R was resampled on 10/24/08 due to damaged sample vials received by the laboratory from the initial 10/09/08 monitoring event.

ATTACHMENT A HISTORICAL SITE PLAN WITH SPARGE WELL LOCATIONS

ATTACHMENT B SOIL BORING / WELL COMPLETION LOGS

	(k	<u></u>		SOIL	_ BC	RING	/WE	LL COMPLETION LOG	Boring I.D.: MW-10R		: MW-10R				
	W.			5				011 101 1 0 1			Of: 1				
		nsight		Project:		Lone		erry Citgo/Shopping Center	Project Number:	5599-000 DLS					
		al in Nature		Location:				Londonderry, VT	Chkd. By:						
		&K Drilling						Boring Location: replacement v		n/damaged)	faat				
		n Mcgarry g./Geol: M	MR					Top of PVC Riser Elevation: 99 Top of Protector Elevation: NA		Datum: 100.00 Ground Elev: N					
OCOILISI	giit Lii	g./OCOI. IVI	IVID					Date Started: 4/25/13		Date Completed					
	DRILLIN	NG METHOL)	SAI	MPLI	ER .			GROUND WATER READ						
Vehicle:		Truck-Mour		Type: 2' long	SS s	ample	r	DATE	DEPTH (FT)	REFERENCE	STABILIZ	ATION			
Model:		Custom		Hammer(lb):	140			4/25/2013	5	auger cuttings	NA				
Method:		Hollow-Ster		Fall (in): 30				5/20/2013	4.59	PVC	2 hou				
DEPTH	NO	PEN/REC	MPLE	BLOWS/6"		WELI MPLE		CAMPLE DECOR	IDTION	STRATUM DESCRIPTION	FIELD SCREENING	NOTE			
(ft)	NO.	(in)	(ft)	BLOW5/6		DETA		SAMPLE DESCR	IPTION	DESCRIPTION	(ppm)				
0		(111)	(11)		ш			Began by removing 1" PVC wel	I material associated		(ррііі)				
Ŭ					Ħ	•	Ħ	with well MW-10 (which had silt	ed-in and was dry						
					77.	1	777	during the previous monitoring							
:					//	1		down MW-10 borehole to a dep							
ŀ							ľ ′ ′	Split spoon samples were not c	ollected.						
:						1									
5										SAND					
						1									
						-									
						\vdash									
						-									
10						-									
						-					249	1,2			
						-									
								Daring terminated at 12 fact DC	C Defued not						
								Boring terminated at 13 feet BG encountered. Monitoring well in							
ŀ								ionicountered. Worldoning well li	istalica.						
15															
.0															
ŀ															
ľ															
ŀ															
G	RANU	ILAR SOIL	S	COHES	IVE	SOIL	S	WELL CONSTRUCTION	WELL	INTERVAL	LEGE	ND			
BLOWS/	ft.	DENSITY BLOWS/ft. CONSISTENCY V. LOOSE <2						NOTES:	MATERIALS	FEET BGS					
0-4 5.10		V. LOOSE						2-inch monitoring well completed	ted Concrete 0-1 Backfill NA						
5-10 11-30		LOOSE M. DENSE			SOF M. S	TIFF		with a flush-mount roadbox.	Backfill Grout						
31-50		DENSE			STIF				Bentonite	NA 1-2	/////////				
>50		V. DENSE				TIFF			Sandpack 2-13						
				>30 HARD					0-3 3-13						
NOTES:									3-13						

- 1. Soil sample screened in the field for total volatile organic compounds using a photoionization detector equipped with a 10.6 eV bulb.
- 2. Soil sample collected from auger cuttings. Sample depth is estimated.

	a	<u>a</u>		SOII	L BORING / WE	LL COMPLETION LOG	Boring I.D.: MW-11R		: MW-11R	
	Q	9		Project:	Londondo	erry Citgo/Shopping Center	Project Number:	Sheet: 1 5599-000	Of: 1	
	Geol	nsight		Location:		Londonderry, VT	Chkd. By:	DLS		
Drilling (&K Drilling		Location.		Boring Location: replacement v			anad)	
		n Mcgarry				Top of PVC Riser Elevation: 98		Datum: 100.00	feet	
		g./Geol: M	MB			Top of Protector Elevation: NA		Ground Elev: N	A	
						Date Started: 4/25/13		Date Completed	l: 4/25/13	
Vehicle:	DRILLI	NG METHOD			MPLER		GROUND WATER REAL	NINGS REFERENCE	OTA DIL 177	TION
Model:		Truck-Moun	itea	Type: 2' long Hammer(lb):		DATE 4/25/2013	DEPTH (FT) 5.0	auger cuttings	STABILIZA NA	ATION
Method:		Hollow-Ster	n Auger	Fall (in): 30	110	5/20/2013	4.4	PVC	1 hou	ır
DEPTH			MPLE		WELL			STRATUM	FIELD	NOTE
(ft)	NO.	PEN/REC		BLOWS/6"	COMPLETION DETAIL	SAMPLE DESCRI	PTION	DESCRIPTION	SCREENING	
0		(in)	(ft)			Augered to 5' BGS.			(ppm)	
Ü						Augered to 5 BGG.				
					777 YZ					
ľ										
ŀ								SAND		
5	S-1	24/40	5-7	12		Very dense brown fine to made	ium SAND somo	(TILL)	<1	1
ິບ	ئ- J	24/10	J-1	31		Very dense, brown, fine to medi coarse Sand, trace Gravel. We			<u>``</u> 1	1
				35		coaree carra, made craver. Tre				
				34						
				-						
:										
10						Design terminated at 10 fact DC	C. Defued not			
10						Boring terminated at 10 feet BG encountered. Monitoring well in				
					-	encountered. Monitoring weil in	istalica.			
					-					
•					1					
ļ										
4.5					4					
15					-					
					1					
					1					
					1					
C.	RANI	ILAR SOIL	S	COHES	SIVE SOILS	WELL CONSTRUCTION	WELL	INTERVAL	LEGE	ND
BLOWS/		DENSITY		BLOWS/ft.	CONSISTENCY	NOTES:	MATERIALS	FEET BGS		
0-4		V. LOOSE		<2	V. SOFT	2-inch monitoring well completed	Concrete	0-1		
5-10 11-30		LOOSE M. DENSE		3-4 5-8	SOFT M. STIFF	with a flush-mount roadbox.	Backfill Grout	NA NA		
31-50		DENSE		9-15	STIFF		Bentonite	1-2	11111	<i>777</i> 7
>50		V. DENSE		16-30	V. STIFF		Sandpack	2-10	ananan	
				>30	HARD		Riser Screen	0-3 3-13		
NOTES:	I						Ooleen	J-1J		
1 Caila			ha fiald fa	r total valatila		de using a photoionization detector o		He		

SOIL BORING / WELL COMPLETION LOG

Boring I.D.: MW-11R

Well ID: MW-11R

ATTACHMENT C LABORATORY ANALYTICAL REPORT

Laboratory Report

Absolute Resource associates

PO Number: None **Darrin Santos** Job ID: 26865 Geolnsight, Inc. 186 Granite Street Date Received: 5/21/13 3rd Floor, Suite A

Manchester, NH 03103

Project: Londonderry VT 5599

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

lluer

Date of Approval: 5/29/2013 Principal, General Manager Total number of pages: 5

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

NH903 Maine

Project ID: Londonderry VT 5599

Job ID: 26865

Sample#: 26865-001 Sample ID: MW-S2 Matrix: Water

Sampled: 5/20/13 9:45		Reporting	I	Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
Surrogate Recovery		Limits	;							
dibromofluoromethane SUR	111	78-114	%	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
toluene-D8 SUR	103	88-110	%	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM		1301244 5	/23/13	23:30	SW5030B8260B

Sample#: 26865-002 Sample ID: MW-5 Matrix: Water

Sampled: 5/20/13 10:00		Reporting	I	lnstr Dil'n		Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
Surrogate Recovery		Limits	;						
dibromofluoromethane SUR	107	78-114	%	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
toluene-D8 SUR	102	88-110	%	1	LMM		1301244 5/24/13	0:02	SW5030B8260B
4-bromofluorobenzene SUR	99	86-115	%	1	LMM		1301244 5/24/13	0:02	SW5030B8260B

Project ID: Londonderry VT 5599

Job ID: 26865

Sample#: 26865-003 Sample ID: MW-11R Matrix: Water

Sampled: 5/20/13 10:15		Reporting	ı	Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
Surrogate Recovery		Limits	;							
dibromofluoromethane SUR	96	78-114	%	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
toluene-D8 SUR	104	88-110	%	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B
4-bromofluorobenzene SUR	101	86-115	%	1	LMM		1301269 5	5/24/13	13:27	SW5030B8260B

Sample#: 26865-004 Sample ID: MW-10R Matrix: Water

Sampled: 5/20/13 10:30		Reporting		Instr Dil'n		Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst		Batch Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
Surrogate Recovery		Limits	;						
dibromofluoromethane SUR	104	78-114	%	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
toluene-D8 SUR	104	88-110	%	1	LMM		1301274 5/24/13	20:45	SW5030B8260B
4-bromofluorobenzene SUR	100	86-115	%	1	LMM		1301274 5/24/13	20:45	SW5030B8260B

Project ID: Londonderry VT 5599

Job ID: 26865

Sample#: 26865-005 Sample ID: MW-8 Matrix: Water

Sampled: 5/20/13 10:45		Reporting		Instr Dil'n		Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
Surrogate Recovery		Limits	;						
dibromofluoromethane SUR	105	78-114	%	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
toluene-D8 SUR	100	88-110	%	1	LMM		1301274 5/24/13	21:18	SW5030B8260B
4-bromofluorobenzene SUR	97	86-115	%	1	LMM		1301274 5/24/13	21:18	SW5030B8260B

Sample#: 26865-006 Sample ID: Trip Blank Matrix: Water

Sampled: 5/20/13 0:00		Reporting		Instr Dil'n		Prep	Ana	llysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
Surrogate Recovery		Limits	•						
dibromofluoromethane SUR	94	78-114	%	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
toluene-D8 SUR	103	88-110	%	1	LMM		1301269 5/24/13	12:34	SW5030B8260B
4-bromofluorobenzene SUR	103	86-115	%	1	LMM		1301269 5/24/13	12:34	SW5030B8260B

	′
Absolute Resource	
associates	

124 Heritage Avenue #16 Portsmouth, NH 03801 603-436-2001 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

26865

		socia	tes	-	وليا			ε	ibso	luter	esou	rceasso	ciates.co	m							٠.	7.1	A	170	10		A I	11-(\mathcal{I}_{-1}							
Company Na	ıme:							Pr	oject	Nam	ie: <i>Lo</i>	ndone	erry v	1					=	100		1			ينا	بلا				7						4
Ĉ7∈ Company Ad	0/45	1947						_ Pr	oiect	#: :	159	19							IPH Fingerprint					Hardness						☐ Fluoride	4	يو.				-
Company Ad	dress: 196	Granit	ጐ	7 7	3 G /	757	TË P							_				1	든									MPN			科	TCLP Pesticide	<u>a</u>			
Prome Report To:	hester	NHO	3/0	01				Pr	oject	Loca	ation:	NH MA	MEVT	Other	ADEP	D21V1	oxane		5	_				TAL Metals			20	teria	۵ ا	☐ Bromide		7	Formaldehyde			
Report To:											RCF	A SE	WA NP	DES	- 097 190 M	8 00,	1,4-D		ם	1.40) Ag						☐ Bac	□ Ortho P	J Bro	<u> </u>		-0FD18			ı
Varris	n San	103							otoco		MCF		DES OT	HER	U VOC 8260 MADEF	X	Ü	Gases	EPH MADEP	☐ EDB 504.1		□ Turbidity	linity	S .			10	P//A [ate [-S & C	3 5	<u>-</u>			
Phone #: 60	03-31	4-082	0						eporti nits:		QAP EPA	P GV DW Ot			1	☐ MtBE, only X VOC 8021VT	GR0 8015 🗀 1,4-Dioxane	± [□	1 -		Li E	☐ TVS ☐ Alkalinity	ınt Meta			OTN CTON CT TOC	Bacteria P/A Bacteria MPN	+ Nitrite	Chloride 🗆 Sulfate	Reactive	TCLP SVOC	Herbicides			
Invoice To:								Qı	uote :	#			NH Reimbur	sement	E E	. □		2 NH	L MEDIKO	☐ 625	AS 9X	Conductivity	Z/S	Polluta			_		☐ Nitrate	oride	- L	ပ္က 🗆				
政'Email: <i>』</i>	25 an 7	050 676	2012	C I	Ce	ヴキ		PC	O#_				Pricing		VOC 8260 NHDES	BTEX	□ MEGRO	00 524.	5	OABN	neral O	8	□ ST □	Priority				Phenoi	- 1	등 S	active C	TCLP VOC	Grain Size			Composite (C)
Lab	Table of the control		ERS	II.	/latrix	(Pre	serva	ition	Met	hod	9	ampling		-	□ VOC BTEX		0 0	유 유	827			SS		3-list:	letals-l	100	S31	3 Sulfid	Nitrite		S [Grain Characteristics			Comp
Sample ID	i	eld D	A # CONTAINERS	WATER	SOLID	OTHER	된	HNO3	H₂SO₄	NaOH .	МеОН	DATE	TIME	SAMPLER	V0C 8260	V0C 624	☐ VPH MADEP	☐ V0C 524.2	☐ TPH ☐ DRO 8015	☐ 8270PAH ☐ 8270ABN ☐ 625	0&G 1664	CO8 🗆 Hg 🗅	SOT 🗆 SST 🗆	☐ RCRA Metals ☐ Priorlty Pollutant Metals	☐ Total Metals-list:	☐ Dissolved Metals-list:	Ammonia 🗆 COD	☐ T-Phosphorus ☐ Phenols	☐ Cyanide ☐ Sulfide	□ Nitrate □ Nitrite	Corrosivity Reactive CN Reactive S- gnitibility/FP	TCLP Metals	Subcontract;			Grab (G) or
(Lab Use Only)	Mw-	50	*	X	S	Ö	X	효	Ĭ.	ž	Ž					<u> </u>			4				Н						4	4	4		ਡ	_	(G
,02	1/W-	/ <u>/</u>	1	$\frac{1}{i}$			\cap		·			5/20/1	3 9145 1010		+	$\frac{1}{r}$	+		-	-							-					+	+	-	\vdash	4
- 03	MW-1 MW-1 MW-1 MW-	i R		H									10:15		╂┈	+			-										\dashv	-		+	+	+		+
-04	Mul-1	OR		-		·							10:30		╁	+			-			-						-	\dashv	-		-	+	-	-	\mathbf{H}
• 05	MW-	- 85	V					-				V	10:45	_ / .	1				1			+							\neg	+	+	+	+	+-	+	\mathbf{J}
·06	Trial	Hank	j	V			1					5/2/1		-	╁	V			1											-	-	+	+	+		¥
		, ,										<i>/ /</i>			T		†										_			+	+	+	+	+-	-	\dashv
															十	1															+	+	+	+		1
															\top				_												+	\top	+	+		
															T				7			1								\top	十	十				1
															T							1								\top	\top	7				1
TAT REQ (Priority (24 hr) Expedited (48)* □ ! hr)* □	See absolu for sample curre	e acc	eptan	ке ро	licy a		SPE	ECIA	L IN	STR	UCTIO	NS		•			}* ••••					}. .	·	· · · · · · ·		<u> </u>		<u></u>							
Standard (10 Business Da	ays)	REPORT	ING	INST	ΓRUC	CTIO	NS	Y	PDF ((e-ma	ail add	iress) 🖟	LSani	7050	(A) (n ec	ورزو	20 10	-0	2~		*******					***	٦	REC	EIVE	D O	N IC	CE Œ	YES	1 🗆	10
*Date Needed		☐ HARD 0	COPY	REC	QUIRE			AX (F									-						,					-		PER.				<u>3</u>		°C
CUST	ODY	Relinquishe	ed by	Sam	pler:	l	, -						Date 0/13	160	ne 49	-	_	eived クこの			43	5,	roc	<u> </u>	<					1 1	5/20	. / / :		141	ime <i>'45</i>	-
RECO	ORD	Relinquishe	ed by:	ل	W	/							Cate \	9/ ne	5	Rece	rco.	by:	f.			<u> </u>							5	180 121		1	<u> </u>	ime		
QSD-01 Revisio	on 03/21/13	Helmquishe	ed by:										Date	Ti	ne		Rece	eived	Юy	Labor	atory									'	Da	ate	ı	Ti	ime	