PREPARED BY:

65 MILLET STREET 802.434.4500

Fax: 802.434.6076

SUITE 301 RICHMOND, VT 05477 WWW.ECSCONSULT.COM

TABLE OF CONTENTS

EXECU	UTIVE SUMMA	ARY	i					
1.0	INTRODUCTI	ON	1					
2.0	SCOPE OF WO	ORK	2					
3.0	3.1 3.2 3.3 3.4 3.5	IVE PROCEDURES AND RESULTS DETERMINATION OF GROUNDWATER FLOW DIRECTION AND GRADIENT MONITORING WELL SAMPLING AND ANALYSIS TREATMENT SYSTEM SAMPLING AND ANALYSIS QUALITY ASSURANCE/QUALITY CONTROL REMEDIAL SYSTEM OPERATION AND PERFORMANCE	3					
4.0	CONCLUSION	VS	6					
5.0	RECOMMENDATIONS							
TABL	Table 1 Table 2 Table 3	Groundwater Elevation Data Groundwater Monitoring Well Analytical Results Drinking Water Analytical Results						
FIGUI	Table 4-8 RES Figure 1 Figure 2 Figure 3	Remediation Operations and Maintenance Readings Site Location Map Area Map with Monitoring Well Locations Groundwater Contour Map						
APPE	Figure 4 Figures 5-16 Figures 17 NDICES	Contaminant Distribution Map Time-Series Graphs For Water Quality Data Remediation System Mass Recovery						

Laboratory Report Forms

Appendix A

EXECUTIVE SUMMARY

This report summarizes the progress of remedial efforts at Londonderry Citgo located in Londonderry Center, Vermont conducted by Environmental Compliance Services, Inc. (ECS) during the period of January 2004 through March 2004. Activities that took place during this reporting period include: quarterly sampling of nearby supply well treatment systems, semi annual groundwater sampling, annual residential supply well sampling, and the evaluation, start-up, and troubleshooting of the air sparging and soil vapor extraction (AS/SVE) system. Activities and findings from the annual residential supply well sampling will be summarized in a separate report. ECS findings during this report period are summarized as follows:

- Results indicate that residual gasoline related volatile organic compound (VOC) contamination is still present within the surficial and bedrock aguifer.
- The Vermont Groundwater Enforcement Standard (VGES) for at least one petroleum hydrocarbon continue to be exceeded in site monitoring wells MW-8, SP-1, and SP-2. The gasoline additive methyl tert butyl ether (MTBE) continues to be detected in monitoring wells MW-3, MW-7, MW-8, MW-S2, MW-S3, SP-1, and SP-2.
- No groundwater samples were collected from SP-3 and SP-4 because ice was in the well casing and could not be accessed to sample. Monitoring well MW-6 was not sampled because it was in a large plowed snow bank and could not be located. MW-5 was also not sampled, because it was taken off the sampling plan.
- Analytical results from the March 2004 site visit indicate that with the exception of MTBE no other petroleum hydrocarbons were detected in the shopping center's main drinking water supply well treatment system samples.
- MTBE continues to be detected in samples collected from the shopping center's main drinking-water supply well's influent, mid-carbon and effluent at concentrations below the Vermont Health Advisory (VHA) of 40 micrograms per liter (µg/L). Water Works, who services the treatment system, was notified verbally of the treatment system break-through on 4 May 2004. It was also discussed with Water Works, that historical sampling results demonstrate that the current treatment system has not been effective at eliminating MTBE.
- ECS had previously received permission to sample the well, however, no one was home at the Thorne-Thomsen residence during the March 2004 site visit, and therefore, the treatment system was not sampled. ECS will attempt to sample the Thorne-Thompsen well again during the June 2004.
- The SVE portion of the AS/SVE system was restarted 18 February 2004 using a smaller ½ horsepower temporary blower. The system's original 1½ horsepower blower was unable to be repaired. At the request of the VTDEC, ECS sought a cost effective replacement. ECS found a replacement blower that was installed on 11 May, 2004 and turned on both the AS and SVE portions of the system. Shortly after, Mr. Robert Waite, owner of the Mountain Market, contacted ECS and indicated the sparge system was blowing off sparge well roadbox lids and well plugs. ECS made a site visit to turn off the air sparge system.

EXECUTIVE SUMMARY

On the basis of these findings, ECS makes the following recommendations:

- 1. Groundwater sampling and analysis of all onsite monitoring wells should continue on a semi-annual. The next sampling event should be conducted in September 2004.
- 2. Quarterly sampling of nearby supply well treatment systems should continue, with the next sampling event to be conducted in June 2004. In addition, ECS should repair the sparge wells and reactivate the AS system.
- 3. Once both the air sparge and soil vapor extraction portions of the system are fully operational, system checks and maintenance should be conducted on a bi monthly basis.
- 4. The supply well treatment system for the Londonderry Shopping Center should be reevaluated and upgraded given historical MTBE contaminant breakthrough.

1.0 INTRODUCTION

This report details the results of site remediation and monitoring at Londonderry Citgo, located at the intersection of Vermont Routes 11 and 100 South in the town of Londonderry, Vermont (Figure 1) during January 2004 through March 2004. This report has been prepared by Environmental Compliance Services, Inc. (ECS) under the direction of Mr. Gary Thurston, of Rice Oil Company.

ECS conducted an initial site investigation in the Fall of 1996, after gasoline compounds were identified in three bedrock supply wells located near the Londonderry Citgo (Figure 2). The results of the initial site investigation suggested that gasoline had been released in the vicinity of the underground storage tank (UST) system at the Citgo station. The release or releases appeared to have impacted the nearby bedrock supply wells, and posed a risk of contamination to other supply wells, Utley Brook located approximately 200 feet northeast of the Citgo station, and the West River located approximately 400 feet south of the Citgo station.

Historical groundwater analytical results indicate that the overburden aquifer beneath the site is contaminated with gasoline compounds. The Vermont Groundwater Enforcement Standards (VGESs) for several VOCs have been exceeded in the groundwater sample collected from monitoring well MW-2, located approximately 20 feet south of the pump island. Methyl-tertiary butyl ether (MTBE) has also repeatedly been detected at concentrations above the VGES at MW-S2, which is located approximately 220 feet downgradient of the former UST system.

Groundwater from the bedrock aquifer is the sole source of drinking water for the site and surrounding properties. Eighteen individual bedrock supply wells are located within 1,000 feet of the site. Analytical results of samples collected from the adjacent supply wells in November 1996 indicated that five shallow bedrock supply wells near the site were contaminated with gasoline compounds: two on-site supply wells and three off-site supply wells. One on-site and one off-site well — the shopping center's main supply well and the Thorne-Thomsen residential well, contained benzene at concentrations that exceeded the VGES of 5 micrograms per liter (μ g/L), as well as detectable levels of MTBE.

In May 1998, the Vermont Department of Environmental Conservation (VTDEC) approved ECS's Corrective Action Plan (CAP) for the site, which recommended air sparging and soil vapor extraction (AS/SVE) at the source area, with the continued operation of point-of-use carbon treatment systems at the shopping center's main supply well and the Thorne-Thomsen residential well. Installation of the subsurface components of the remediation system was completed in May 1998, construction of the treatment shed was completed in August 1998, and the system started operation in January 1999.

The AS/SVE system operated intermittently until it was shut down September 2000 when mass removal rates decreased to asymptotic levels. Since system shutdown, groundwater VOC concentrations have rebounded in wells primarily limited to the former UST source area, and an area immediately west of the pump island. An attempt to restart the system was made in January 2004 but the system's blower was broken. The remedial system was restarted after system evaluation and trouble shooting on February 18, 2004 using a temporary ½ HP blower.

2.0 SCOPE OF WORK

The work completed during this report period involved the following activities:

- Collection and submittal of groundwater samples from the on-site monitoring wells for laboratory analysis of volatile organic compounds VOCs by EPA method 8021B, on 16 March 2004;
- Collection and submittal of quarterly supply well samples from the treatment system installed at the Shopping Center's main supply well for laboratory analysis of VOCs;
- The annual collection and submittal of bedrock supply well samples from nine business' and residences within 1,000 feet of the site. A summary of these results will be submitted in a separate letter report. Owners of the supply wells sampled will be notified of the analytical results by mail;
- Evaluation, trouble shooting, and restart of the AS/SVE system;
- Preparation of this summary report, which details the work performed, and provides conclusions and offers recommendations for further action.

3.0 INVESTIGATIVE PROCEDURES AND RESULTS

3.1 DETERMINATION OF GROUNDWATER FLOW DIRECTION AND GRADIENT

On 16 March 2004, groundwater in the unconfined surficial aquifer directly beneath the site continued to be flowing in a southerly direction, toward the West River, with an average horizontal hydraulic gradient of about 3.5 percent. Water-level measurements and elevation calculations for 16 March 2004 are presented in Table 1. The groundwater contour map presented as Figure 3 was prepared using these data.

The depth to water in the unconfined surficial aquifer on 16 March 2004 varied from 4.95 feet (SP-1) to 9.61 feet (MW-S2) below top-of-casing (TOC). Static water-table elevations were computed for each monitoring well by subtracting the measured or corrected depth-to-water readings from the surveyed top-of-casing elevations, which are relative to an arbitrary site datum of 100.00 feet.

3.2 MONITORING WELL SAMPLING AND ANALYSIS

Groundwater analytical results of samples collected from water-table monitoring wells indicate that the unconfined surficial aquifer beneath the site remains contaminated with gasoline compounds. During the 16 March 2004 semi-annual sampling event, the VGES¹ for benzene was exceeded in MW-8 and SP-1. VGES for the gasoline additive MTBE was exceeded in monitoring well samples MW-8, SP-1, and SP-2.

MTBE was detected at levels below the VGES in monitoring wells MW-3, MW-7, MW-S2, and MW-S3, during this sampling event. 1,2,4 trimethyl benzene (TMB) was detected in monitoring wells MW-8, SP-1, and SP-2 at levels exceeding the VGES. The VGES were also exceeded in monitoring wells MW-8 and SP-2 for 1,3,5 TMB and naphthalene.

A contaminant distribution map for the 16 March 2004 monitoring well sampling event is presented as Figure 4. The analytical results for groundwater samples are summarized on Table 2A and on the timeseries graphs in Figures 5 through 16. Laboratory report forms are included in Appendix A.

3.3 WATER SUPPLY TREATMENT SYSTEM SAMPLING AND ANALYSIS

Analytical results of the influent samples collected from bedrock supply well treatment systems at of the site indicate that the shallow bedrock aquifer beneath the site continues to be contaminated with gasoline compounds. During this monitoring period (January 2004 through March 2004), no benzene was detected in samples collected from the Shopping Center's main supply well treatment system. MTBE was detected at levels below the Vermont Health Advisory of $40~\mu g/L$ in samples collected from Shopping Center's main supply well treatment system. The Thorne-Thomsen residential supply well was not sampled during this period because ECS could not gain access. The Thorne-Thomsen residential supply well will be sampled during the next quarterly sampling event in June. The analytical results for the treatment system influent samples are summarized on the time-series graphs in Figures 15 and 16.

¹The Vermont Department of Environmental Conservation (VT DEC) has established Groundwater Enforcement Standards (VGESs) for eight petroleum related VOCs, as follows: benzene - 5 μg/L; toluene - 1,000 μg/L; ethylbenzene - 700 μg/L; Total Xylenes - 10,000 μg/L; MTBE, a gasoline additive, - 40 μg/L; 1,3,5-trimethylbenzene - 4 μg/L; 1,2,4- trimethylbenzene - 5 μg/L; and naphthalene - 20 μg/L.

Laboratory report forms are included in Appendix A. A summary of the monitoring results for the individual treatment systems collected during this monitoring period is included on Table 3 and discussed below.

Thorne-Thomsen Residential Well: The treatment system at this location is a point-of-entry system designed primarily for VOC removal by adsorption to granular activated carbon. This system was installed and is maintained by Vermont Water Treatment Systems of Bristol, Vermont.

Shopping Center Main Supply Well: The treatment system at this location is a granular activated carbon based system, designed for VOC removal. This system was installed and is maintained by Vermont Water Works of Manchester, Vermont.

During the report period, this system failed to remove all detectable concentrations of gasoline-related compounds from the drinking water. Gasoline-related additive MTBE was detected in the treatment system influent, mid carbon, and effluent samples at concentrations of 27.7, 28.9, and $16.9\mu g/L$, respectively. All concentrations were below the MCL for MTBE of $40\mu g/L$. No other gasoline compounds were detected during this monitoring period.

3.4 QUALITY ASSURANCE/QUALITY CONTROL

Trip blank and duplicate samples were collected and analyzed for VOCs by EPA Method 8021B to ensure that adequate quality assurance/quality control (QA/QC) standards were maintained. Analytical results from the QA/QC samples indicate that adequate QA/QC was maintained during sample collection and analysis. No VOCs were detected in the trip blanks, and the analytical results for the field duplicate samples collected from MW-8 was within 15 percent of the original sampling results, which is with the EPA 30 percent acceptable range.

3.5 REMEDIAL SYSTEM OPERATION AND PERFORMANCE

Site remediation is achieved with the use of a combined air-sparging and soil-vapor extraction remedial system. Since the remediation system had been shut down since September 2000, a preliminary system evaluation was conducted and determined that the system's existing blower had seized and needed to be replaced. ECS put a smaller horsepower blower online temporarily until a cost effective replacement was found. The SVE portion of the AS/SVE system was restarted 18 February 2004. The AS portion of the system was down because of the wiring requirements for the temporary SVE blower. The air sparging was restarted after installing the replacement blower 11 May 2004.

An estimated 42 pounds of gasoline mass were recovered from the subsurface by the AS/SVE System between 18 February 2004 and 16 March 2004, bringing the total gasoline mass recovered since January 1999 to 380 pounds (Figure 23, Appendix A). Estimated mass-recovery rates during this reporting period ranged from 0.098 to 2.056 pounds per day (lbs./day) (Figure 25, Appendix A). The SVE system was operational 100 percent of the operating period.

The vapor-destruction efficiency of the carbon-treatment system was evaluated during each site visit, when the system was running, by measuring influent and effluent vapor concentrations with a photoionization detector (PID) concentrations. VT DEC guidance documents require that vapor treatment systems show either at least 95% destruction or effluent PID concentrations below five parts per million (ppm). During this reporting period, all effluent PID readings were below five ppm.

Site Monitoring Report Document No. VT96-0093R17
Londonderry Citgo June 2004
Londonderry, Vermont Page 5

A trained ECS field technician continued to monitor the remedial system during site visits throughout this operating period, checking and recording system operating parameters and making repairs and adjustments as necessary. Measurements during each scheduled visit included: VOC concentrations in each SVE line and downstream of the manifold using a PID (Table 5, Appendix A); vacuum levels in each SVE line (Table 6, Appendix A); and influent and effluent PID readings on the carbon treatment system (Table 7, Appendix A), and SVE flow rates (Table 8, Appendix A). The PID was calibrated on each day of use to a benzene reference using an isobutylene standard gas.

The SVE portion of the system consists of five horizontal vapor extraction wells operating continuously. The combined piping comes to the surface in the treatment shed where it is manifolded together. The subsurface vapors are drawn through the piping by using a temporary 0.5 horsepower (HP) Rotron regenerative blower, which removes air from the subsurface at a rate of approximately 65 standard cubic feet per minute (scfm). Hydrocarbons in the blower effluent air are treated through two 55-gallon drums of activated carbon, connected in series, prior to being discharged to the atmosphere.

4.0 CONCLUSIONS

ECS's findings during this report period are summarized as follows:

- Results indicate that residual gasoline related volatile organic compound (VOC) contamination is still present within the surficial and bedrock aquifer.
- The Vermont Groundwater Enforcement Standard (VGES) for at least one petroleum hydrocarbon continue to be exceeded in site monitoring wells MW-8, SP-1, and SP-2. The gasoline additive methyl tert butyl ether (MTBE) continues to be detected in monitoring wells MW-3, MW-7, MW-8, MW-S2, MW-S3, SP-1, and SP-2.
- No groundwater samples were collected from SP-3 and SP-4 because ice was in the well casing and could not be accessed to sample. Monitoring well MW-6 was not sampled because it was in a large plowed snow bank and could not be located. MW-5 was also not sampled, because it was taken off the sampling plan.
- Analytical results from the March 2004 site visit indicate that with the exception of MTBE no other petroleum hydrocarbons were detected in the shopping center's main drinking water supply well treatment system samples.
- MTBE continues to be detected in samples collected from the shopping center's main drinking-water supply well's influent, mid-carbon and effluent at concentrations below the Vermont Health Advisory (VHA) of 40 micrograms per liter (µg/L). Water Works, who services the treatment system, was notified verbally of the treatment system break-through on 4 May 2004. It was also discussed with Water Works, that historical sampling results demonstrate that the current treatment system has not been effective at eliminating MTBE.
- ECS had previously received permission to sample the well, however, no one was home at the Thorne-Thomsen residence during the March 2004 site visit, and therefore, the treatment system was not sampled. ECS will attempt to sample the Thorne-Thompsen well again during the June 2004.
- horsepower temporary blower. The system was restarted 18 February 2004 using a smaller ½ horsepower temporary blower. The system's original 1½ horsepower blower was unable to be repaired. At the request of the VTDEC, ECS sought a cost effective replacement. ECS found a replacement blower that was installed on 11 May, 2004 and turned on both the AS and SVE portions of the system. Shortly after, Mr. Robert Waite, owner of the Mountain Market, contacted ECS and indicated the sparge system was blowing off sparge well roadbox lids and well plugs. ECS made a site visit to turn off the air sparge system.

June 2004

Page 7

5.0 RECOMMENDATIONS

On the basis of these findings, ECS makes the following recommendations:

- 5. Groundwater sampling and analysis of all accessible onsite monitoring wells should continue semiannually. The next sampling event should be conducted in September 2004.
- 6. Quarterly sampling of nearby supply well treatment systems should continue, with the next sampling event to be conducted in June 2004. In addition, ECS should repair the sparge wells and reactivate the AS system.
- 7. Once both the air sparge and soil vapor extraction portions of the system are fully operational, system checks and maintenance should be conducted on a bi monthly basis.
- 8. The supply well treatment system for the Londonderry Shopping Center should be reevaluated and upgraded given historical MTBE contaminant breakthrough.

TABLE 1. GROUNDWATER ELEVATION CALCULATIONS

Londonderry Citgo Londonderry, Vermont

Monitoring Date: 16 March 2004

Well I. D.	Top of Casing Elevation *	Depth to Water (feet, TOC)	Ground Water Elevation				
MW-1	DEST	ROYED or PAV	ED OVER				
MW-2	DEST	TROYED or PAV	ED OVER				
MW-3	98.69	5.35	93.34				
MW-4	Restored	Restored 9/25/03 will sample next event.					
MW-5	98.48	NS	NS				
MW-6	95.13	NS	NS				
MW-7	98.40	9.15	89.25				
MW-8	99.66	5.77	93.89				
MW-S1	DEST	TROYED or PAV	ED OVER				
MW-S2	94.89	9.61	85.28				
MW-S3	94.41	9.12	85.29				
SP-1**	99.07	4.95	94.12				
SP-2**	99.23	5.29	93.94				
SP-3**	99.50	NS	NS				
SP-4**	99.64	NS	NS				

^{*}Top of casing (TOC) and ground water elevations are relative to an arbitrary site datum of 100.00 feet.

MW-1 and MW-2 were destroyed during installation of the new UST system

MW-S1 and were destroyed during snow removal.

MW-5 was not sampled due to change in scope of work.

MW-6 was not located.

NS = Well Not Sampled.

ECS 96093gwe.xls

^{**}Sparge points (SP) screened below water-table.

TABLE 2. ANALYTICAL MONITORING RESULTS GROUNDWATER MONITORING WELL SAMPLES

Londonderry Citgo Londonderry, Vermont

Monitoring Date: 16 March 2004

Sample Location	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 Trimethyl Benzene	1,2,4 Trimethyl Benzene	Naphthalene		
Volatile Petroleum H	olatile Petroleum Hydrocarbons by EPA Method 8021B										
MW-S2	ND	16.5	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0		
MW-3	ND	1.5	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0		
MW-S3	ND	8.8	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0		
MW-5	NS	NS	NS	NS	NS	NS	NS	NS	NS		
MW-6	NS	NS	NS	NS	NS	NS	NS	NS	NS		
MW-7	ND	19.4	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0		
MW-8	541	178	12.6	16.9	217	294	184	360	77.2		
SP-1	118	258	105	13.3	ND<4.0	ND<8.0	ND<4.0	7.5	ND<4.0		
SP-2	203	125	ND<5.0	10.2	104	88.5	25.1	200	30.2		
SP-3	NS	NS	NS	NS	NS	NS	NS	NS	NS		
SP-4	NS	NS	NS	NS	NS	NS	NS	NS	NS		
VGES		40	5.0	1,000	700	10,000	4.0	5.0	20		
Quality Assurance/0	Quality Contro	l Samples	by EPA Me	thod 8021E	3						
Duplicate (Dup.)	497	178	13.3	15.8	203	265	169	325	89.6		
MW-8	541	178	12.6	16.9	217	294	184	360	77.2		
% Difference	8	0	5	7	7	10	8	10	15		
trip blank	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0		

Notes:

All Samples collected by ECSMarin and analyzed by Endyne, Inc. for volatile petroleum hydrocarbons by EPA Method 8021B. Results given in micrograms per liter (µg/L).

ND - None detected at indicated detection limit.

TBQ - Trace below indicated quantitation limit.

VGES - Vermont Groundwater Enforcement Standards.

Shaded concentrations exceed VGES.

MW-5 was not sampled due to a change in the scope of work.

SP-4 was not sampled because well was dry on 9/25/03.

TABLE 3

Drinking-Water Analytical Results
Londonderry Citgo
Londonderry Center, Vermont
Monitoring Date:
16 March 2004

Supply Well	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	1,3,5 -TMB	1,3,5 -TMB	Naphthalene
Shopping Center Main									
- system influent	27.7	ND <1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1
- system mid	28.9	ND <1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1
- system effluent	16.9	ND <1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1
Thorne-Thomsen - system influent	NS	NS	NS	NS	NS	NS	NS	NS	NS
- system mid	NS	NS	NS	NS	NS	NS	NS	NS	NS
- system effluent	NS	NS	NS	NS	NS	NS	NS	NS	NS
MCL		5	1,000	700	10,000				
VHA	40						5	4	20
VAL		1							

Notes:

Results given in parts per billion (ppb).

NS - Not sampled, could not contact owner for access.

ND - None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by ECS and analyzed by Endyne, Inc.

MCL - Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water.

VHA - Vermont Health Advisories - guidelines for concentrations of chemicals in drinking water that do not have MCLs.

VAL - Vermont Action Levels for eight chemicals of specific health concern in public water systems, established by the Vermont Dept. of Health.

ECS reswells.xls

TABLE 4. SPARGE SYSTEM PRESSURE AND AIRFLOW READINGS

DATE	SP-1	SP-2	SP-3	SP-4
02/22/00	0.5	6	3	5.5
03/09/00	1	5	4	4
07/17/00	6	4	4.5	4.5
07/26/00	4	5	4.5	6
08/14/00	5	6.5	7	5
09/19/00	3	5.5	5	4.5
02/18/04				
03/08/04			-	
03/16/04				
04/22/04				

Readings in pounds per square inch (psi). N/A: Data not available Note:

--: Sparge leg not running

DATE	SP-1	SP-2	SP-3	SP-4
02/22/00	12.5	9.5	10	9
03/09/00	12.5	9.75	9	10
07/17/00	8.0	10.5	9.0	9.5
07/26/00	13	12	10.5	10
08/14/00	11	17	11	6
09/19/00	11.5	22	17	7
02/18/04	-		-	
03/08/04				
03/16/04			1	
04/22/04			-	

Note: Readings in standard cubic feet per minute (scfm).

N/A= Data not available --: Sparge leg not running

TABLE 5. SVE SYSTEM PID READINGS

DATE	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	Total
11/19/99	3.2	16.2	0.7	6.1	1.2	5.8
12/03/99	6.5	4.9	9.8	5.5	4.1	2.5
12/14/99	4.5	6.2	1.8	6.8	2.2	4.2
01/19/00	1.5	24.2	0.0	1.5	0.1	1.6
02/22/00	0.7	0.0	0.5	0.7	0.5	
03/09/00		6.3		4.1	-	
07/17/00	0.1	0.9	0.2	1.7	0.9	2.8
07/26/00	10.4	4.3	13.8	2.0	0.0	0.0
08/14/00	0.3	0.4	15.1	2.8	6.8	5.4
09/19/00	6.1	4.0	4.2	3.0	5.0	2.1
02/18/04	65.0	76.6	79.7	595.0	437.0	117.0
03/08/04	0.2	23.8	0.2	51.6	18.4	13.2
03/16/04	0	5.5	0.1	69.4	27.5	15.6
04/22/04	0	0	0	8.0	16.0	11.0

Readings in parts per million (ppm) by photoionization detector System readings are prior to dilution. Notes:

N/A= Data not available --: SVE leg not running

ECS 96093SVE.xls

TABLE 6. SVE SYSTEM VACUUM READINGS

DATE	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	TOTAL
02/10/99						
12/14/99	2.0	1.0	1.0	3.0	1.0	N/A
01/19/00	1.75	1.5	1.0	3.0	1.0	N/A
02/22/00	1.5	1.0	1.0	3.0	1.0	48.5
03/09/00	2.0	1.5	1.5	4.0	1.0	
07/17/00	1.2	1.2	1.0	1.6	1.0	17
07/26/00	1.2	1.3	1.1	1.0	1.6	13.5
08/14/00	1.7	1.8	1.6	2.1	1.7	17
09/19/00	1.3	1.4	1.2	1.9	1.5	7.2
02/18/04	2.0	2.0	2.0	2.0	2.0	2.0
03/08/04	0.1	0.1	0.1	0.1	0.1	0.9
03/16/04	0.1	0.1	0.1	0.1	0.1	1.0
04/22/04	2.0	2.0	2.0	2.0	2.0	2.0

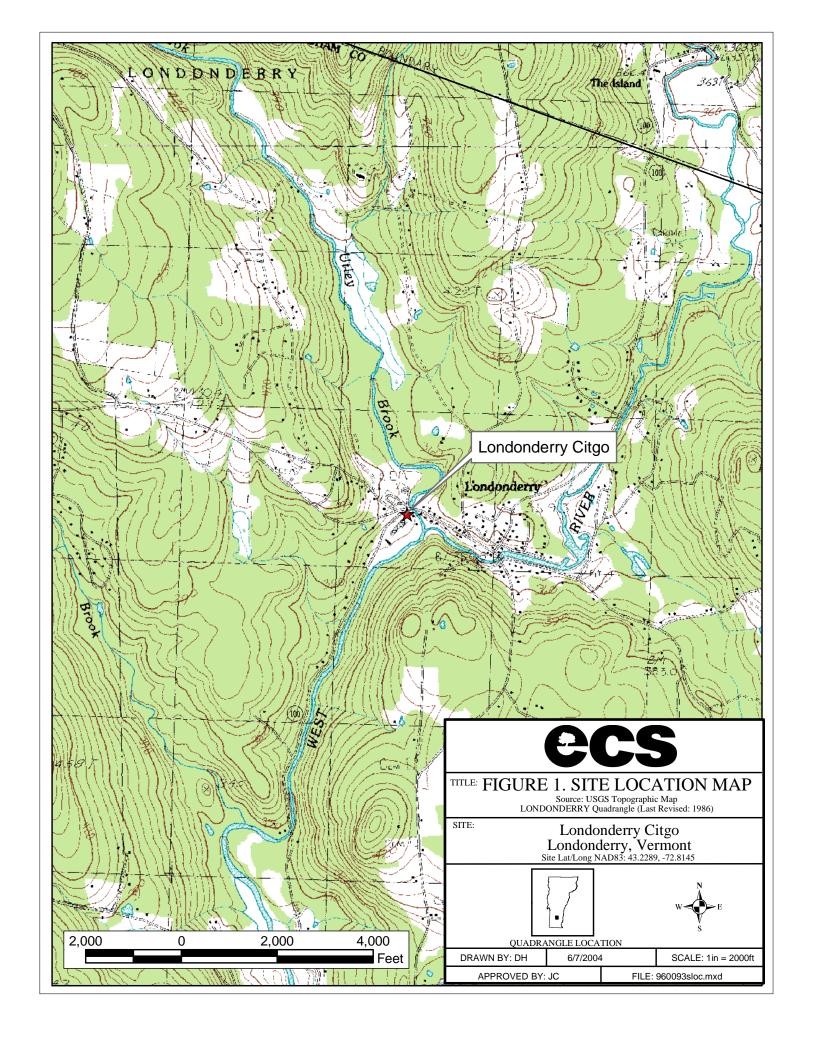
Note: ---: SVE leg not running N/A= Data not available

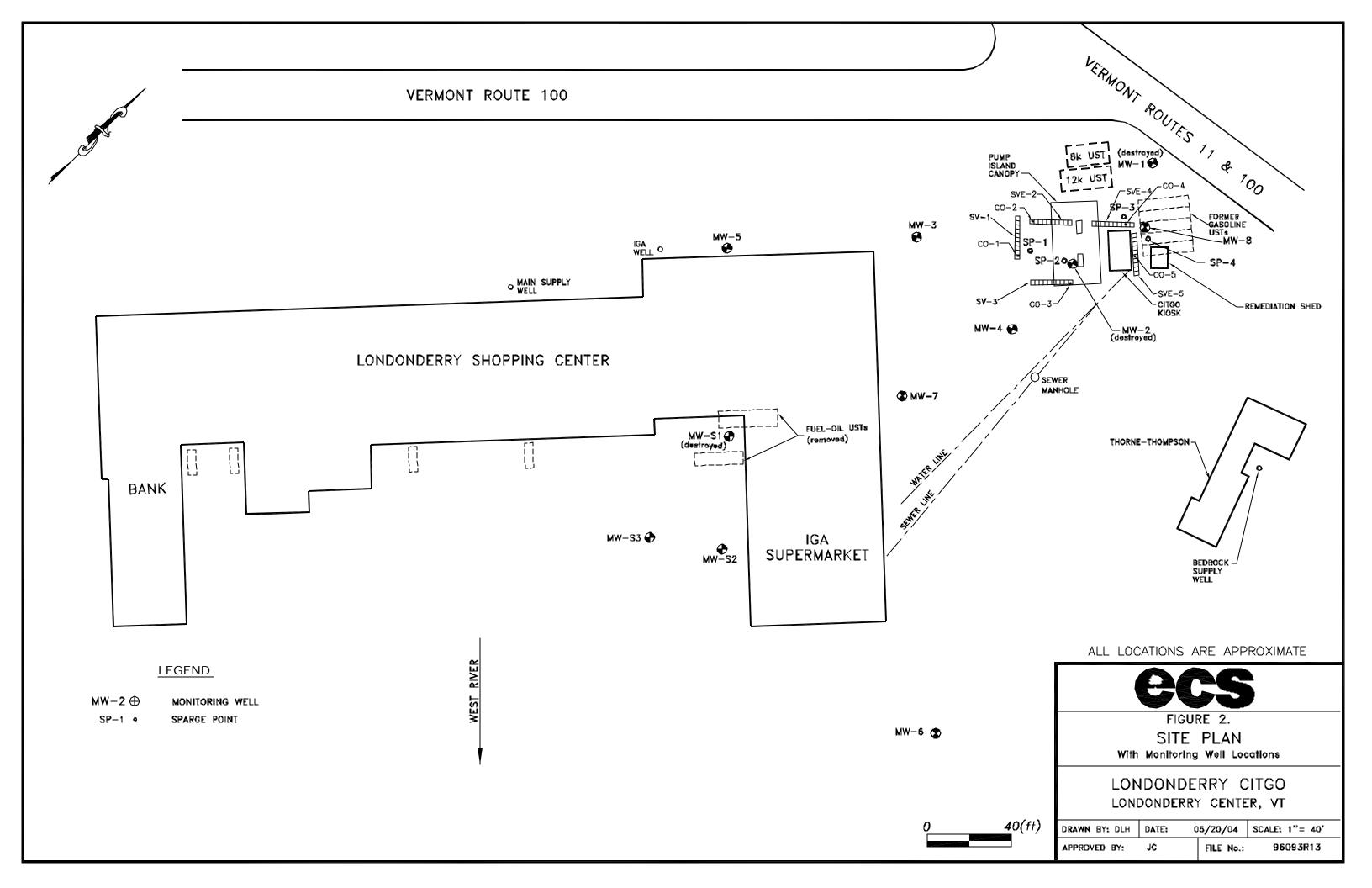
All vacuum readings reported as inches of water column

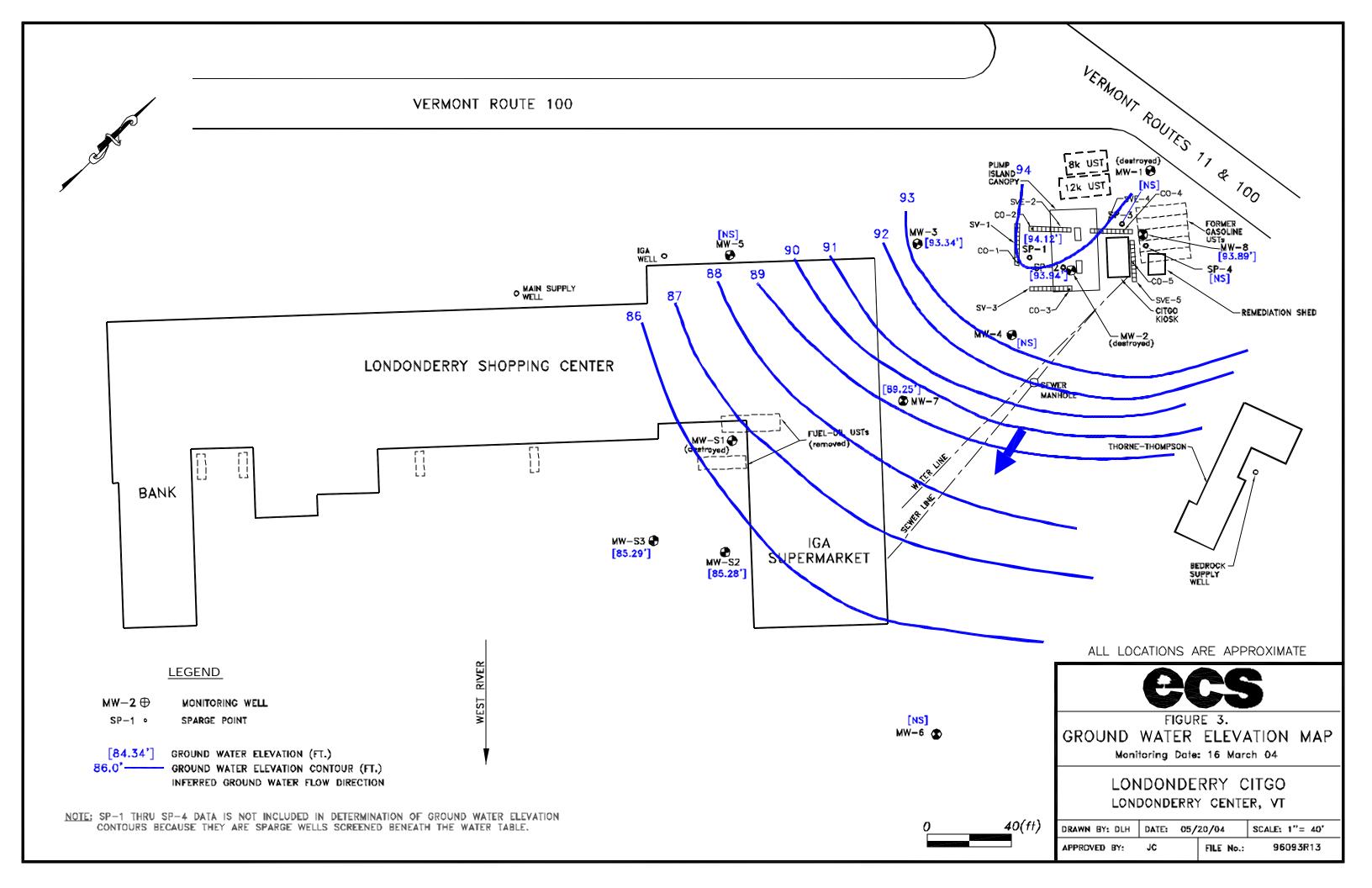
TABLE 7. SVE SYSTEM VOC DESTRUCTION EFFICIENCY

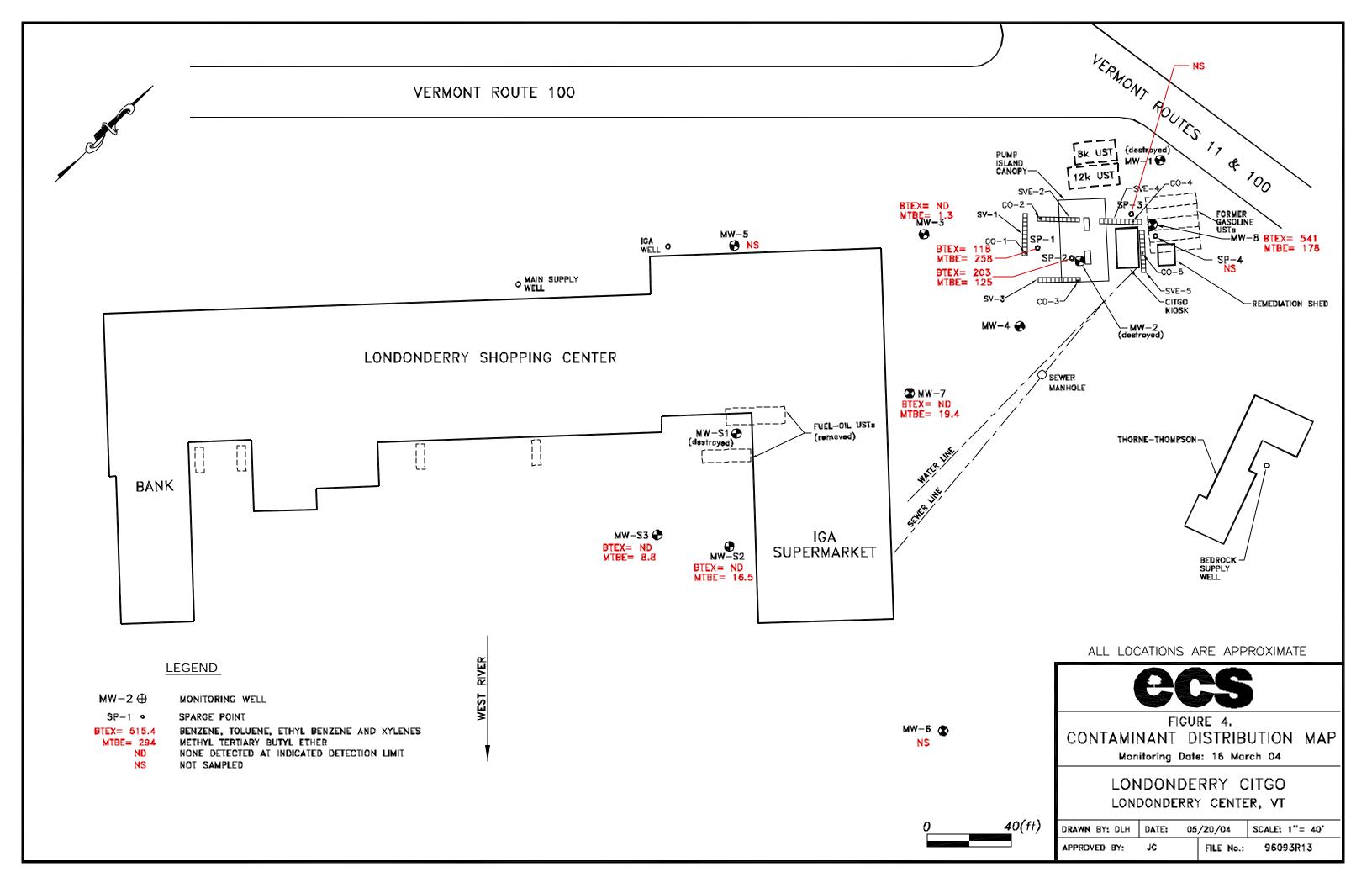
			1
DATE	INFL	EFF	REMOVAL (%)
02/22/00	4.4	1.3	70.5
03/09/00	7.1	0	100
07/17/00	1.3	0.2	85
07/26/00	0	0	100
08/14/00	4.5	1.2	64
09/19/00	1.9	1	48
02/18/04	117	3	97
03/08/04	4.6	4.2	91
03/16/04	3.1	3.1	3.1
04/22/04	3.1	4.5	3.1

TABLE 8. SVE SYSTEM AIRFLOW READINGS


DATE	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	C-1 INFL
12/03/99	5.3	2.6	7.5	31.7	8.4	0.0
12/14/99	11.1	4.4	5.4	40.4	7.5	0.0
01/19/00	19.0	2.9	10.9	44.9	11.8	0.0
02/22/00	N/A	N/A	N/A	N/A	N/A	N/A
03/09/00	33.4	14.8	18.2	75.5	24.9	104
07/17/00	15.9	15.2	27.2	55.3	48.1	123.2
07/26/00	12.0	12.9	21.3	36.0	39.2	109.0
08/14/00	1.5	1.5	11.7	44.1	52.1	93.4
09/19/00	10.3	10.2	19.8	33.6	37.3	88.0
02/18/04	1.3	0.9	4.5	0.2	9.7	48.60
03/08/04	1.5	1.5	5.3	0.1	9.7	41.0
03/16/04	1.8	1.7	4.7	0.2	9.7	42.8
04/22/04	0.5	0.5	0.5	0.5	12.0	48.6


Notes: Flow rates reported in cubic feet per minute (cfm)


System readings are prior to dilution. System readings are prior to dilution
--- SVE leg not running


N/A Data not available

ECS 96093SVE.xls

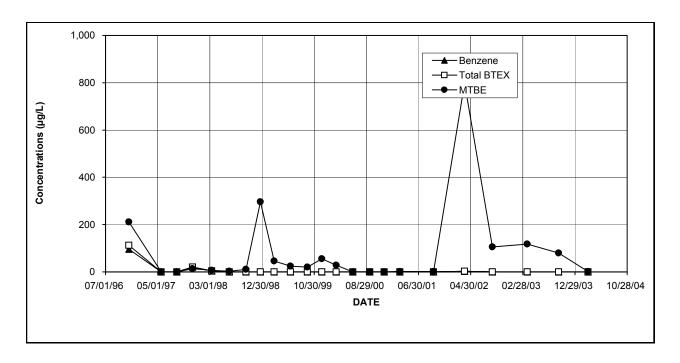


FIGURE 5. MW-3 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	27.9	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/19/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
12/13/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	ND	1.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/25/01	ND	1.83	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/26/02	3.2	798	3.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	106	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	ND	118	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
09/25/03	ND	80.2	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/16/04	ND	1.5	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

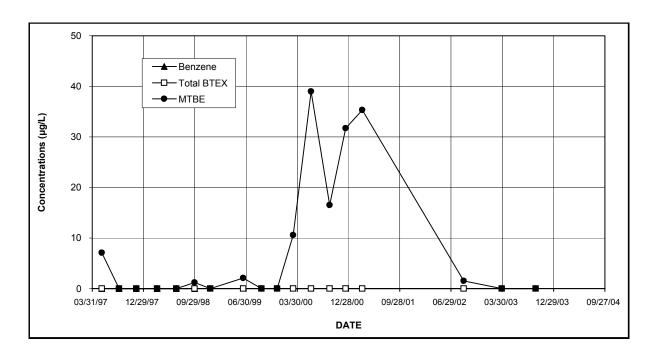
ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes


MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 6. MW-6 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	10.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	ND	39.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/19/00	ND	16.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
12/13/00	ND	31.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	ND	35.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	1.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/25/03	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/16/047	NS	NS	NS	NS	NS	NS	NS	NS	NS
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

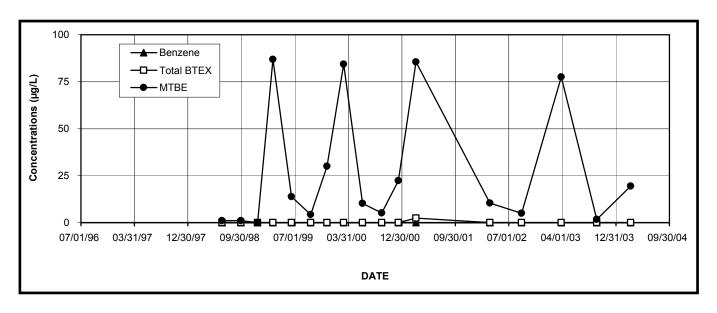
All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene


* Well installed 14 May 1997

** MW-6 not located.

NS- Unable to locate the well due to excessive snow stock piled from plowing, therefore not sample

FIGURE 7. MW-7 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	84.3	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
06/12/00	ND	10.2	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
09/19/00	ND	5.1	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
12/13/00	ND	22.3	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
03/13/01	2.4	85.5	ND<1.0	ND<1.0	ND<1.0	2.4	ND<1.0	ND<1.0	ND<1.0
03/26/02	ND	10.4	ND<1.0	ND<1.0	ND<1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	4.9	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	ND	77.5	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
09/25/03	ND	1.72	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/16/04	ND	19.4	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit.

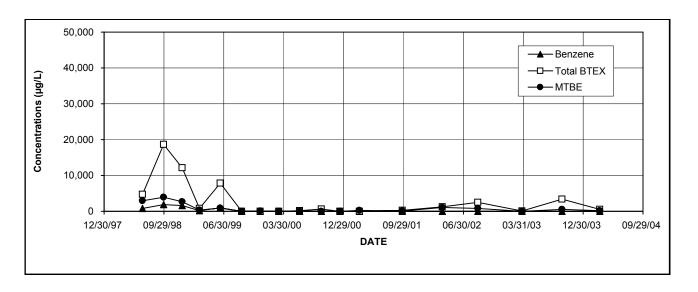
TBQ - Trace below quantitation limit indicated.

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether


TMB - Trimethyl Benzene

* Well installed 23 April 1998

**MW-7 not sampled because it was damaged.

FIGURE 8. MW-8 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	1.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	188.2	53.1	10.2	7.9	31.1	139	37.9	46.8	10.9
09/19/00	625.8	24.4	10.8	117	129	369	31.5	103	19.0
12/13/00	ND	24.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	44.5	264	5.9	ND<2.0	18.6	20.0	10.6	12.3	4.2
09/25/01	295.4	68.1	4.3	15.1	116	160	32.5	92.1	18.8
03/26/02	1,294.3	1,080	11.2	35.1	178	1,070	180	422	146
09/05/02	2,514.2	814	20.2	206.0	588	1,700	222	696	153
03/27/03	55.2	38.4	1.0	1.7	5.9	46.6	8.0	16.2	4.1
09/25/03	3,362.0	556	ND<25.0	116	824	2,422	581	1,690	376
03/16/04	540.5	178	12.6	16.9	217	294	184	360	77.2
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limit.

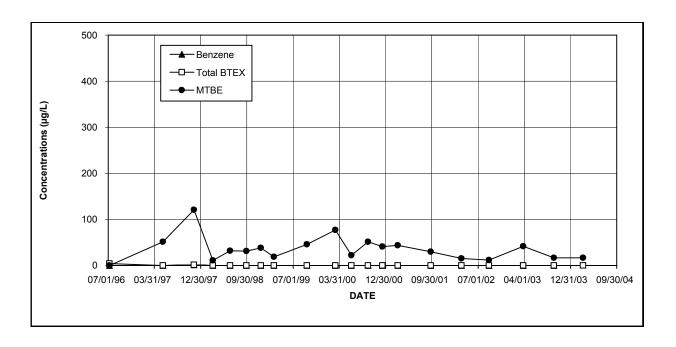
TBQ - Trace below quantitation limit indicated.

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

* Well installed 23 April 1998

BTEX - Benzene, toluene, ethyl benzene, & xylenes


MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 9. MW-S2 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total	MTBE	Benzene	Toluene	Ethyl	Xylenes	1,3,5	1,2,4	Naph-
	BTEX				benzene	_	TMB	TMB	thalene
03/08/00	ND	76.8	ND <1.0						
06/12/00	ND	22.0	ND <1.0						
09/19/00	ND	51.3	ND <1.0						
12/13/00	ND	40.7	ND <1.0						
03/13/01	ND	43.9	ND <1.0						
09/25/01	ND	29.6	ND <1.0						
03/26/02	ND	15.6	ND <1.0						
09/05/02	ND	11.6	ND <1.0						
03/27/03	ND	41.6	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
09/25/03	ND	17.0	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
03/16/04	ND	16.5	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limit.

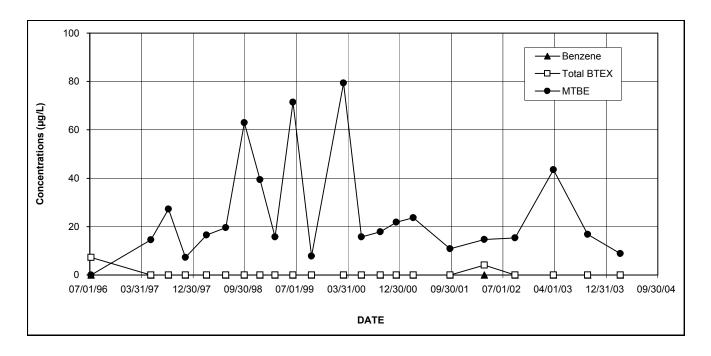
TBQ - Trace below quantitaion limit indicated

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether


TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

Unable to be located during Dec '99 site visit

FIGURE 10. MW-S3 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naphthalene
03/08/00	ND	79.4	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
06/12/00	ND	15.7	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
09/19/00	ND	17.9	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
12/13/00	ND	21.8	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/13/01	ND	23.7	ND <1.0	ND <1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
09/25/01	ND	10.9	ND <1.0	ND <1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
03/26/02	4.1	14.7	ND <1.0	ND <1.0	1.3	2.8	ND<1.0	ND<1.0	ND <1.0
09/05/02	ND	15.4	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
03/27/03	ND	43.5	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
09/25/03	ND	16.8	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
03/16/04	ND	8.8	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

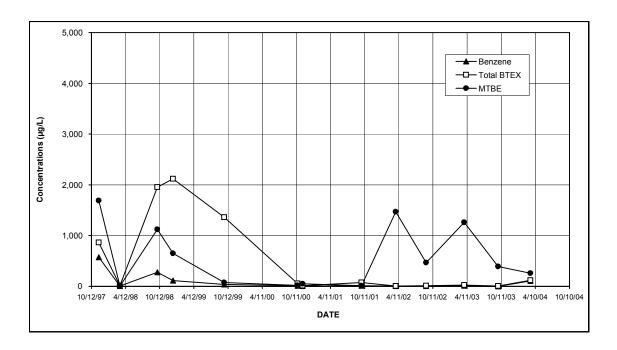
ND- None detected at indicated detection limit.

TBQ - Trace below quantitaion limit indicated

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes


MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.
Unable to be located during Dec '99 site visit

FIGURE 11. SP-1 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
11/21/97	863.9	1,690	575	121	93.5	74.4			
03/13/98	11.9	4.7	6.9	1.6	3.4	TBQ<1			
09/29/98	1,954	1,120	278	129	1,000	547	227	384	247
12/22/98	2,121	651	111	163	966	881	400	1,020	155
09/21/99	1,361	77	35.3	60.8	474	791	323	620	58
10/17/00	53.8	18	10.0	1.5	31.3	11.0	25.7	90.7	9.5
11/14/00	11.9	47.9	9.3	ND<1.0	2.6	ND<1.0	1.3	3.7	4.5
09/25/01	77.8	11.8	9.6	3.1	37.1	28.0	24.3	72.2	5.2
03/26/02	6.2	1,470	6.2	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0
09/05/02	10.3	467	5.1	ND <4.0	5.2	ND <8.0	ND <4.0	ND <4.0	ND <4.0
03/27/03	24.0	1,260	14.0	5.2	4.8	ND<8.0	5.8	13.1	ND<4.0
09/25/03	6.4	392	ND<5.0	ND<5.0	6.4	ND<10.0	ND<5.0	ND<5.0	7.4
03/16/04	118.3	258	105	13.3	ND <4.0	ND <8.0	ND <4.0	7.5	ND <4.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (μ g/L).

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

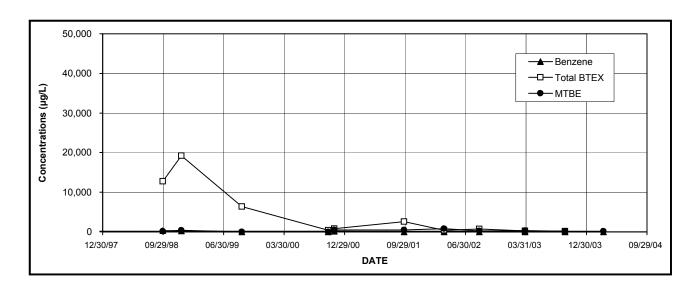
All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

6/23/98 and 3/9/00 - Not Sampled

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - methyl tertiary butyl ether


TMB - Trimethyl Benzene

All samples collected by Marin and analyzed by Endyne, Inc.

Shaded concentrations denote VGES exceedences

FIGURE 12. SP-2 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
09/29/98	12,751	195	291	1,430	4,040	6,990	958	2,840	835
12/22/98	19,211	429	271	2,430	5,810	10,700	1,120	3,520	638
09/21/99	6,407	ND<50	ND<50	367	1,980	4,060	618	1,730	261
10/17/00	409	6.7	5.0	15.7	167	221	85.6	244	27.8
11/14/00	816.3	513	200	54.3	402	160	129	555	161
09/25/01	2580	452	ND<20.0	130	1,050	1,400	365	1,060	126
03/26/02	399.4	789	12.3	17.1	238	132	96.4	174	48.2
09/01/02	725	225	13.8	41.2	347	323	103	387	72.7
03/27/03	260.8	305	16.2	66.2	50.4	128	23.6	68.8	12.6
09/25/03	140.95	149	ND<2.5	3.45	92.2	45.3	23.2	137	20.4
03/16/04	202.7	125	ND<5.0	10.2	104	88.5	25.1	200	30.2
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter(µg/L)

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by Marin and analyzed by Endyne, Inc.

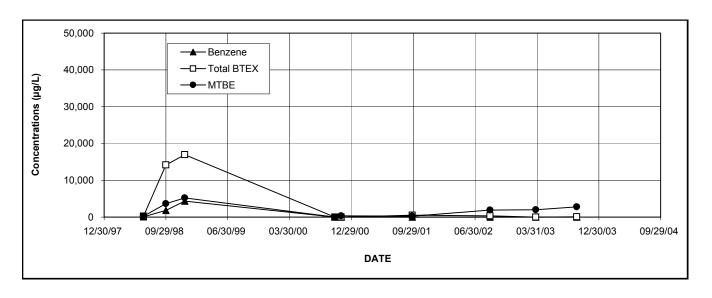
VGES - Vermont Groundwater Enforcement Standards

* Well installed 23 April 1998

TMB - Trimethyl Benzene

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether


Shaded concentrations exceed VGES.

All samples collected by Marin and analyzed by Endyne, Inc.

03/13/01 - not sampled

FIGURE 13. SP-3 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
06/23/98	291.7	256	80.9	13.0	80.8	117			
09/29/98	14,150	3,690	1,840	4,980	1,430	5,900	634	1,620	345
12/22/98	16,920	5,200	4,360	4,980	1,620	5,960	634	1,750	343
10/17/00	29.5	6	<1.0	<1.0	10.2	19.3	7.5	25.5	3.9
11/14/00	ND	338	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	13.7	ND<5.0
09/25/01	515.4	294	8.0	37.4	177	293	121	112	75.1
09/05/02	355.4	1,920	27.3	10.1	119	199	165	142	36
03/27/03	19.4	1,970	19.4	ND<10.0	ND<10.0	ND<20.0	ND<10.0	ND<10.0	ND<10.0
09/25/03	51.5	2,750	ND<25.0	ND<25.0	ND<25.0	51.5	45	136	ND<25.0
03/01/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L).

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by Marin and analyzed by Endyne, Inc.

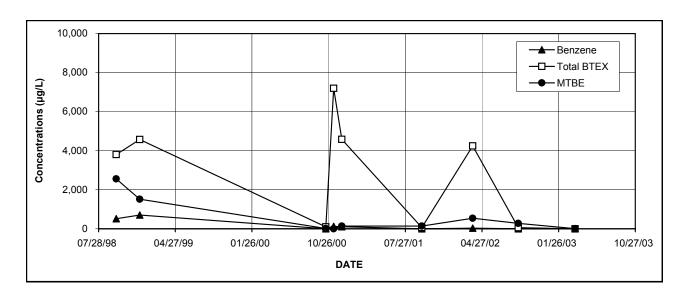
VGES - Vermont Groundwater Enforcement Standards

* Well installed 23 April 1998

TMB - Trimethyl Benzene

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether


Shaded concentrations exceed VGES.

All samples collected by Marin and analyzed by Endyne, Inc.

3/9/00 and 3/13/01 - Not sampled

FIGURE 14. SP-4 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
09/29/98	3,800	2,560	515	TBQ <50	945	2,340	1,180	2,940	734
12/22/98	4,570	1,520	706	774.0	1,130	1,960	966	2,040	357
10/17/00	95	13.7	2.3	7.4	32.9	52.4	18.3	38.1	13.7
11/14/00	7,193	ND<40.0	127	386	1,480	5,200	823	2,550	490
12/13/00	4,583	137	109	394	1,220	2,860	551	1,470	366
09/25/01	66.3	143	4.0	ND<2.0	49.4	12.9	31.3	9.2	39.8
03/26/02	4,244.8	544	29.8	290	845	3,080	524	1,330	348
09/05/02	53.7	275	3.7	ND<2.0	40.0	10.0	18.1	22.2	18.0
03/27/03	3.6	12.0	ND<1.0	ND<1.0	3.6	ND<2.0	1.4	1.5	1.9
09/25/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/16/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L).

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

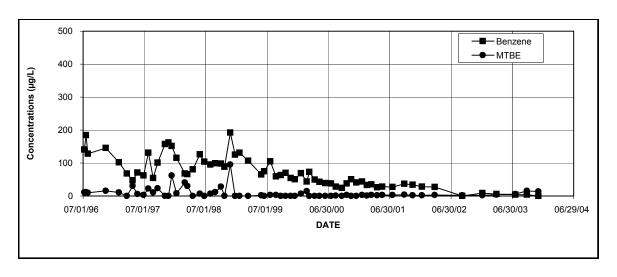
All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene


Shaded concentrations exceed VGES.

3/09/00 and 3/13/01 - Not Sampled

9/25/03 - Not samped, well was dry.

FIGURE 15. LONDONDERRY SHOPPING CENTER MAIN SUPPLY WELL Influent VOC Concentrations

Londonderry Citgo Londonderry, Vermont

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,2,4- TMB	1,3,5 TMB	Naphthalene
09/19/00	23.8	ND<1	23.8	ND<1	ND<1	ND<1	ND <1	ND<1	ND<1
10/17/00	38.0	2.8	38.0	ND<1	ND<1	ND<1	1.7	ND<1	ND<1
11/14/00	50.2	ND<1	50.2	ND<1	ND<1	ND<1	3.5	ND<1	ND<1
12/13/00	40.6	ND<1	40.6	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
01/17/01	43.9	3.3	43.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
02/14/01	33.2	1.4	33.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
03/13/01	34.9	2.9	34.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
04/17/01	26.3	2.0	26.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
05/17/01	29.6	2.5	28.2	ND<1	ND<1	1.4	ND<1	ND<1	ND<1
07/17/01	27.2	2.7	27.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
09/25/01	36.9	3.6	36.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11/14/01	33.5	2.2	33.5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
01/08/02	28.1	2.3	28.1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
03/26/02	27.0	2.8	27.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
09/05/02	ND	2.1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
01/03/03	8.4	1.9	8.4	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
03/27/03	6.2	3.6	6.2	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
07/18/03	3.7	5.6	3.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
09/25/03	4.1	15.4	4.1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
12/03/03	ND	13.2	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
03/16/04	ND	27.7	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
MCL			5	1,000	700	10,000			
VHA		40					5	4	20
VAL			1						

Notes:

Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limi

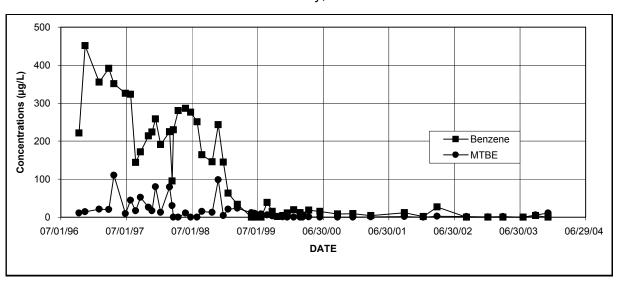
TBQ - Trace below quantitation limit indicated

BTEX - Benzene, toluene, ethyl benzene, & xylene

MTBE - Methyl tertiary butyl ethe

TMB - Trimethyl Benzene

MCL-Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water


VHA-Vermont Health Advisories- guidelines for chemicals in drinking water that do not have MCL

VAL-Vermont Action Levels for eight chemicals of specific health concern in public water systems, established t the Vermont Dept. of Health.

ECS 96093DWS.XLS

FIGURE 16. THORNE-THOMPSON SUPPLY WELL Influent VOC Concentrations

Londonderry Citgo Londonderry, Vermont

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,2,4- TMB	1,2,4- TMB	Naphthalene
09/19/00	8.7	ND<1	8.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
12/13/00	9.0	ND<1	9.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
03/22/01	4.6	1.0	4.6	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
09/25/01	12.0	1.38	12.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
01/08/02	2.0	ND<1	2.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
03/26/02	27.0	2.8	27.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
09/05/02	ND	2.0	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
01/03/03	ND	1.2	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
03/27/03	ND	1.6	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
07/18/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/25/03	4.1	5.5	4.1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
12/03/03	ND	10.7	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1
03/16/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
MCL			5	1,000	700	10,000			
VHA		40					5	4	20
VAL			1						

Notes:

Results given in micrograms per liter (µg/L).

NS - Not Sampled

ND- None detected at indicated detection limit.

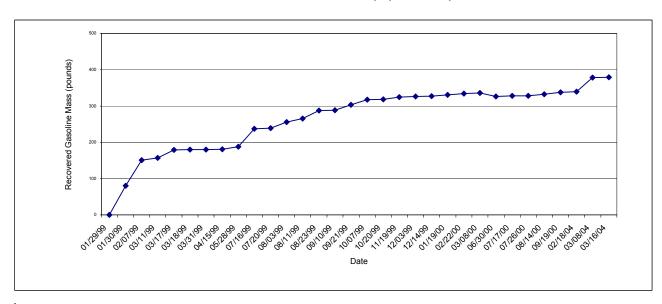
TBQ - Trace below quantitation limit indicated.

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

MCL-Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water.


VHA-Vermont Health Advisories- guidelines for chemicals in drinking water that do not have MCLs

VAL-Vermont Action Levels for eight chemicals of specific health concern in public water systems, established by the Vermont Dept. of Health.

Shading indicates exceedance of MCL, VHA and/or VAL

ECS 96093DWS.XLS

Figure 17.
Cumulative Gasoline Mass Recovery by AS/SVE System

Date	PID	Air Flow	Gasoline	Cumulative Recovered
	(ppm)	Rate	Recovery	Gasoline
		(scfm)	Rate	Mass
			(lb / day)	(lb)
01/29/99				0
01/30/99	456.0	77	11.473	80
02/07/99	352.0	77	8.856	151
03/11/99	248.0	77	6.240	157
03/17/99	40.0	75	3.576	179
03/18/99	40.0	75	0.980	180
03/31/99	0.2	25	0.002	180
04/15/99	9.0	22	0.035	180
05/28/99	4.9	134	0.177	188
07/16/99	41.1	134	1.007	237
07/20/99	33.3	111	1.208	239
08/03/99	33.3	111	1.208	255
08/11/99	31.9	115	1.204	265
08/23/99	79.4	89	1.855	287
09/10/99	58.8	70	1.345	289
09/21/99	58.8	70	1.345	303
10/07/99	1.3	105	0.859	317
10/20/99	5.4	112	0.119	319
11/19/99	5.8	93	0.188	324
12/03/99	2.5	88	0.123	326
12/14/99	4.2	93	0.099	327
01/19/00	1.6	104	0.093	331
02/22/00	4.4	104	0.102	334
03/08/00	7.1	104	0.136	336
06/30/00				326
07/17/00	1.3	123.2	0.118	328
07/26/00	0.0	109.0	0.108	328
08/14/00	4.5	93.4	0.109	333
09/19/00	1.9	88.0	0.108	338
02/18/04	325.0	16.4	1.736	340
03/08/04	4.6	60.0	2.056	379
03/16/04	5.4	60.0	0.098	380

Notes:

eq. 1.) Recovery Rate = (ppm volume) (1xe-6) (cfm) (1440 min/day) (86 lbs/mole) / (379 cf/moles of gas)

2.) 2/22/00 air flow rate estimated based on 1/19/00 and 3/09/00 data

ECS 96093rec.xls

LABORATORY REPORT FORMS

LABORATORY REPORT

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

ECS Marin

65 Millet Street

Richmond, VT 05477

Attn: Jaymi Cleland

PROJECT: Londonderry Citgo/960093

ORDER ID: 28388

RECEIVE DATE: March 17, 2004

REPORT DATE: April 20, 2004

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. Different groups of analyses may be reported under separate cover.

All samples were prepared and analyzed by requirements outlined in the referenced methods and within the specified holding times.

All instrumentation was calibrated with the appropriate frequency and verified by the requirements outlined in the referenced methods.

Blank contamination was not observed at levels affecting the analytical results.

Analytical method precision and accuracy was monitored by laboratory control standards which include matrix spike, duplicate and quality control analyses. These standards were determined to be within established laboratory method acceptance limits, unless otherwise noted.

Reviewed by,

Harry B. Locker, Ph.D. Laboratory Director

enclosures

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

LABORATORY REPORT

PROJECT: Londonderry Citgo/960093

DATE RECEIVED: March 17, 2004

REPORT DATE: April 20, 2004

ANAL. METHOD: SW 8021B

SAMPLER: BB/RK ANALYST: 420

Site: MW-7		Site: MW-S2		Site: SP-2	
Ref. Number: 227026		Ref. Number: 227029		Ref. Number: 227032	
Date Sampled: 3/16/04		Date Sampled: 3/16/04		Date Sampled: 3/16/04	
Time Sampled: 11:45 AM		Time Sampled: 1:10 PM		Time Sampled: 12:15 PM	
Analysis Date: 3/24/04		Analysis Date: 3/24/04		Analysis Date: 3/24/04	
<u>Parameter</u>	Results ug/L	<u>Parameter</u>	Results ug/L	<u>Parameter</u>	Results ug/L
MTBE	19.4	MTBE	16.5	MTBE	125.
Benzene	< 1.0	Benzene	< 1.0	Benzene	< 5.0
Toluene	< 1.0	Toluene	< 1.0	Toluene	10.2
Ethylbenzene	< 1.0	Ethylbenzene	< 1.0	Ethylbenzene	104.
Xylenes, Total	< 2.0	Xylenes, Total	< 2.0	Xylenes, Total	88.5
1,3,5 Trimethyl Benzene	< 1.0	1,3,5 Trimethyl Benzene	< 1.0	1,3,5 Trimethyl Benzene	25.1
1,2,4 Trimethyl Benzene	< 1.0	1,2,4 Trimethyl Benzene	< 1.0	1,2,4 Trimethyl Benzene	200.
Naphthalene	< 1.0	Naphthalene	< 1.0	Naphthalene	30.2
UIP's	0.	UIP's	0.	UIP's	> 10.
Surrogate 1	105.%	Surrogate 1	117.%	Surrogate 1	103.%
Site: MW-3		Site: MW-8		Site: Dup	
Ref. Number: 227027		Ref. Number: 227030		Ref. Number: 227033	
Date Sampled: 3/16/04		Date Sampled: 3/16/04		Date Sampled: 3/16/04	
Time Sampled: 11:50 AM		Time Sampled: 12:29 PM		Time Sampled: 12:30 PM	
Analysis Date: 3/24/04		Analysis Date: 3/25/04		Analysis Date: 3/24/04	
<u>Parameter</u>	Results ug/L	<u>Parameter</u>	Results ug/L	<u>Parameter</u>	Results ug/L
MTBE	1.5	MTBE	178.	MTBE	178.
Benzene	< 1.0	Benzene	12.6	Benzene	13.3
Toluene	< 1.0	Toluene	16.9	Toluene	15.8
Ethylbenzene	< 1.0	Ethylbenzene	217.	Ethylbenzene	203.
Xylenes, Total	< 2.0	Xylenes, Total	294.	Xylenes, Total	265.
1,3,5 Trimethyl Benzene	< 1.0	1,3,5 Trimethyl Benzene	184.	1,3,5 Trimethyl Benzene	169.
1,2,4 Trimethyl Benzene	< 1.0	1,2,4 Trimethyl Benzene	360.	1,2,4 Trimethyl Benzene	325.
Naphthalene	< 1.0	Naphthalene	77.2	Naphthalene	89.6
UIP's	0.	UIP's	> 10.	UIP's	> 10.
Surrogate 1	107.%	Surrogate 1	113.%	Surrogate 1	103.%
Site: MW-S3		Site: SP-1		Site: Trip	
Ref. Number: 227028		Ref. Number: 227031		Ref. Number: 227034	
Date Sampled: 3/16/04		Date Sampled: 3/16/04		Date Sampled: 3/16/04	
Time Sampled: 1:20 PM		Time Sampled: 11:15 AM		Time Sampled: 7:00 AM	
Analysis Date: 3/24/04		Analysis Date: 3/25/04		Analysis Date: 3/24/04	
Parameter	Results ug/L	<u>Parameter</u>	Results ug/L	<u>Parameter</u>	Results ug/L
MTBE	8.8	MTBE	258.	MTBE	< 1.0
Benzene	< 1.0	Benzene	105.	Benzene	< 1.0
Toluene	< 1.0	Toluene	13.3	Toluene	< 1.0
Ethylbenzene	< 1.0	Ethylbenzene	< 4.0	Ethylbenzene	< 1.0
Xylenes, Total	< 2.0	Xylenes, Total	< 8.0	Xylenes, Total	< 2.0
1,3,5 Trimethyl Benzene	< 1.0	1,3,5 Trimethyl Benzene	< 4.0	1,3,5 Trimethyl Benzene	< 1.0
1,2,4 Trimethyl Benzene	< 1.0	1,2,4 Trimethyl Benzene	7.5	1,2,4 Trimethyl Benzene	< 1.0
Naphthalene	< 1.0	Naphthalene	< 4.0	Naphthalene	< 1.0
UIP's	0.	UIP's	> 10.	UIP's	0.
Surrogate 1	106.%	Surrogate 1	100.%	Surrogate 1	108.%

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

LABORATORY REPORT

PROJECT: Londonderry Citgo/960093

DATE RECEIVED: March 17, 2004

REPORT DATE: April 20, 2004

ANAL. METHOD: SW 8021B

SAMPLER: BB/RK ANALYST: 420

Site: Site: Platt Rowley Junker Ref. Number: 227035 Ref. Number: 227038 Ref. Number: 227041 Date Sampled: 3/16/04 Date Sampled: 3/16/04 Date Sampled: 3/16/04 Time Sampled: 12:00 PM Time Sampled: 10:55 AM Time Sampled: 9:25 AM Analysis Date: 3/24/04 Analysis Date: 3/25/04 Analysis Date: 3/25/04 Results ug/L **Parameter** Results ug/L **Parameter** Results ug/L <u>Parameter</u> MTBE < 1.0 MTBE < 1.0 MTBE < 1.0 Benzene < 1.0 Benzene < 1.0 Benzene < 1.0 Toluene < 1.0 Toluene < 1.0 Toluene < 1.0 Ethylbenzene Ethylbenzene < 1.0 Ethylbenzene < 1.0< 1.0< 2.0Xylenes, Total Xylenes, Total < 2.0Xylenes, Total < 2.01,3,5 Trimethyl Benzene < 1.0 1,3,5 Trimethyl Benzene < 1.0 1,3,5 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 UIP's UIP's UIP's 0. 0. 0. Surrogate 1 107.% Surrogate 1 109.% Surrogate 1 112.% 2nd Cong. Church Site: Site: Rogers Site: Gordon 227036 Ref. Number: Ref. Number: 227039 Ref. Number: 227042 Date Sampled: 3/16/04 Date Sampled: 3/16/04 Date Sampled: 3/16/04 10:17 AM 11:10 AM 11:46 AM Time Sampled: Time Sampled: Time Sampled: Analysis Date: 3/25/04 Analysis Date: 3/25/04 Analysis Date: 3/25/04 Results ug/L Results ug/L Parameter Parameter Results ug/L Parameter MTBE < 1.0 MTBE 22.1 MTBE < 1.0 < 1.0 Benzene < 1.0Benzene < 1.0Benzene Toluene < 1.0 Toluene < 1.0 Toluene < 1.0 Ethylbenzene Ethylbenzene < 1.0 Ethylbenzene < 1.0 < 1.0 Xylenes, Total < 2.0 < 2.0 Xylenes, Total < 2.0Xylenes, Total 1,3,5 Trimethyl Benzene < 1.0 1,3,5 Trimethyl Benzene < 1.0 1,3,5 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 UIP's UIP's UIP's 0. 0 0. 108.% 107.% Surrogate 1 112.% Surrogate 1 Surrogate 1 Site: Church Store Site: Jelly Site: Abbott 227043 Ref. Number: 227037 Ref. Number: 227040 Ref. Number: Date Sampled: 3/16/04 Date Sampled: 3/16/04 Date Sampled: 3/16/04 10:07 AM 9:55 AM Time Sampled: Time Sampled: 9:37 AM Time Sampled: Analysis Date: 3/25/04 Analysis Date: 3/25/04 Analysis Date: 3/25/04 Results ug/L **Parameter** Results ug/L Parameter Results ug/L Parameter MTBE < 1.0 MTBE < 1.0 MTBE < 1.0 < 1.0 Benzene < 1.0 Benzene < 1.0 Benzene < 1.0 Toluene < 1.0 Toluene Toluene < 1.0 Ethylbenzene < 1.0 Ethylbenzene < 1.0 Ethylbenzene < 1.0 Xylenes, Total < 2.0Xylenes, Total < 2.0 Xylenes, Total < 2.01,3,5 Trimethyl Benzene 1,3,5 Trimethyl Benzene 1,3,5 Trimethyl Benzene < 1.0 < 1.0< 1.01,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 Naphthalene < 1.0 UIP's UIP's UIP's 0. 0. 0. 108.% Surrogate 1 Surrogate 1 111.% Surrogate 1 112.%

108.%

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

LABORATORY REPORT

PROJECT: Londonderry Citgo/960093 DATE RECEIVED: March 17, 2004 REPORT DATE: April 20, 2004

CEI OKI BITTE. 71pm 20, 20

Site: Shopping Center Syste	m Eff
Ref. Number: 227044	
Date Sampled: 3/16/04	
Time Sampled: 12:45 PM	
Analysis Date: 3/25/04	
<u>Parameter</u>	Results ug/L
MTBE	16.9
Benzene	< 1.0
Toluene	< 1.0
Ethylbenzene	< 1.0
Xylenes, Total	< 2.0
1,3,5 Trimethyl Benzene	< 1.0
1,2,4 Trimethyl Benzene	< 1.0
Naphthalene	< 1.0
UIP's	0.

Surrogate 1

Shopping Center System Mid Ref. Number: 227045 3/16/04 Date Sampled: 12:50 PM Time Sampled: Analysis Date: 3/25/04 Results ug/L Parameter MTBE 28.9 Benzene < 1.0 Toluene < 1.0 Ethylbenzene < 1.0 Xylenes, Total < 2.0 1,3,5 Trimethyl Benzene < 1.0 1,2,4 Trimethyl Benzene < 1.0 Naphthalene < 1.0 UIP's 0. 105.% Surrogate 1

ANAL. METHOD: SW 8021B

SAMPLER: BB/RK ANALYST: 420

= ENDYNE, INC. 160 James Brown Drive

CHAIN-OF-CUSTODY-RECORD

Williston, Vermont 05495

IR 2 58511

(802	2) 879-4333				Spec	ial Repor	ting In	struc	ctions: TDF					100							
Project Nan	ne: VT	70	0-0093-	20-	09	Re	portin	g A	ddress: 73 m.	(lea	tst.		В	illing Address:	_						
London	Lours	1:	tad						Richa	104	11.	17.			2	me					
Endyne Ord	der ID:		130	T	1-0	Co	mpan	y: <i>E</i>	CS		1		S	ampler Name:Bria	nB	schma	nn/	tande	UK.		
(Lab Use O	only)	35	388	H	-] -S	Co	ntact	Nan	ne/Phone # 8009	720	26a	95	P	hone #: 800570	Xel	205					
Ref # (Lab Use Only)		Sam	ple Identification			Matrix	G R A B	C O M P		2.2121	mple C	Containers Type/Size	20.21表	ld Results/Remarks		Analysis Required		imple ervation	Rush		
	MW -	68	·B. 7 ·	7 .		Philipping State		w	مر		3116/04 1145	Z		VOA				19	HU		
	mw-	3					1		1 1150	1)				1					
	mw-	100000							1320												
	mw-						\parallel		130												
	mw-	10000					\parallel		1229												
	SP-1						#		1115												
	SP- 2						\parallel		1215										1.		
	Dup	1,					#		1230	1	\neg										
	Trip						#		, 0700	1		1/				1	Τ.	/			
	Row1	el	۸ ،		,	1	V		V 1200	V		4			0	/	1				
Relinquished by			.3(b)	/Time		Rec	eived b	y:	(A)		1	Date/Time	Rece	ived by:		3/1	7/2	Pate/Tim	e		
4.7	50			700	0	6	P):	3/18/04	0	750	DAM		& cone	2	911	1	:00			
Now Yeals	State Design	4. V				Re	Palles	ted	Analyses	,				A COURT		-	LAB USE	ONLY			
New York S	- 1	Т		П	Total		10	_	Sulfate	21	1664	TPH/FOG	26	8270 PAH	\neg	ivery: DU	5	101	,		
1 pH 2 Chloride		-	TKN Total P	11	TSS	Solids	1	-	Coliform (Specify)	22	-	GRO	27	PP13 Metals	Ten	np: 1	Comm	-6°(
3 Ammonia		-	Total Diss. P	13	TDS		11	+	COD	23	-	DRO	28	RCRA8 Metals	1						
4 Nitrite N		_	BOD	14	Turbic	lity	1	-	8021B	24	-	/8260B	29		1						
5 Nitrate N		-	Alkalinity	15		nctivity	2	+	8010/8020	25	8270	B/N or Acid	30		7						
		_		, B, I	Ba, B	e, Ca, C	Cd, Co		r, Cu, Fe, Hg, K,	Mg,	Mn, I	Mo, Na, Ni,	Pb, Sb,	Se, TI, V, Zn							
			iles, semi-volat				_														
34 Other	-F). (, 1	,		, ,						1						
THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW																					

= ENDYNE, INC. 160 James Brown Drive

CHAIN-OF-CUSTODY-RECORD

	2) 879-433		U5 4 95		Spe	cial Repo	rting In	struc	tions: PD+							021	2		
Project Nar Lovidov Endyne Or (Lab Use C	der ID:	10	8385	•	·)	O Co	ompan	g Ac	Idress: 73W Rid	ima	ond	1 VT-		Sampler Name: By .	can Bi	chn	an/	'Larde	ellXe
		$\stackrel{\sim}{=}$	0000)		s Ju	ym	· C(4 cm 2/8	005	5 20	60les		Phone #: 80057	206	OL. S	_		
Ref # (Lab Use Only)	Sample Identification					Matrix	G R A B	COMP	Date/Time	Sa	Townson I	Containers Type/Size	Fi	eld Results/Remarks	Analysis Required		Sample Preservation		Rush
	ZdCa	Zd Cong. Chruch.					20		3/6/04 10/7	2					0/9		HCI		
			Stor						1 1007	١,							1		
	Jun	ke	~						1655										
*****	Rock	er'	5						1110										
	Jell								0937										
	Plat	¥_							0925	-									
	Gorda								1146										
	Abb		4		,				0955	1									
	Shopp	eun (nsc	off Shopping				1		V 1245						-)—	+		
Relinquished by		2	Date 3//	Time 6/06	1	Rec	eived by)	3/18/04		9	Date/Time 52AU		eived by:	i ce		1:0	Date/Tim	ne
New York S	State Proj	ect:	Yes No _	×		Re	equest	ted	Analyses						Deliver	17	AB USE O		
1 pH		6	TKN	11	Total	Solids	16	-	ulfate	21	1664	4 TPH/FOG	26	8270 PAH	Temp:	11	-3	3.600	
2 Chloride		7	Total P	12	TSS		17	C	coliform (Specify)	22	8015	5 GRO	27	PP13 Metals			Comme		
3 Ammonia	a N	8	Total Diss. P	13	TDS		18		OD	23	8015	8015 DRO		RCRA8 Metals					
4 Nitrite N			BOD	14	Turbi		13	4	021B	24		0/8260B	29		- 1				
5 Nitrate N			Alkalinity	15		activity	20		010/8020	25	_	0 B/N or Acid	30		-				
								_	Cu, Fe, Hg, K,	Mg,	Mn,	Mo, Na, Ni, I	b, Sb	Se, TI, V, Zn	1 2 2				
	Specify:	vola	tiles, semi-volat	iles,	metal	s, pestic	ides, h	erbi	cides) 33										
34 Other																			1

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

LABORATORY REPORT

ECS Marin

65 Millet Street

Richmond, VT 05477

Attn: Jaymi Cleland

PROJECT: Londonderry Citgo/960093

ORDER ID: 28393

RECEIVE DATE: March 17, 2004

REPORT DATE: April 20, 2004

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. Different groups of analyses may be reported under separate cover.

All samples were prepared and analyzed by requirements outlined in the referenced methods and within the specified holding times.

All instrumentation was calibrated with the appropriate frequency and verified by the requirements outlined in the referenced methods.

Blank contamination was not observed at levels affecting the analytical results.

Analytical method precision and accuracy was monitored by laboratory control standards which include matrix spike, duplicate and quality control analyses. These standards were determined to be within established laboratory method acceptance limits, unless otherwise noted.

Reviewed by,

Harry B. Locker, Ph.D. Laboratory Director

enclosures

Laboratory Services

160 James Brown Drive Williston, Vermont 05495 (802) 879-4333 FAX 879-7103

LABORATORY REPORT

CLIENT: ECS Marin

PROJECT: Londonderry Citgo/960093

REPORT DATE: April 20, 2004

ORDER ID: 28393

DATE RECEIVED: March 17, 2004

SAMPLER: BB/RK

ANALYST: 420

Ref. Number: 227057	Site: System Effluent		Date Sampled: March 16, 2004	Time: 2:55 PM
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	Method	Analysis Date
MTBE	27.7	ug/L	SW 8021B	3/23/04
Benzene	< 1.0	ug/L	SW 8021B	3/23/04
Toluene	< 1.0	ug/L	SW 8021B	3/23/04
Ethylbenzene	< 1.0	ug/L	SW 8021B	3/23/04
Xylenes, Total	< 2.0	ug/L	SW 8021B	3/23/04
1,3,5 Trimethyl Benzene	< 1.0	ug/L	SW 8021B	3/23/04
1,2,4 Trimethyl Benzene	< 1.0	ug/L	SW 8021B	3/23/04
Naphthalene	< 1.0	ug/L	SW 8021B	3/23/04
UIP's	0.		SW 8021B	3/23/04
Surrogate 1	81.%	%	SW 8021B	3/23/04

≡ ENDYNE, INC. 160 James Brown Drive

CHAIN-OF-CUSTODY-RECORD

58794

Williston, Vermont 05495
(802) 879-4333

Special Reporting Instructions:

10	oject Name	derr	`Y_	W.		L -				ddress: 73			etst. and, VI		H	Billing Address:	SAME	/12	· lak
1	ndyne Orde ab Use On		6	28393		-		mpan ntact	Y:E0 Nam	ne/Phone #:	80	00 5	TOLOU	5	P	ampler Name: Br i'ca hone #:		a un Ranc	100/Ce
(Lat	Ref# Use Only)		Sa	mple Identification			Matrix	G R A B	S M P	Date/T	lime :	Sar	nple Container			eld Results/Remarks	Analysis Required	Sample Preservation	Rush
		5 y 4	leu	n eff	ω	*		3/16/04	255	1			2 27.50.7		19	Her			
						1													
						\downarrow													
1	nquished by:	Bed ate Proj	ect:			700	, (ived by)	3/17/1 Analyses	04	,	Date/Time		Rece	sived by:		AB USE ONLY	ne l
1	pН		6	TKN	11	Total		16	_	ulfate		21	1664 TPH/FOC	1	26	8270 PAH	Delivery:	3.600	
2	Chloride		7	Total P	12	TSS		17	C	Coliform (Specif	fy)	22	8015 GRO		27	PP13 Metals		Comment:	
3	Ammonia N	1	8	Total Diss. P	13	TDS		18	-	OD		23	8015 DRO		28	RCRA8 Metals			
4	Nitrite N		9	BOD	14	Turbi	<u> </u>	19	+	021B		24	8260/8260B		29				
5	Nitrate N			Alkalinity	15		uctivity	20	_	010/8020		25	8270 B/N or A		30	<u> </u>			
31	-			Diss.) Ag, Al, As							g, K,	Mg,	Mn, Mo, Na,	Ni, P	o, Sb,	Se, TI, V, Zn	107 DOM: 10		
32	TCLP (Sp	ecify:	vola	tiles, semi-volat	iles,	metal	s, pesticio	des, h	erbi	cides)	33								
34	Other																		