

10 May 2006 File No. VT960093 (08-205686.00)

Mr. Gary Thurston Rice Oil Company, Inc. P.O. Box 1497 34 Montaque City Road Greenfield, Massachusetts 01301

Re: Spring 2006 Quarterly Sampling Letter Report

Londonderry Citgo, Londonderry, Vermont

(VT DEC Site No. 96-2015)

Dear Mr. Thurston:

Enclosed are the quarterly results for the Londonderry Citgo spring sampling event conducted by Environmental Compliance Services, Inc. (ECS) on 21 March 2006. The event included sampling of eleven onsite monitoring wells, the Main Supply Well treatment system in the basement of the Mountain Marketplace Shopping Center, the Thorne-Thomsen residential treatment system, the Rogers' residential supply well, and ten neighboring residential supply wells. Also summarized in this letter report are the subsurface investigation and monitoring well installation activities that were performed by ECS prior to the quarterly sampling event. The services outlined were conducted in accordance with the work plan and cost estimate dated 26 January 2006.

ECS conducted seven soil borings and installed four monitoring wells on 14 March 2006. Three soil borings, two finished with PVC monitoring wells, served to replace previously destroyed or damaged monitoring wells. Four additional soil borings, two finished with PVC monitoring wells, were installed to identify areas of residual contamination, assess the sources of continued bedrock aquifer methyl tert butyl ether (MTBE) contamination, and begin to reevaluate the remedial progress at the site.

Findings:

- MTBE was detected in the Main Supply Well of the Mountain Marketplace Shopping Center at concentrations observed one year ago that again exceed Vermont Groundwater Enforcement Standards (VGES).
- MTBE was detected in the sample collected from the Thorne-Thomsen well at concentrations below the VGES. No petroleum related volatile organic compounds (VOCs) were detected in the Thorne-Thomsen residence treatment system mid or effluent sample indicating that the system is effectively removing the contaminants.
- MTBE continues to be detected in the Roger's supply well, though concentrations appear to be exhibiting a decreasing trend since a peak concentration was observed in March 2004.

Page 2

- MTBE was detected in the sample collected from the Platte supply well for the first time, however repeat samples were non-detect.
- Petroleum related VOCs were detected in seven of the eleven monitoring wells during the 21 March 2006 sampling event.
- MTBE concentrations were above VGES in both MW-1R and MW-S3 at 121.0 μg/L and 298.0 μg/L respectively. MTBE was also detected at levels below VGES in MW-6, MW-8, MW-10, MW-11, and MW-S2.
- One or more of Benzene, Ethylbenzene, Toluene, and Xylene (BTEX) compounds were detected in monitoring wells MW-1R, MW-8, MW-10, and MW-11. Benzene exceeded the VGES of 5 μg/L in both MW-1R and MW-10 with concentrations of 176.0 μg/L and 32.4 μg/L respectively.

SUBSURFACE INVESTIGATION AND MONITORING WELL INSTALLATION

On 14 March 2006, ECS's drilling operation, under the supervision of the project scientist, utilized a Geoprobe direct-push rig to conduct seven soil borings and install four monitoring wells (see Figure 2 - Site Plan). Soil borings were advanced to a depth sufficient to assess soils at and below the water table, until contamination levels decreased, or until refusal at presumed bedrock. Soils were screened continuously for VOCs utilizing a portable photoionization detector (PID).

MW-1 and MW-2 were destroyed and were replaced with monitoring wells MW-1R and MW-2R. MW-10 and MW-11 were installed within the historically outlined plume to better identify the extents of contamination. MW-1R was installed up gradient of the former and present tank locations and no evidence of contamination was observed in soils logged during drilling activities. MW-2R and MW-10 were advanced in the center of the historical plume and confirmed the presence of residual contamination not remediated during the operation of the air sparge/soil vapor extraction system. VOC readings peaked at 13.8 parts per million (ppm) in MW-2R and at 212.5 ppm in MW-10. MW-11 was installed down gradient of the Londonderry Citgo facility in what has historically been documented as the path by which contamination in the overburden aquifer is migrating. The peak soil headspace PID reading at this location was 2.2 ppm.

Three additional soil borings were also advanced to better delineate the contaminate plume. SB-9, performed to the east of the water and sewer line and adjacent to MW-4, met refusal at bedrock at a depth of three feet with no evidence of contamination or groundwater above that depth. SB-4R was advanced immediately to the south of MW-4 to determine if a greater depth could be reached to insure a more consistent groundwater sampling point. Bedrock refusal was met at a similar depth as MW-4, thus no replacement well was installed. SB-12 was conducted down gradient of the current UST system to eliminate the possibility of a new source of contamination originating from the tanks. No evidence of contamination was observed in soils logged from this boring.

Page 3

SAMPLING RESULTS – SUPPLY WELLS

VOCs were detected in the influent side sample collected from the Main Supply Well treatment system of the Mountain Marketplace Shopping Center. MTBE was detected in the treatment system influent sample (Main Supply Inf) at a concentration of 62.6 micrograms per liter (μ g/L). The MTBE concentration of 62.6 μ g/L is consistent with levels observed for the past two years, however it has returned to levels exceeding VGES for the first time since the June 2005 sampling event. Analytical results are attached and also summarized in Table 1.

MTBE was detected in the Thorne-Thomsen residence treatment system influent sample (Thorne Thomsen Inf) at 33.2 μ g/L. The MTBE concentration of 33.2 μ g/L represents a 3.5 μ g/L decrease from the previous sampling event and continues a moderate decreasing trend. No VOCs were detected in samples collected following the first carbon filter (Thorne Thomsen Mid) or the second carbon filter (Thorne Thomsen Eff) indicating that the system is effectively removing the contaminants. Analytical results are attached and also summarized in Table 1.

MTBE was detected in the Rogers and Platte residential supply wells samples at 1.9 μ g/L and 2.3 μ g/L during the March 2006 quarterly sampling event. MTBE concentrations at both residences are below water quality guidelines of 40 μ g/L and the Rogers supply well continues to exhibit a decreasing trend. The Platte residence sample contained concentrations of MTBE for the first time and repeat sampling revealed no VOC contamination. Analytical results are attached and also summarized in Table 3.

All other residential supply wells were non-detect and the owners have been notified of this by letter. The Galpin Residence and the former Post Office were unoccupied at the time of sampling. Attempts to contact the former owners were unsuccessful and no samples were collected. The location of each residence is shown on Figure

Prior to all sample collections, the water was allowed to run for approximately 15 minutes to purge water from the wells and pressure tanks, and facilitate communication with the bedrock aquifer. The supply well samples were transported under chain of custody in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts, where they were analyzed for the possible presence of volatile petroleum compounds by EPA Method 524.2 for the Mountain Marketplace Main Supply Well and by EPA Method 8021b for remainder of the residential supply wells and treatment systems.

SAMPLING RESULTS - SURFICIAL AQUIFER MONITORING WELLS

Groundwater flow continues to flow in a southerly direction towards the West River (Fig.3, Table 2). A bedrock outcrop observed east of the Londonderry Citgo facility, bedrock encountered at a depth of approximately three feet in SB-9, and the lack of overburden groundwater at SB-9 indicates that there is no easterly component of overburden groundwater flow. Groundwater contouring and contaminant distribution does indicate the possibility that undulations in the bedrock surface and water and sewer lines leading to the plaza may be influencing groundwater movement and are potentially acting as a preferential pathway for MTBE migration to down gradient monitoring wells.

Page 4

VOCs were detected in seven of the eleven monitoring wells during the 21 March 2006 sampling event. MTBE concentrations were above VGES in both MW-1R and MW-S3 at 121.0 μ g/L and 298.0 μ g/L respectively (Fig.4b). Up gradient well MW-1R was resampled on 17 April 2006 to confirm the highest site wide MTBE concentration. MTBE was detected at a lower concentration (72.0 μ g/L) in the repeat sample along with other gasoline VOCs. There are no other known sources of gasoline contamination up gradient of the site. MTBE was also detected at levels below VGES in MW-6, MW-8, MW-10, MW-11, and MW-S2. One or more of Benzene, Ethylbenzene, Toluene, and Xylene (BTEX) compounds were detected in monitoring wells MW-1R, MW-8, MW-10, and MW-11 (Fig. 4a). Benzene exceeded the VGES of 5 μ g/L in both MW-1R and MW-10 with concentrations of 176.0 μ g/L and 32.4 μ g/L respectively.

Dissolved oxygen levels were recorded in seven of the monitoring wells in the immediate vicinity of the Londonderry Citgo facility. The data, ranging from 1.62 mg/L to 5.59 mg/L, will be tabulated with data collected during future scheduled monitoring events to assess oxygen deficiency as an inhibitor to natural attenuation.

Analytical results from the quality assurance and quality control (QA/QC) samples indicate that adequate QA/QC was maintained during sample collection and analysis. No contaminants were detected in the trip blank. The blind field duplicate sample results for monitoring well MW-10 (designated as Duplicate) were outside of the EPA recommended relative percent difference for field duplicate samples of 30 percent for the Xylene and 1,3,5-Trimethylbenzene compounds. However, given the relatively low concentrations and small difference between concentrations, we consider the QA/QC to be adequate.

Recommendations

Based on the above findings, ECS recommends the following:

- Continue with the monitoring plan outlined in the work plan dated 26 January 2006 for the impacted surficial groundwater aquifer and drinking water supply wells;
- Dissolved oxygen levels should continue to be measured to complete baseline data analysis and continue to assess potential remedial alternatives;
- Additional samples should be collected from MW-1R, MW-2R, MW-8, and MW-10 during
 each quarterly event in order to establish a set of baseline data to assess areas of contamination
 revealed during this sampling event. An estimate of out of scope costs will be provided for
 approval prior to the June 2006 site visit.

Page 5

Please contact me if you have any questions regarding this report or the enclosed analytical results. Upon your approval, this report will be forwarded to the VT DEC.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Michael P. Doran Project Scientist

96093Apr2006qtrlyRpt

Attachments: Table 1. Treatment System and Supply Well VOC Concentrations

Table 2. Groundwater Elevation Calculations Table 3. Drinking Water Analytical Results

Figure 1. Site Location Map

Figure 1A. Residential Supply Well Location Map

Figure 2. Site Plan

Figure 3. Groundwater Elevation Map

Figure 4a. Contaminant Distribution Map w/ BTEX Isoconcentrations Figure 4b. Contaminant Distribution Map w/ MTBE Isoconcentrations

Figure 5-16. VOC Concentration Tables and Graphs

Laboratory Reports

Cc: Mr. Tim Cropley, VT DEC

Mr. Robert Waite, Londonderry Ventures

Mr. Roger Thorn-Thomsen

ATTACHMENTS

Table 1.

Treatment System and Supply Well VOC Concentrations

Monitoring Date: 7 December 2005

Monitoring Date: 21 March 2006

Supply Well	Total BTEX	MTBE	Benzene	Toluene	Benzene	Xylenes	1,3,5-11116	1,2,4-TMB	Naphthalene
Shopping Center Main - Influent	ND	62.6	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
Shopping Center Main - Mid B	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
Shopping Center Main - Mid E	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
Shopping Center Main - Effluent	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
Thorne-Thomsen - Influent	ND	33.2	ND<1	ND<1	ND<1	ND<2.0	ND<1	ND<1	ND<1
Thorne-Thomsen - Mid	ND	ND<1	ND<1	ND<1	ND<1	ND<2.0	ND<1	ND<1	ND<1
Thorne-Thomsen - Effluent	ND	ND<1	ND<1	ND<1	ND<1	ND<2.0	ND<1	ND<1	ND<1
Roger's	ND<1.0	1.9	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
	-			QA/QC					
Trip Blank	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
MW-10	41.4	20.8	32.4	2.4	ND<1.0	6.6	2.4	ND<1.0	ND<1.0
Duplicate (MW-10)	36.1	26.4	31.0	2.0	ND<1.0	4.1	4.3	1.0	ND<1.0
% Difference	12.8	26.9	4.3	16.7		37.9	79.2	0.0	
Trip Blank	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
MCL			5	1,000	700	10,000			
VHA		40					5	4	20
VAL			1						

Notes:

Results given in micrograms per liter (µg/L).

NS - Not Sampled

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

TMB - Trimethyl Benzene

MTBE - Methyl Tertiary butyl ether

MCL-Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water.

VHA-Vermont Health Advisories- guidelines for concentrations of chemicals in drinking water that do not have MCLs

VAL-Vermont Action Levels for eight chemicals of specific health concern in public water systems, established by the Vermont Dept. of Health.

Shading indicates exceedance of MCL, VHA and/or VAL

Shopping Center samples analyzed by EPA Method 524.2 /Thorne Thompson and Rogers analyzed by 8021B

TABLE 2. GROUNDWATER ELEVATION CALCULATIONS

Londonderry Citgo Londonderry, Vermont

Monitoring Date: 21 March 2006

Well I. D.	Top of Casing Elevation *	Depth to Water (feet, TOC)	Ground Water Elevation
MW-1R	100.53	5.23	95.30
MW-2R	99.28	5.20	94.08
MW-3	98.69	4.91	93.78
MW-4	98.32	4.01	94.31
MW-5	98.48	NG	NG
MW-6	95.13	8.91	86.22
MW-7	98.40	8.39	90.01
MW-8	99.66	5.65	94.01
MW-S2	94.89	8.75	86.14
MW-S3	94.41	8.19	86.22
MW-10	99.60	5.49	94.11
MW-11	98.70	6.01	92.69

^{*}Top of casing (TOC) and ground water elevations are relative to an arbitrary site datum of 100.00 feet.

NG = Not Gauged

ECS 205686gwe.xls

TABLE 3.

Drinking-Water Analytical Results Londonderry Citgo Londonderry Center, Vermont Monitoring Date: 29 March 2005

Supply Well	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	1,3,5 -TMB	1,3,5 -TMB	Naphthalene	Tert-amyl- Methyl- Ether
Shopping Center Main										
- system influent	62.6	ND<0.5	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	9.5
- system mid B	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
- system mid D	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	NA
- system effluent	ND	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05	ND<.05
Thorne-Thomsen - system influent	33.2	ND<1	ND<1	ND<1	ND<1	ND<1.0	ND<1	ND<1	ND<1	NA
- system mid	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1.0	ND<1	ND<1	ND<1	NA
- system effluent	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1.0	ND<1	ND<1	ND<1	NA
Rogers	1.9	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND	BRL<1	BRL<1	BRL<1	NS
Center Service (SUNOCO)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Merrill	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Jelly's (Mobil)	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Second Congregational Church	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Kroos House	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Church Store	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Breznick	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Rowley	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Junker	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Galpin	NS	NS	NS	NS	NS	NS	ND <1	ND <1	ND <1	NA
*P.O. Building	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Allen	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Garden Restaurant (Platt)	ND<1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Abbott	ND<1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
Gordon	ND <1	ND < 1	ND <1	ND <1	ND <2	ND	ND <1	ND <1	ND <1	NA
MCL		5	1,000	700	10,000					
VHA	40						5	4	20	
VAL		1								

Notes:

Results given in parts per billion (ppb).

Thorne-Thomsen infl.,mid, eff. were analyzed by EPA Method 524.2. All other samples were analyzed by EPA Method 8021B

NA - Not analyzed for this parameter.

NS - Not sampled this event.

ND - None detected at indicated detection limit.

All samples collected by ECS and analyzed by Spectrum Analytical, Inc.

MCL - Enforceable U.S. EPA Maximum Contaminant Levels for chemicals of concern in drinking water.

VHA - Vermont Health Advisories - guidelines for concentrations of chemicals in drinking water that do not have MCLs.

VAL - Vermont Action Levels for eight chemicals of specific health concern in public water systems, established by the Vermont Dept. of Health.

* - Building unoccupied.

ecs reswells.xls

FIGURE 5. MW-1R VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total	MTBE	Benzene	Toluene	Ethyl	Xylenes	1,3,5	1,2,4	Naph-
Date	BTEX	IVIIDE	Delizelle	roluerie	benzene	Ayleries	TMB	TMB	thalene
03/21/06	524	298.0	176.0	170.0	9.0	169.4	ND<5.0	13.7	ND<5.0
04/17/06	149	72.0	66.6	34.8	ND<5.0	47.4	ND<5.0	6.8	ND<5.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

03/29/05 samples collected by ECS and analyzed by Spectrum Analytical, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 6. MW-2R VOC Concentrations

Londonderry Citgo Londonderry, VT

VGES		40	5	1,000	700	10,000	4	5	20
04/17/06	ND	1.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/21/06	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

03/29/05 samples collected by ECS and analyzed by Spectrum Analytical, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 7. MW-3 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	27.9	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/19/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
12/13/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	ND	1.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/25/01	ND	1.83	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/26/02	3.2	798	3.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	106	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	ND	118	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
09/25/03	ND	80.2	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/16/04	ND	1.5	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
09/14/04	ND	44.6	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/29/05	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/02/05	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/21/06	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

03/29/05 samples collected by ECS and analyzed by Spectrum Analytical, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 8. MW-4 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
05/21/97	ND	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/13/98	ND	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
06/23/98	ND	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/21/06	ND	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
VGES		40	5	1,000	700	10,000

Notes: Results given in micrograms per liter (µg/L).

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

All samples collected by Marin and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

* Not sampled 11/14/96, 8/22/97, 11/21/97, 9/29/98 OR 12/22/98; monitoring well was dry.

Well was destroyed in 1998.

Marin Environmental, Inc. 205686BTX.xls

FIGURE 9. MW-5 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/19/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
12/13/00	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/25/01	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/26/02	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/05/02	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/27/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/25/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/16/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/14/04	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/29/05	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/02/05	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/21/06	NS	NS	NS	NS	NS	NS	NS	NS	NS
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

^{*} Well installed 14 May 1997

 $^{^{\}star\star}$ MW-5 Not sampled due to change in scope of work. Added back to sampling plan on

FIGURE 10. MW-6 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	10.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	ND	39.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/19/00	ND	16.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
12/13/00	ND	31.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	ND	35.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	1.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/25/03	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/16/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/14/04	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
09/02/05	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
03/21/06	ND	2.7	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

* Well installed 14 May 1997

** MW-6 not located.

NS- Unable to locate the well due to excessive snow stock piled from plowing, therefore not sampl

FIGURE 11. MW-7 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	84.3	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
06/12/00	ND	10.2	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
09/19/00	ND	5.1	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
12/13/00	ND	22.3	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND<1.0
03/13/01	2.4	85.5	ND<1.0	ND<1.0	ND<1.0	2.4	ND<1.0	ND<1.0	ND<1.0
03/26/02	ND	10.4	ND<1.0	ND<1.0	ND<1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0
09/05/02	ND	4.9	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/27/03	ND	77.5	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
09/25/03	ND	1.72	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/16/04	ND	19.4	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
09/14/04	ND	1.3	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/29/05	ND	16.3	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
09/02/05	ND	1.6	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
03/21/06	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND <2.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

* Well installed 23 April 1998

^{**}MW-7 not sampled because it was damaged.

FIGURE 12. MW-8 **VOC Concentrations**

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/08/00	ND	1.2	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
06/12/00	188.2	53.1	10.2	7.9	31.1	139	37.9	46.8	10.9
09/19/00	625.8	24.4	10.8	117	129	369	31.5	103	19.0
12/13/00	ND	24.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/13/01	44.5	264	5.9	ND<2.0	18.6	20.0	10.6	12.3	4.2
09/25/01	295.4	68.1	4.3	15.1	116	160	32.5	92.1	18.8
03/26/02	1,294.3	1,080	11.2	35.1	178	1,070	180	422	146
09/05/02	2,514.2	814	20.2	206.0	588	1,700	222	696	153
03/27/03	55.2	38.4	1.0	1.7	5.9	46.6	8.0	16.2	4.1
09/25/03	3,362.0	556	ND<25.0	116	824	2,422	581	1,690	376
03/16/04	540.5	178	12.6	16.9	217	294	184	360	77.2
09/14/04	838.4	140	ND<10.0	13.4	178	647	160	575	93.2
03/29/05	171.7	213	40.0	ND<5.0	35.6	96.1	87.4	299	29.0
09/02/05	11.0	2.4	1.2	ND<1.0	2.1	7.7	1.8	8.5	1.4
03/21/06	52.1	22.8	ND<5	ND<5.0	17.5	34.6	51.8	227.0	27.5
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limit.

TBQ - Trace below quantitation limit indicated.

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards * Well installed 23 April 1998

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 13. MW-10 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total	MTBE	Benzene	Toluene	Ethyl	Xylenes	1,3,5	1,2,4	Naph-
Date	BTEX	MIDE	Delizelle	Toluelle	benzene	Aylenes	TMB	TMB	thalene
03/21/06	41.4	20.8	32.4	2.4	ND<1.0	6.6	2.4	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

03/29/05 samples collected by ECS and analyzed by Spectrum Analytical, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 14. MW-11 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph- thalene
03/21/06	2.8	6.0	2.8	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND - None detected at indicated detection limit

TBQ- Trace below quantitation limit indicated.

03/29/05 samples collected by ECS and analyzed by Spectrum Analytical, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

FIGURE 15. MW-S2 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naph-thalene
03/08/00	ND	76.8	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
06/12/00	ND	22.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
09/19/00	ND	51.3	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
12/13/00	ND	40.7	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/13/01	ND	43.9	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
09/25/01	ND	29.6	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/26/02	ND	15.6	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
09/05/02	ND	11.6	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/27/03	ND	41.6	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
09/25/03	ND	17.0	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
03/16/04	ND	16.5	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
09/14/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/29/05	ND	49.9	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
09/02/05	ND	29.1	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
03/21/06	ND	1.0	ND <1.0	ND <1.0	ND <1.0	ND <2.0	ND <1.0	ND <1.0	ND <1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limit.

TBQ - Trace below quantitaion limit indicated

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.

Unable to be located during Dec '99 site visit

FIGURE 16. MW-S3 VOC Concentrations

Londonderry Citgo Londonderry, VT

Date	Total BTEX	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	1,3,5 TMB	1,2,4 TMB	Naphthalene
03/08/00	ND	79.4	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
06/12/00	ND	15.7	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
09/19/00	ND	17.9	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
12/13/00	ND	21.8	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
03/13/01	ND	23.7	ND <1.0	ND <1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
09/25/01	ND	10.9	ND <1.0	ND <1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0
03/26/02	4.1	14.7	ND <1.0	ND <1.0	1.3	2.8	ND<1.0	ND<1.0	ND <1.0
09/05/02	ND	15.4	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
03/27/03	ND	43.5	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
09/25/03	ND	16.8	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
03/16/04	ND	8.8	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
09/14/04	NS	NS	NS	NS	NS	NS	NS	NS	NS
03/29/05	ND	3.1	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
09/02/05	ND	1.0	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
03/21/06	ND	121.0	ND <1.0	ND <1.0	ND <1.0	ND<2.0	ND<1.0	ND<1.0	ND <1.0
VGES		40	5	1,000	700	10,000	4	5	20

Notes: Results given in micrograms per liter (µg/L)

ND- None detected at indicated detection limit.

TBQ - Trace below quantitaion limit indicated

All samples collected by ECS and analyzed by Endyne, Inc.

VGES - Vermont Groundwater Enforcement Standards

BTEX - Benzene, toluene, ethyl benzene, & xylenes

MTBE - Methyl tertiary butyl ether

TMB - Trimethyl Benzene

Shaded concentrations exceed VGES.
Unable to be located during Dec '99 site visit

Report Date: 03-Apr-06 14:59

Final Report Re-Issued Report Revised Report

Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301

Richmond, VT 05477 Attn: Mike Doran Project: Londonderry Citgo - Londonderry, VT

Project #: 08-205686.00

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
SA42516-01	Trip	Ground Water	21-Mar-06 07:00	23-Mar-06 09:40
SA42516-02	MW-S3	Ground Water	21-Mar-06 13:40	23-Mar-06 09:40
SA42516-03	MW-S2	Ground Water	21-Mar-06 13:45	23-Mar-06 09:40
SA42516-04	MW-6	Ground Water	21-Mar-06 13:50	23-Mar-06 09:40
SA42516-05	MW-7	Ground Water	21-Mar-06 13:55	23-Mar-06 09:40
SA42516-06	MW-3	Ground Water	21-Mar-06 14:00	23-Mar-06 09:40
SA42516-07	MW-4	Ground Water	21-Mar-06 14:15	23-Mar-06 09:40
SA42516-08	MW-1R	Ground Water	21-Mar-06 14:10	23-Mar-06 09:40
SA42516-09	MW-11	Ground Water	21-Mar-06 14:05	23-Mar-06 09:40
SA42516-10	MW-2R	Ground Water	21-Mar-06 14:25	23-Mar-06 09:40
SA42516-11	MW-10	Ground Water	21-Mar-06 14:30	23-Mar-06 09:40
SA42516-12	MW-8	Ground Water	21-Mar-06 14:20	23-Mar-06 09:40
SA42516-13	Dup	Ground Water	21-Mar-06 14:35	23-Mar-06 09:40
SA42516-14	Church	Ground Water	21-Mar-06 10:30	23-Mar-06 09:40
SA42516-15	Church Store	Ground Water	21-Mar-06 10:45	23-Mar-06 09:40
SA42516-16	Rogers	Ground Water	21-Mar-06 13:45	23-Mar-06 09:40
SA42516-17	Rowley	Ground Water	21-Mar-06 09:40	23-Mar-06 09:40
SA42516-18	Platt	Ground Water	21-Mar-06 11:50	23-Mar-06 09:40
SA42516-19	Jelly	Ground Water	21-Mar-06 11:10	23-Mar-06 09:40
SA42516-20	Gordon	Ground Water	21-Mar-06 12:10	23-Mar-06 09:40
SA42516-21	Junker	Ground Water	21-Mar-06 13:10	23-Mar-06 09:40
SA42516-22	Allen	Ground Water	21-Mar-06 15:20	23-Mar-06 09:40
SA42516-23	Abbott	Ground Water	21-Mar-06 11:30	23-Mar-06 09:40
SA42516-24	Main Supply Eff	Ground Water	21-Mar-06 14:50	23-Mar-06 09:40
SA42516-25	Main Supply Inf	Ground Water	21-Mar-06 14:55	23-Mar-06 09:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met

Please note that this report contains 40 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island #98 USDA # S-51435 Vermont # VT-11393

Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

Sample Identification Trip SA42516-01

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 07:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	· 1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μ g /l	1.0	1	D	ti	a	n	u
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	n	n	u	u	
91-20-3	Naphthalene	BRL		μg/l	1.0	1	B .	u	a		п
108-88-3	Toluene	BRL		μ g /l	1.0	1	n	u	n		u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	n	u	u		a
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	н	u	п	"	0
1330-20-7	m,p-Xylene	BRL		μ g /l	2.0	1	n	n	u	a	u
95-47-6	o-Xylene	BRL		μg/I	1.0	1	ti	a	a .		
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	91.0		70-130	%		a	n	u	U	u
2037-26-5	Toluene-d8	95.8		70-130	%		11	u	Ħ	u	
17060-07-0	1,2-Dichloroethane-d4	111		70-130	%		н	n	n	"	tr
1868-53-7	Dibromofluoromethane	96.8		70-130	%		n	u		u	

Sample Identification MW-S3 SA42516-02

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	rganic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	•	n		u	u
1634-04-4	Methyl tert-butyl ether	121		μg/l	1.0	1	u	u	U	a	0
91-20-3	Naphthalene	BRL		μ g /l	1.0	1		n	u	0	
108-88-3	Toluene	BRL		μg/l	1.0	1	n	в	u		n
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	В	n	a	п
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	II .	n		a	u
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	II	u		u	a
95-47-6	o-Xylene	BRL		μg/l	1.0	1		8		0	o .
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89.2		70-130	%		9	n	u	н	u
2037-26-5	Toluene-d8	96.0		70-130	%		es	n	41	u	u
17060-07-0	1,2-Dichloroethane-d4	120		70-130	%		15	n	U	0	u
1868-53-7	Dibromofluoromethane	101		70-130	%		6	ď	u	n	a

Sample Identification MW-S2 SA42516-03

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:45

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds							•			
Volatile C	organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u	u	u	n	n
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	и	u	6	**	11
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	ıı	a	u	n
108-88-3	Toluene	1.0		μg/l	1.0	1	ti.	H .	u	a	и
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u		п	n	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	ıı	"	u	u	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	a	II .	t	a	
95-47-6	o-Xylene	BRL		μg/l	1.0	1	n .			*11	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89.8		70-130	%		u	u u	tt	a	u
2037-26-5	Toluene-d8	97.0		70-130	%		ıı .	"	a	n	
17060-07-0	1,2-Dichloroethane-d4	105		70-130	%		U	t	b	Ħ	a
1868-53-7	Dibromofluoromethane	93.2		70-130	%		a	ų	u		u

Sample Identification MW-6 SA42516-04

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:50

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds							•			
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	O	u	0	u	и
1634-04-4	Methyl tert-butyl ether	2.7		μg/l	1.0	1	v	ıı	0	u	и
91-20-3	Naphthalene	BRL		μg/l	1.0	1	o o	ıı	D	ti	
108-88-3	Toluene	BRL		μg/l	1.0	1	U	u	n		B
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g /l	1.0	1	0	u	n	n	10
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g /l	1.0	1	u	u	u		Ħ
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u u		Ü	u	и
95-47-6	o-Xylene	BRL		μg/l	1.0	1	п			0	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89.0		70-130	%		н		u	u	n
2037-26-5	Toluene-d8	96.0		70-130	%			n	u	u	u
17060-07-0	1,2-Dichloroethane-d4	104		70-130	%		н	n	н	"	8
1868-53-7	Dibromofluoromethane	93.6		70-130	%		II .	ıı		p	a

Sample Identification MW-7 SA42516-05

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds					• 111					
Volatile O	rganic Compounds by 8260B										
Prepare	d by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u	II	u	a	U
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	n	u	n	D	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1	ti.	u	ti	n	U
108-88-3	Toluene	BRL		μ g /l	1.0	1	ti .	II	11	u	u
95-63-6	1,2,4-Trimethylbenzene	BAL		μg/l	1.0	1	и	u	a	Đ	u
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	ti .	U	n		u
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	ii	II	G G	u	ıı
95-47-6	o-Xylene	BRL		μg/l	1.0	1	п			u	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	91.4		70-130	1%		ø	u	a	u	41
2037-26-5	Toluene-d8	96.6		70-130	1%		O	ц	u	u	n
17060-07-0	1,2-Dichloroethane-d4	119		70-130	%		a	Ð	u		u
1868-53-7	Dibromofluoromethane	102		70-130	%		a	n	n		u

Sample Identification MW-3
SA42516-06

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031579	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	6	n	n	u
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	н	O	n	u	a
91-20-3	Naphthalene	BRL		μg/l	1.0	1	н	n	u	n	o
108-88-3	Toluene	BRL		μg/l	1.0	1	H	u	u		u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	n	n	u	a	a
108-67-8	1,3,5-Trimethylbenzene	BRL		μgi/l	1.0	1	Ħ	Ħ	u	u	a
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	Đ	a	n		
95-47-6	o-Xylene	BRL		μg/l	1.0	1	В	0	п		n
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90.6		70-130	%		0	o	a	n	
2037-26-5	Toluene-d8	<i>95.6</i>		70-130	1%		u	đ	ıı	B	ıı
17060-07-0	1,2-Dichloroethane-d4	118		70-130	%		u u	u	u	0	н
1868-53-7	Dibromofluoromethane	102		70-130	%		а	n	n	0	n

Sample Identification MW-4 SA42516-07

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:15

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	н	u	n		
1634-04-4	Methyl tert-butyl ether	BRL		μ g /l	1.0	1	n	12	a	e	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1	o	11	U	n	
108-88-3	Toluene	BRL		μg/l	1.0	1	u	u	u	n	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	B B	u	u	a	n
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u		4	n	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u	II .	0	u	n
95-47-6	o-Xylene	BRL		μg/l	1.0	1	11	ı	a a	a	0
Surrogate	recoveries:	-									
460-00-4	4-Bromofluorobenzene	92.7		70-130	%		II .	u	ı	"	0
2037-26-5	Toluene-d8	98.3		70-130	%		ı	II	u	u	n
17060-07-0	1,2-Dichloroethane-d4	98.7		70-130	%			п	u	п	9
1868-53-7	Dibromofluoromethane	97.3		70-130	%		u u	u u	u	4	a

Sample Identification MW-1R SA42516-08

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:10

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds								-		
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	176		μg/l	5.0	5	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	9.0		μg/l	5.0	5		n	ı	u	a
1634-04-4	Methyl tert-butyl ether	298		μg/l	5.0	5	u	n	u	t t	a
91-20-3	Naphthalene	BRL		μg/l	5.0	5		u	II	0	ı
108-88-3	Toluene	170		μ g /l	5.0	5		n	u	u	
95-63-6	1,2,4-Trimethylbenzene	13.7		μ g /l	5.0	5		u			u
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	5.0	5	u	n	u	и	a
1330-20-7	m,p-Xylene	74.6		μg/l	10.0	5		n			a
95-47-6	o-Xylene	94.8		μg/l	5.0	5	п	0	"	u	0
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94.7		70-130	%		tt	u.	u		u
2037-26-5	Toluene-d8	100		70-130	%		ti ti	u	ti.		н
17060-07-0	1,2-Dichloroethane-d4	104		70-130	%		u	u	o	a	u
1868-53-7	Dibromofluoromethane	96.0		70-130	1%		u	u	0	a	

Sample Identification MW-11 SA42516-09

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:05

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	2.8		μg/l	1.0	1	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u	ı	ø	n	a
1634-04-4	Methyl tert-butyl ether	6.0		μg/l	1.0	1	8		а		
91-20-3	Naphthalene	BRL		μg/l	1.0	1	6	u	u	п	
108-88-3	Toluene	BRL		μg/l	1.0	1	B	Œ	u	0	
95-63-6	1,2,4-Trimethylbenzene	BRL.		μg/l	1.0	1	n	Ħ	ŧŧ	n	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	n	и	Œ	a	"
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u	u	Ð	n	
95-47-6	o-Xylene	BRL		μg/l	1.0	1	B			n	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94.3		.70-130	%		er e	u	b	10	u
2037-26-5	Toluene-d8	103		70-130	%		D	tt.	11	n	u
17060-07-0	1,2-Dichloroethane-d4	105		70-130	%		a	D	1)	ıı	11
1868-53-7	Dibromofluoromethane	95.7		70-130	%		n	n			U

Sample Identification MW-2R SA42516-10

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:25

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	rganic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	BRL		μ g /l	1.0	1	n		u	11	n
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	u	U	p	n	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1	п	U	11		D
108-88-3	Toluene	BRL		μg/l	1.0	1	n	U	u		B
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	n	n	n	u	ti ti
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	D	u	a	n	0
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u	II .	n	n	"
95-47-6	o-Xylene	BRL		μg/l	1.0	1	a	n	t t	ø	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	97.3		70-130	%			ı	B		ď
2037-26-5	Toluene-d8	101		70-130	%			ti .	D	n	u
17060-07-0	1,2-Dichloroethane-d4	106		70-130	%		n	8	Ð	ı	u
1868-53-7	Dibromofluoromethane	<i>93.7</i>		70-130	%		n	er	n	н	"

Sample Identification MW-10 SA42516-11

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:30

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds					•					
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	32.4		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031652	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	u	p	U	n
1634-04-4	Methyl tert-butyl ether	20.8		μg/l	1.0	1	u	II .	n	9	
91-20-3	Naphthalene	BRL		μ g/l	1.0	1	u	II .	п		u
108-88-3	Toluene	2.4		μg/l	1.0	1	u	II	ti.	u	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	II .	u	u	u
108-67-8	1,3,5-Trimethylbenzene	2.4		μg/l	1.0	1	н	II .	u	a	
1330-20-7	m,p-Xylene	3.5		μg/l	2.0	1	н	II .	n	a	u
95-47-6	o-Xylene	3.1		μg/l	1.0	1 _	u				
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	91.6		70-130	%		II .		"	а	u
2037-26-5	Toluene-d8	96.6		70-130	%		н	"	u	er er	ū
17060-07-0	1,2-Dichloroethane-d4	93.6		70-130	%		ti .		n	n	u
1868-53-7	Dibromofluoromethane	84.2		70-130	%		n	u	n	0	

Sample Identification MW-8 SA42516-12

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:20

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	5.0	5	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	17.5		μg/l	5.0	5	o	ıı	п	ø	a
1634-04-4	Methyl tert-butyl ether	22.8		μg/l	5.0	5	0		u	р	u
91-20-3	Naphthalene	27.5		μg/l	5.0	5	ti		tt .	n	п
108-88-3	Toluene	BRL		μg/l	5.0	5	Ħ	"	tt	u	
95-63-6	1,2,4-Trimethylbenzene	227		μg/l	5.0	5	ti .	ı	U	n	н
108-67-8	1,3,5-Trimethylbenzene	51.8		μg/l	5.0	5	н	u	tt	Ð	
1330-20-7	m,p-Xylene	34.6		μg/l	10.0	5	n	ı	"	0	u
95-47-6	o-Xylene	BRL		μg/l	5.0	5	II	n	u	0	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94.7		70-130	%		в	u	"	n	u
2037-26-5	Toluene-d8	98.0		70-130	%		n	0	u	u	
17060-07-0	1,2-Dichloroethane-d4	111		70-130	%		н	O	"		u
1868-53-7	Dibromofluoromethane	101		70-130	%		n	o	ıı	u	"

Sample Identification
Dup
SA42516-13

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:35

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	rganic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	31.0		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031652	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	0	u	И	п	
1634-04-4	Methyl tert-butyl ether	23.4		μg/l	1.0	1	ti	и	u	a	
91-20-3	Naphthalene	BRL		µg/l	1.0	1	ti .	u	u	a	a
108-88-3	Toluene	2.0		μ g /l	1.0	1	0	tt	u	o	a
95-63-6	1,2,4-Trimethylbenzene	1.0		μg/l	1.0	1	u	n	u	o	a
108-67-8	1,3,5-Trimethylbenzene	4.3		μg/l	1.0	1	u	"	ti	u	a
1330-20-7	m,p-Xylene	2.1		μg/l	2.0	1	и	ıı	ıı	u	U
95-47-6	o-Xylene	2.0		μg/l	1.0	1				"	0
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	93.2		70-130	1%		n	n	u		u
2037-26-5	Toluene-d8	95.2		70-130	1%		n n	и	u	a	n
17060-07-0	1,2-Dichloroethane-d4	95.6		70-130	1%		u	ı		u	u
1868-53-7	Dibromofluoromethane	88.4		70-130	1%			II .	u	ı	u

Sample Identification Church SA42516-14

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 10:30

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/i	1.0	1	SW846 8260B	28-Mar-06	30-Mar-06	6031740	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1			u	п	B
1634-04-4	Methyl tert-butyl ether	BRL		μg/Ι	1.0	1		и	u	11	0
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	ti .	u	17	ы
108-88-3	Toluene	BRL		μg/l	1.0	1	n n	II	u	o	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	н	н	u		n
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	н	U		0	n
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	п	ø	U	u	u
95-47-6	o-Xylene	BRL		μg/l	1.0	1	II .	0	u .	u .	0
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	88.4		70-130	%		0	a	n		u
2037-26-5	Toluene-d8	94.0		70-130	%		0	a	6	n	u
17060-07-0	1,2-Dichloroethane-d4	102		70-130	%		u	0	9	D	
1868-53-7	Dibromofluoromethane	95.0		70-130	%		a	o	o	a	u

Sample Identification Church Store SA42516-15

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 10:45

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	28-Mar-06	6031563	krl
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	н	u	и	u	u
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	а	O	n	u	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	u	ū	D	п
108-88-3	Toluene	BRL		μg/l	1.0	1	6	"	u	n	п
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	a	ı	"	n	п
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u		u	e	п
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	a	U	u	n	II .
95-47-6	o-Xylene	BRL		μg/l	1.0	1	u .			d	a
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	99.3		70-130	%		O	. "	U		в
2037-26-5	Toluene-d8	99.3		70-130	%		В	в	n	u	ø
17060-07-0	1,2-Dichloroethane-d4	132	S-GC	70-130	%		H	n	ı	и	4
1868-53-7	Dibromofluoromethane	115		70-130	%		n		ı	п	u

Sample Identification Rogers SA42516-16

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:45

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μ g /l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RЫ
100-41-4	Ethylbenzene	BRL		μg /l	1.0	1	e	u	ø	ŧ	a
1634-04-4	Methyl tert-butyl ether	1.9		μg/l	1.0	1	0	ıı	u	v	a
91-20-3	Naphthalene	BRL		μ g/l	1.0	1	e	ıı	n	0	n
108-88-3	Toluene	BRL		μg/l	1.0	1	ti .	п	a	a	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	а		ш
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g /l	1.0	1	II .	ıı	u	b	u
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	и	D	n	a	u
95-47-6	o-Xylene	BRL		μg/l	1.0	1	п	D	u	0	n
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	95.4		70-130	%		II .	n	ıı		a
2037-26-5	Toluene-d8	102		70-130	%		ıı	u	u	и	
17060-07-0	1,2-Dichloroethane-d4	83.0		70-130	%		si	u	u		ø
1868-53-7	Dibromofluoromethane	88.0		70-130	%		n	•	n	и	u

Sample Identification Rowley SA42516-17

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 09:40

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RLJ
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	n	0	11	n
1634-04-4	Methyl tert-butyl ether	BRL		μ g /l	1.0	1	n	u	a	11	n
91-20-3	Naphthalene	BRL		μg/l	1.0	1	0	a	n	u	
108-88-3	Toluene	BRL		μg/l	1.0	1	ti ti	u	B		u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	15	u	Đ	n	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	ti .	"	а	n	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	ti	"		Ħ	
95-47-6	o-Xylene	BRL		μg/l	1.0	1	11	"		11	11
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.4		70-130	%		0	n	u		0
2037-26-5	Toluene-d8	101		70-130	%		a	u	u		
17060-07-0	1,2-Dichloroethane-d4	82.8		70-130	%		п	II .	4	u	u
1868-53-7	Dibromofluoromethane	88.8		70-130	%		n	II .	u	0	n

Sample Identification
Platt
SA42516-18

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 11:50

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	30-Mar-06	6031740	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	u	"	u	u
1634-04-4	Methyl tert-butyl ether	2.3		μg/l	1.0	1	n	n	"	п	0
91-20-3	Naphthalene	BRL		μg/l	1.0	1	н	D	n	и	a
108-88-3	Toluene	BRL		μg/l	1.0	1	n	a	19	"	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	a	n		a
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	n	e e	11	"	e e
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	H	В	"	u	o
95-47-6	o-Xylene	BRL		μg/l	1.0	1	ti		u 	"	0
Surrogate	recoveries:		-								
460-00-4	4-Bromofluorobenzene	88.4		70-130	%		II .		ti	u	o
2037-26-5	Toluene-d8	95.0		70-130	1%		tt .	u	u	d	0
17060-07-0	1,2-Dichloroethane-d4	108		70-130	1%		O.	U	n	6	n
1868-53-7	Dibromofluoromethane	96.6		70-130	%		o	u	u	a	n

Sample Identification Jelly SA42516-19

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 11:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds		;								
Volatile C	rganic Compounds by 8260B										
Prepare	d by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RLJ
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	a	n	n	n	n
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	a	u	n	B	
91-20-3	Naphthalene	BRL		μg/l	1.0	1	8	u	U		
108-88-3	Toluene	BRL		μg/l	1.0	1	si	u	u		"
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	В	u	u		
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	13	u	u	n	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	0	u	u		u
95-47-6	o-Xylene	BRL		μg/l	1.0	1	0	"	p .	u	U
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	97.4		70-130) %		ti .	ı	u	u	
2037-26-5	Toluene-d8	105		70-130) %		N	ı	0	11	u
17060-07-0	1,2-Dichloroethane-d4	79.0		70-130) %		и	u	a	n	
1868-53-7	Dibromofluoromethane	92.6		70-130) %		ii .	u	u	1)	11

Sample Identification Gordon SA42516-20

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 12:10

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RLJ
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u	U	ıı		u
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	U	u	n	u	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1				o	u
108-88-3	Toluene	BRL		μg/l	1.0	1		н	a	u	п
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	и	n	u	n	a
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u	n		u	a
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1		o		u	0
95-47-6	o-Xylene	BRL		μg/l	1.0	1	Ħ	u	"		u
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.2		70-130	%		u	II	U	U	u
2037-26-5	Toluene-d8	102		70-130	%		п	u	0	n	u
17060-07-0	1,2-Dichloroethane-d4	82.0		70-130	%		ti .	II .	u	Œ	0
1868-53-7	Dibromofluoromethane	87.2		70-130	%		u	U	ı	u	0

Sample Identification
Junker
SA42516-21

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 13:10

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RLJ
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	n	u		
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	u	n	u		
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	n	u	u	н
108-88-3	Toluene	BRL		μg/l	1.0	1	u	u	ü	sı	ı
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	ď	ti	u	п
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	a	u	п	n	и
1330-20-7	m,p-Xylene	BRL		μg/i	2.0	1	0	O	n		tt
95-47-6	o-Xylene	BRL		µд/1	1.0	1	n .				
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.6		70-130) %		n		n	o	u
2037-26-5	Toluene-d8	102		70-130) %		II	n	"	n	
17060-07-0	1,2-Dichloroethane-d4	83.4		70-130) %		U	II	u	a	ti
1868-53-7	Dibromofluoromethane	88.8		70-130) %		n	n	u	u	u

Sample Identification
Allen
SA42516-22

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 15:20

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds		-								
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	29-Mar-06	6031617	RLJ
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	п	Ð	II	u	0
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	a	0	II	a	n
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	u	ø	u	
108-88-3	Toluene	BRL		μg/l	1.0	1	u	a	0	n	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	ıı	0	a
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	N		ti	o	н
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u	II	и	п	
95-47-6	o-Xylene	BRL		μg/l	1.0	1			"		0
Surrogate	recoveries:									•	
460-00-4	4-Bromofluorobenzene	98.8		70-130	%		a	a	D	U	u
2037-26-5	Toluene-d8	55.2	S-GC	70-130	%		O	n	a	9	0
17060-07-0	1,2-Dichloroethane-d4	77.0		70-130	%		u	n	a	O,	u
1868-53-7	Dibromofluoromethane	113		70-130	%		a	u	n	0	n

Sample Identification
Abbott
SA42516-23

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 11:30

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	28-Mar-06	30-Mar-06	6031740	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	a a	u	n	o
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	u		u	ti.	a
91-20-3	Naphthalene	BRL		μg/l	1.0	1	u	II	u	u	n
108-88-3	Toluene	BRL		μg/l	1.0	1	u	u	u	0	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	u	es.	н
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u	п	u	u	u
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	u	II	u	6	u
95-47-6	o-Xylene	BRL		μg/l	1.0	1	u .	n	U	a	11
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89.8		70-130	%		o	u	II	"	и
2037-26-5	Toluene-d8	94.6		70-130	%		u	ti	n	ı	
17060-07-0	1,2-Dichloroethane-d4	102		70-130	%		et .	u	n	ı	
1868-53-7	Dibromofluoromethane	95.4		70-130	%		Ħ	п	D	H	u

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
/olatile (Organic Compounds										
	geable Organic Compounds										
repared	d by method SW846 5030 Wa	ater MS									
7-64-1	Acetone	BRL		μ g /l	10.0	1	EPA 524.2	28-Mar-06	29-Mar-06		RLJ
07-13-1	Acrylonitrile	BRL		μg/l	1.0	1	н	u	u	n	U
1-43-2	Benzene	BRL		μg/l	0.5	1	"	u	"	n	a
08-86-1	Bromobenzene	BRL		μg/l	0.5	1	u	u		U	"
4-97-5	Bromochloromethane	BRL		μg/l	0.5	1	"		"	u	a
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	и		ı	U	ņ
5-25-2	Bromoform	BRL		μg/l	0.5	1	"		"	a.	a
4-83-9	Bromomethane	BRL		μg/l	0.5	1			п	ıı	n
8-93-3	2-Butanone (MEK)	BRL	1	μg/l	10.0	1		"	u	ıı	o
04-51-8	n-Butylbenzene	BRL		μg/l	0.5	1	n .	п	u	п	0
35-98-8	sec-Butylbenzene	BRL		μg/l	0.5	1	II .	ıı		u	. "
8-06-6	tert-Butylbenzene	BRL		μg/l	0.5	1		ı	и	a	n
5-15-0	Carbon disulfide	BRL		μg/l	0.5	1	"	ı	u	11	n
6-23-5	Carbon tetrachloride	BRL		μg/l	0.5	1	u	u	tt	U	u
08-90-7	Chlorobenzene	BRL		μg/l	0.5	1	u	ı	u	u	u
5-00-3	Chloroethane	BRL		μg/l	0.5	1	d	u	a	n	u
7-66-3	Chloroform	BRL		μ g /l	0.5	1	u	u	u	u	"
4-87-3	Chloromethane	BRL		μ g /l	0.5	1	n	a	п	ı	ir .
5-49-8	2-Chlorotoluene	BRL		μg /l	0.5	1	B B	п	n	0	0
06-43-4	4-Chlorotoluene	BRL		μ g/l	0.5	1	8	u	a	D	q
5-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5	1	n		a	a	
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	u	u	c c	a	U
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	u	H .	ü	a	
4-95-3	Dibromomethane	BRL		μg/l	0.5	1	u	ı	a	a	
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	0.5	1	a	a	n	n	
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	0.5	1	u	a	D		U
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	0.5	1	0	n	п	ıı	u
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	0.5	1	0	ū	p		ı
5-34-3	1,1-Dichloroethane	BRL		μg/l	0.5	1	n	b	p		u
07-06-2	1,2-Dichloroethane	BRL		μg/l	0.5	1	16	Ħ	II .	u	u
5-35-4	1,1-Dichloroethene	BRL		μg/l	0.5	1	n	n		п	B
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	0.5	1	H	H		u	U
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	0.5	1	н	U	H	u	n
8-87-5	1,2-Dichloropropane	BRL		μg/i	0.5	1	u		ı	ø	a
42-28-9	1,3-Dichloropropane	BRL		μg/l	0.5	1	п	u	u	ti.	a
94-20-7	2,2-Dichloropropane	BRL		μg/l	0.5	1	u	6		n	u
63-58-6	1,1-Dichloropropene	BRL		μg/l	0.5	1	н	a	u		
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	u	n	u	п	a
0061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	ø		n	o	и
00-41-4	Ethylbenzene	BRL		μg/l	0.5	1	t)		D	в	a
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	si .	a	U	u	0
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	n	В	n	u	9
8-82-8	Isopropylbenzene	BRL		μg/l	0.5	1	a	n	"	t)	n
9-87-6	4-Isopropyltoluene	BRL		μg/l	0.5	1	a	n	u	11	n
634-04-4	Methyl tert-butyl ether	BRL		μg/l	0.5	1	u	u	n	п	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	u	11			"
5-09-2	Methylene chloride	BRL		μg/l	0.5	1	H			u	u
1-20-3	Naphthalene	BRL		μg/l	0.5	1	и	H .		o	u
03-65-1	n-Propylbenzene	BRL		μg/l	0.5	1	II .	u	n		
00-42-5	Styrene	BRL		μg/l	0.5	1	u	ıı	ı	tt	н

Sample Identification Main Supply Eff SA42516-24

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds							•			
524.2 Pur	geable Organic Compounds										
	d by method SW846 5030 W	ater MS	4								
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5	1	EPA 524.2	28-Mar-06	29-Mar-06	6031617	RLJ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	n	a	n		u
127-18-4	Tetrachloroethene	BRL		μg/l	0.5	1	п	0	n	n	**
108-88-3	Toluene	BRL		μg/l	0.5	1	n	0	a	11	a
87-61-6	1,2,3-Trichlorobenzene	8RL		μg/l	0.5	1	n	6	4	n	
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	0.5	1	u	ts.	n	ı	u
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	0.5	1	а	0	n	u	
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	0.5	1	n	6	u	n	
79-01-6	Trichloroethene	BRL		μg/l	0.5	1	u	a	D		"
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5	1	u u		41	u	"
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	0.5	1	H		u	a	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	0.5	1	n	n n	u	6	6
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	0.5	, 1	u	n	u	п	e
75-01-4	Vinyl chloride	BRL		μg/l	0.5	1	n	п	u	u	U
1330-20-7	m,p-Xylene	BRL		μg/l	0.5	1	ų	a	11	n	II .
95-47-6	o-Xylene	BRL		μg/l	0.5	1	a	u	a	O	ıı
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	u	u	6	u	n
994-05-8	Tert-amyl methyl ether	BRL		μg/l	0.5	1	u	u	u	O	a
637-92-3	Ethyl tert-butyl ether	BRL		μg/I	0.5	1	u	u	u	0	u
108-20-3	Di-isopropyl ether	BRL		μg/l	0.5	1	n	n	u	u	u
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	B	U	H		a
Surrogate i	recoveries:				_						
460-00-4	4-Bromofluorobenzene	95.6		80-120	%		ti	D	ti	п	
2037-26-5	Toluene-d8	101		80-120	%		n	Ð	п	u	
17060-07-0	1,2-Dichloroethane-d4	82.8		80-120	%		n	a	n	ıı	
1868-53-7	Dibromofluoromethane	88.4		80-120	%		n	0	н	u	u

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
524.2 Pur	geable Organic Compounds										
Prepare	d by method SW846 5030 W	ater MS									
67-64-1	Acetone	BRL		μg/l	10.0	1	EPA 524.2	28-Mar-06	29-Mar-06	6031617	RLJ
107-13-1	Acrylonitrile	BRL		μg/l	1.0	1	u	ß	u	u	n
71-43-2	Benzene	BRL		μg/l	0.5	1	n	u	Đ	11	D
108-86-1	Bromobenzene	BRL		μg/l	0.5	1	u	s	o	u	B
74-97-5	Bromochloromethane	BRL		μg/l	0.5	1	u	n	0	u	н
75-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	e e	н	6	11	
75-25-2	Bromoform	BRL.		μg/l	0.5	1	u		0	n	
74-83-9	Bromomethane	BRL		μg/l	0.5	1	n	ū	ü	11	
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	н	u	D	10	u
104-51-8	n-Butylbenzene	BRL		μg/l	0.5	1	Ð	ts	15	u	н
135-98-8	sec-Butylbenzene	BRL		μg/l	0.5	1	u	0	n	n	u
98-06-6	tert-Butylbenzene	BRL		μg/l	0.5	1	n	n	u	11	n
75-15-0	Carbon disulfide	BRL		μg/l	0.5	1	n	u	u	n	n
56-23-5	Carbon tetrachloride	BRL		μg/l	0.5	1	n	0	D	n	u
108-90-7	Chlorobenzene	BRL		μg/l	0.5	1	u	u		n	
75-00-3	Chloroethane	BRL		μ g /l	0.5	1	II .	u	n	n	n
67-66-3	Chloroform	BRL		μg/l	0.5	1	u	n	u	u	
74-87-3	Chloromethane	BRL		μg/l	0.5	1	п	H	u	n	
95-49-8	2-Chlorotoluene	BRL		μg/l	0.5	1	и	п	u		
106-43-4	4-Chlorotoluene	BRL		μ g /l	0.5	1	u	II	ø	a	a
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5	1	ti	u	n		u
124-48-1	Dibromochloromethane	BRL		μ g /l	0.5	1	9	u	b	u	"
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	n	ti .	D	u	u
74-95-3	Dibromomethane	BRL		μg/l	0.5	1	n	n	ti .	H	15
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	0.5	1	II	0	n		u
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	0.5	1	U	9	n		u
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	0.5	1		u	u	n	o
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	0.5	1	ti	ıı	u	e	n
75-34-3	1,1-Dichloroethane	BRL		μg/l	0.5	1	a	II	u	u	п
107-06-2	1,2-Dichloroethane	BRL		μg/l	0.5	1	n	8	a	u	n
75-35-4	1,1-Dichloroethene	BRL		μg/l	0.5	1		ti	п	n	
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	0.5	1		n	п	n	11
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	0.5	1		n		u	п
78-87-5	1,2-Dichloropropane	BRL		μg/l	0.5	1	9	u	u	п	
142-28-9	1,3-Dichloropropane	BRL		μg/l	0.5	1	n	u	u	t)	a
594-20-7	2,2-Dichloropropane	BRL		μg/l	0.5	1	n			u	n
563-58-6	1,1-Dichloropropene	BRL		μg/l	0.5	1	п	u	u	n	
10061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	ű	u	n		8
10061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	a	u	u	u	n
100-41-4	Ethylbenzene	BRL		μg/l	0.5	1	B	u	6	a	u
87-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	u	4	n	n	п
591-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	u	11	n	n	u
98-82-8	Isopropylbenzene	BRL		μg/l	0.5	1	u	n	u		0
99-87-6	4-Isopropyltoluene	BRL		μg/l	0.5	1	0	U	u	ŧ	4
1634-04-4	Methyl tert-butyl ether	62.6		μg/l	0.5	1	n	u	a	0	n
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	n	a	н	n	
75-09-2	Methylene chloride	BRL		μg/l	0.5	1	и	u	n		
91-20-3	Naphthalene	BRL		μg/l	0.5	1	u	u	n	п	o
103-65-1	n-Propylbenzene	BRL		μg/l	0.5	1	п	"	0	u	u
100-42-5	Styrene	BRL		μg/l	0.5	1	u	n	n	u	

Sample Identification
Main Supply Inf
SA42516-25

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 21-Mar-06 14:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
524.2 Pur	geable Organic Compounds										
Prepare	d by method SW846 5030 W	ater MS									
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5	1	EPA 524.2	28-Mar-06	29-Mar-06	6031617	RLJ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	u				u
127-18-4	Tetrachloroethene	BRL		μg/l	0.5	1	н	ıı	u	e e	a
108-88-3	Toluene	BRL		μg/l	0.5	1	ti	п	ti.	o	и
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	0.5	1	ti .	u	D	u	n
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	0.5	1	q	u	n	n	n
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	0.5	1	D	u	a	n	
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	0.5	1	O	ŭ	u	n	u
79-01-6	Trichloroethene	BRL		μg/l	0.5	1	u	u	n	ıı	n
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5	1	u	. "	u	u	0
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	0.5	1	u .	u	n		
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g /l	0.5	1	n	n	U		u
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	0.5	1	п	п	u	п	a
75-01-4	Vinyl chloride	BRL		μg/l	0.5	1		u	"	u	a
1330-20-7	m,p-Xylene	BRL		μg/l	0.5	1		ıı	"	n	u
95-47-6	o-Xylene	BRL		μg/l	0.5	1	и	u	U	6	٥
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	ı	п	(I	в	a
994-05-8	Tert-amyl methyl ether	9.5		μg/l	0.5	1	"	II	u	ŋ	"
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	0.5	1	a	n	u	9	u
108-20-3	Di-isopropyl ether	BRL		μ g /l	0.5	1	0	ıı	U	n	
75-65-0	Tert-Butanol / butyl alcohol	BRL		μ g /l	10.0	1	n				
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.6		80-120	%		ı,	II	u	а	0
2037-26-5	Toluene-d8	102		80-120) %		u	II	н	er er	G.
17060-07-0	1,2-Dichloroethane-d4	81.2		80-120) %		и	u	a	a	u
1868-53-7	Dibromofluoromethane	88.0		80-120	%		u	o	a	ø	a

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6031563 - SW846 5030) Water MS			· ·						
Blank (6031563-BLK1)										
Prepared & Analyzed: 28-Mar-06										
Benzene	BRL		ua/l	1.0						
Chlorobenzene			μg/l "							
	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		µg/l	1.0						
Naphthalene -	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	30.0		μg/l		30.0		100	70-130		
Surrogate: Toluene-d8	28.6		μg/l		30.0		95.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.5		µg/l		30.0		112	70-130		
Surrogate: Dibromofluoromethane	31.0		µg/l		30.0		103	70-130		
LCS (6031563-BS1)										
Prepared & Analyzed: 28-Mar-06										
Benzene	22.4		μg/l		20.0		112	70-130		
Ethylbenzene	19.3		μg/l		20.0		96.5	70-130		
Methyl tert-butyl ether	22.5		μg/l		20.0		112	70-130		
Naphthalene	21.4		μg/l		20.0		107	70-130		
Toluene	19.0		μg/l		20.0		95.0	70-130		
1,2,4-Trimethylbenzene	19.9		μg/l		20.0		99.5	70-130		
1,3,5-Trimethylbenzene	19.6		μg/l		20.0		98.0	70-130		
m,p-Xylene	39.6		μg/l		40.0		99.0	70-130		
o-Xylene	19.8		μg/l		20.0		99.0	70-130		
Surrogate: 4-Bromofluorobenzene	29.5		<u>р</u> 9/і µg/i		30.0		98.3	70-130		
Surrogate: Toluene-d8	29.2		μg/l		30.0		97.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.6		μg/l		30.0		105	70-130		
Surrogate: Dibromofluoromethane	29.0		μg/l		30.0		96.7	70-130		
LCS Dup (6031563-BSD1)										
Prepared & Analyzed: 28-Mar-06										
Benzene	21.7		μg/l		20.0		108	70-130	3.64	30
Ethylbenzene	18.6		μg/l		20.0		93.0	70-130	3.69	30
Methyl tert-butyl ether	25.0		μg/l		20.0		125	70-130	11.0	30
Naphthalene	22.4		μg/l		20.0		112	70-130	4.57	30
Toluene	17.6		μg/l		20.0		88.0	70-130	7.65	30
1,2,4-Trimethylbenzene	19.3		μg/l		20.0		96.5	70-130	3.06	30
1,3,5-Trimethylbenzene	18.8		μg/l		20.0		94.0	70-130	4.17	30
m,p-Xylene	37.8		μg/l		40.0		94.5	70-130	4.65	30
o-Xylene	19.2		μg/l		20.0		96.0	70-130	3.08	30
Surrogate: 4-Bromofluorobenzene	29.5		μg/l		30.0		98.3	70-130		
Surrogate: Toluene-d8	27.7		μg/l		30.0		92.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	35.2		μg/l		30.0		117	70-130		
Surrogate: Dibromofluoromethane	32.3		μg/l		30.0		108	70-130		
Matrix Spike (6031563-MS1)	Source: SA42432-06									
Prepared & Analyzed: 28-Mar-06										
Benzene	24.9		μg/l		20.0	BRL	124	70-130		
Chlorobenzene	22.8		μg/l		20.0	BRL	114	70-130		
1,1-Dichloroethene	23.0		μg/l		20.0	BRL	115	70-130		
Toluene	22.2		µg/l		20.0	BRL	111	70-130		
Trichloroethene	21.7		μg/l		20.0	BRL	108	70-130		
Surrogate: 4-Bromofluorobenzene	29.0		μg/l		30.0		96.7	70-130		

					Spike	Source		%REC	* - 4	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6031563 - SW846 5036	0 Water MS									
Matrix Spike (6031563-MS1)	Source: SA42432-06									
Prepared & Analyzed: 28-Mar-06										
Surrogate: Toluene-d8	29.6		μg/l		30.0		98.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.0		μg/l		30.0		107	70-130		
Surrogate: Dibromofluoromethane	30.2		μg/l		30.0		101	70-130		
Matrix Spike Dup (6021562-MSD1)	Source: SA42432-06									
Matrix Spike Dup (6031563-MSD1) Prepared & Analyzed: 28-Mar-06	Source. 3A42432-00									
Benzene	24.3		μg/l		20.0	BRL	122	70-130	1.63	30
Chlorobenzene	21.7		μg/l		20.0	BRL	108	70-130	5.41	30
1,1-Dichloroethene	22.3		μg/l		20.0	BRL	112	70-130	2.64	30
Toluene	21.3		μg/l		20.0	BRL	106	70-130	4.61	30
Trichloroethene	20.6		μg/l		20.0	BRL	103	70-130	4.74	30
Surrogate: 4-Bromofluorobenzene	29.2		<u>μg/l</u>	,	30.0		97.3	70-130		
Surrogate: Toluene-d8	29.4 29.4		μg/l		30.0		98.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.8		μg/l		30.0		106	70-130		
Surrogate: Dibromofluoromethane	29.6		μg/l		30.0		98.7	70-130		
Batch 6031579 - SW846 5030			, ,							
Blank (6031579-BLK1)										
Prepared & Analyzed: 28-Mar-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene				1.0						
	BRL		μg/l							
1,1-Dichloroethene	BRL		µg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	45.3		μg/l		50.0		90.6	70-130		
Surrogate: Toluene-d8	48.8		μg/l		50.0		97.6	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	46.3		μg/l		50.0		92.6	70-130		
LCS (6031579-BS1)										
Prepared & Analyzed: 28-Mar-06										
Benzene	00.1		uali		20.0		116	70-130		
	23.1		μg/l /		20.0		104	70-130		
Ethylbenzene	20.9		μg/l /				107	70-130		
Methyl tert-butyl ether	21.4		μg/l /		20.0 20.0		98.0	70-130		
Naphthalene	19.6		μg/l					70-130		
Toluene	21.2		μg/l		20.0		106 93.5	70-130 70-130		
1,2,4-Trimethylbenzene	18.7		μg/l		20.0			70-130 70-130		
1,3,5-Trimethylbenzene	18.7		μg/l		20.0		93.5			
m,p-Xylene	41.5		μg/l		40.0		104	70-130		
o-Xylene	20.1		μg/l		20.0		100	70-130		
Surrogate: 4-Bromofluorobenzene	48.4		μg/l		50.0		96.8 97.6	70-130 70-130		
Surrogate: Toluene-d8	48.8		μg/l		50.0 50.0		97.6 103	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3 46.2		μg/l μg/l		50.0 50.0		92.4	70-130 70-130		
Surrogate: Dibromofluoromethane	40.2		μg/i		50.0					
LCS Dup (6031579-BSD1)										
Prepared & Analyzed: 28-Mar-06	04.0				20.0		109	70-130	6.22	30
Benzene	21.8		μg/l		20.0		97.0	70-130 70-130	6.22	30
Ethylbenzene	19.4		µg/l		20.0				4.78	30
Methyl tert-butyl ether	20.3		μg/l		20.0		102	70-130	4./0	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6031579 - SW846 5030 Water	. MS									
	MIS									
LCS Dup (6031579-BSD1)										
Prepared & Analyzed: 28-Mar-06	40.0		#		00.0		00.0	70-130	1.02	30
Naphthalene Toluene	19.8 20.5		μg/l		20.0 20.0		99.0 102	70-130 70-130	3.85	30
1,2,4-Trimethylbenzene	20.5 17.8		μg/l μg/l		20.0		89.0	70-130	4.93	30
1,3,5-Trimethylbenzene	17.6		μg/l		20.0		88.0	70-130	6.06	30
m,p-Xylene	38.3		μg/l		40.0		95.8	70-130	8.21	30
o-Xylene	18.9		μg/l		20.0		94.5	70-130	5.66	30
Surrogate: 4-Bromofluorobenzene	46.4		µg/l		50.0		92.8	70-130		
Surrogate: Toluene-d8	48.0		μg/l		50.0		96.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		μg/l		50.0		97.2	70-130		
Surrogate: Dibromofluoromethane	43.6		μg/l		50.0		. 87.2	70-130		
Matrix Spike (6031579-MS1) Source	e: SA42516-06									
Prepared: 28-Mar-06 Analyzed: 29-Mar-06							440	70.400		
Benzene	23.8		μg/l		20.0	BRL	119	70-130		
Chlorobenzene	18.6		μg/l		20.0	BRL	93.0	70-130		
1,1-Dichloroethene	34.3	QC-2	μg/l "		20.0	BRL	172	70-130		
Toluene	22.0		μg/l		20.0	BRL	110	70-130 70-130		
Trichloroethene	21.7		µg/l	-	20.0	BRL	108 92.8	70-130		
Surrogate: 4-Bromofluorobenzene	46.4		μg/l		50.0 50.0		92.8 96.8	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	48.4 54.6		μg/l μg/l		50.0 50.0		109	70-130		
Surrogate: 1,2-Dictrioroetriane-04 Surrogate: Dibromofluoromethane	46.9		μg/l		50.0		93.8	70-130		
•	e: SA42516-06									
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Benzene	24.1		μg/l		20.0	BRL	120	70-130	0.837	30
Chlorobenzene	18.8		μg/l		20.0	BRL	94.0	70-130	1.07	30
1,1-Dichloroethene	35.1	QC-2	μg/l		20.0	BRL	176	70-130	2.30	30
Toluene	22.8		μg/l		20.0	BRL	114	70-130	3.57	30
Trichloroethene	22.5		μg/l		20.0	BRL	112	70-130	3.64	30
Surrogate: 4-Bromofluorobenzene	46.7		μg/l		50.0		93.4 96.4	70-130 70-130		
Surrogate: Toluene-d8	48.2 51.0		μg/l		50.0 50.0		90. 4 104	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	51.8 45.8		μg/l μg/l		50.0		91.6	70-130		
· ·			P9 ¹		33.3		•			
Batch 6031617 - SW846 5030 Water	r M19									
Blank (6031617-BLK1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06			4	40.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	1.0						
Benzene Benzene	BRL		μg/l ug/l	1.0 0.5						
Bromobenzene	BRL BRL		μg/l ug/l	0.5 0.5						
Bromochloromethane	BRL		μg/l μg/l	0.5						
Bromodichloromethane	BRL		μg/l	0.5						
Bromoform	BRL		μg/l	0.5						
Bromomethane	BRL		μg/l	0.5						
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	0.5						
sec-Butylbenzene	BRL		μg/l	0.5						
tert-Butylbenzene	BRL		μg/l	0.5						
Carbon disulfide	BRL		μg/l	0.5						
Carbon tetrachloride	BRL		μg/l	0.5						
Chlorobenzene	BRL		μg/l	0.5						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	0.5						
Chloroform	BRL		μg/l	0.5						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6031617 - SW846 5030 Water	MS									
Blank (6031617-BLK1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Chloromethane	BRL		μg/l	0.5						
2-Chlorotoluene	BRL		μg/l	0.5						
4-Chlorotoluene	BRL		μg/l	0.5						
1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	0.5						
1,2-Dichlorobenzene	BRL		μg/l	0.5						
1,3-Dichlorobenzene	BRL		μg/l	0.5						
1,4-Dichlorobenzene	BRL		μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	0.5						
1,1-Dichloroethane	BRL		μg/l	0.5						
1,2-Dichloroethane	BRL		μg/l	0.5						
1,1-Dichloroethene	BRL		μg/l	0.5						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	0.5						
trans-1,2-Dichloroethene	BRL		μg/l	0.5						
1,2-Dichloropropane	BRL		μg/l	0.5						
1,3-Dichloropropane	BRL		μg/l	0.5						
2,2-Dichloropropane	BRL		μg/l	0.5						
1,1-Dichloropropene	BRL		μg/l	0.5						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachtorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	0.5						
4-Isopropyltoluene	BRL		μg/l	0.5						
Methyl tert-butyl ether	BRL		μg/l	0.5						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	0.5						
Naphthalene	BRL		μg/l	0.5						
Naphthalene	BRL		μg/l	1.0						
n-Propylbenzene	BRL		μg/l	0.5						
Styrene	BRL		μg/l	0.5						
1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	0.5						
Toluene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	0.5						
1,2,3-Trichlorobenzene	BRL		μg/l	0.5						
1,2,4-Trichlorobenzene	BRL		μg/l	0.5						
1,1,1-Trichloroethane	BRL		μg/l	0.5						
1,1,2-Trichloroethane	BRL		μg/l	0.5						
Trichloroethene	BRL		μg/l	0.5						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5						
1,2,3-Trichloropropane	BRL		μg/l	0.5						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	0.5						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	0.5						
Vinyl chloride	BRL		μg/l	0.5						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6031617 - SW846 5030 Water	MS									
Blank (6031617-BLK1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
m,p-Xylene	BRL		μg/l	2.0						
m,p-Xylene	BRL		µg/l	0.5						
o-Xylene	BRL		μg/l	1.0						
o-Xylene	BRL		μg/l	0.5						
Tetrahydrofuran	BRL		μg/l	10.0						
Tert-amyl methyl ether	BRL		μg/l	0.5						
Ethyl tert-butyl ether	BRL			0.5						
Di-isopropyl ether	BRL.		μg/l ug/l	0.5						
Tert-Butanoi / butyl alcohol	BRL		μg/l	10.0						
	48.4		μg/l	10.0	50.0		96.8	70-130		
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	48.4 48.4		μg/l μg/l		50.0 50.0		96.8	80-120		
Surrogate: 4-Bromoniuorobenzene Surrogate: Toluene-d8	50.6		μg/l		50.0 50.0		101	80-120 80-120		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	41.5		μg/l		50.0		83.0	80-120		
Surrogate: 1,2-Dichloroethane-d4	41.5		μg/l		50.0		83.0	70-130		
Surrogate: Dibromofluoromethane	43.8		μg/l		50.0		87.6	80-120		
Surrogate: Dibromofluoromethane	43.8		μg/l		50.0		87.6	70-130		
LCS (6031617-BS1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Acetone	22.0		μg/l		20.0		110	70-130		
Acrylonitrile	20.0		μg/l		20.0		100	70-130		
Benzene	19.1		μg/l		20.0		95.5	80-120		
Benzene	19.1		μg/l		20.0		95.5	70-130		
Bromobenzene	22.1		μg/l		20.0		110	80-120		
Bromochloromethane	18.5		μg/l		20.0		92.5	80-120		
Bromodichloromethane	24.0		μg/l		20.0		120	80-120		
Bromoform	26.1	QC-2	μg/l		20.0		130	80-120		
Bromomethane	23.8		μg/l		20.0		119	80-120		
2-Butanone (MEK)	17.0		μg/l		20.0		85.0	70-130		
n-Butylbenzene	19.0		μg/l		20.0		95.0	80-120		
sec-Butylbenzene	20.3		μg/l		20.0		102	80-120		
tert-Butylbenzene	20.0		μg/l		20.0		100	80-120		
Carbon disulfide	21.2		μg/l		20.0		106	70-130		
Carbon tetrachloride	20.2		μg/l		20.0		101	80-120		
Chlorobenzene	21.5		μg/l		20.0		108	80-120		
Chloroethane	19.1		μg/l		20.0		95.5	80-120		
Chloroform	18.1		μg/l		20.0		90.5	80-120		
Chloromethane	25.5	QC-2	μg/l		20.0		128	80-120		
2-Chlorotoluene	20.3		μg/l		20.0		102	80-120		
4-Chlorotoluene	19.9		μg/l		20.0		99.5	80-120		
1,2-Dibromo-3-chloropropane	20.2		μg/l		20.0		101	80-120		
Dibromochloromethane	25.8	QC-2	μg/l		20.0		129	80-120		
1,2-Dibromoethane (EDB)	21.2		μg/l		20.0		106	80-120		
Dibromomethane	20.6		μg/l		20.0		103	80-120		
1,2-Dichlorobenzene	21.2		μg/l		20.0		106	80-120		
1,3-Dichlorobenzene	21.8		μg/l		20.0		109	80-120		
1,4-Dichlorobenzene	20.2		μg/l		20.0		101	80-120		
Dichlorodifluoromethane (Freon12)	24.0		μg/l		20.0		120	80-120		
1,1-Dichloroethane	19.5		μg/l		20.0		97.5	80-120		
1,2-Dichloroethane	17.2		μg/l		20.0		86.0	80-120		
1,1-Dichloroethene	20.8		μg/l		20.0		104	80-120		
cis-1,2-Dichloroethene	18.3		μg/l		20.0		91.5	80-120		
trans-1,2-Dichloroethene	18.4		μg/l		20.0		92.0	80-120		
1,2-Dichloropropane	21.8		μg/l		20.0		109	80-120		•
1,3-Dichloropropane	20.9				20.0		104	80-120		
110 Significiopropulio	20.8		µg/l		20.0		10-7	55 .20		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		- Trug	Omis	102	Bever		, or CD -	2,,,,,,,		
Batch 6031617 - SW846 5030 Water	MS									
.CS (6031617-BS1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
2,2-Dichloropropane	6.0	QC-2	μg/l		20.0		30.0	80-120		
1,1-Dichloropropene	16.2		μg/l		20.0		81.0	80-120		
cis-1,3-Dichloropropene	16.4		µg/l		20.0		82.0	80-120		
rans-1,3-Dichloropropene	16.1		μg/l		20.0		80.5	80-120		
Ethylbenzene	21.1		μg/l		20.0		106	70-130		
Ethylbenzene	21.1		µg/l		20.0		106	80-120		
Hexachlorobutadiene	19.5		μg/l		20.0		97.5	80-120		
2-Hexanone (MBK)	18.2		µg∕l		20.0		91.0	70-130		
sopropylbenzene	20.2		μg/l		20.0		101	80-120		
1-Isopropyltoluene	19.8		μg/l 		20.0		99.0	80-120		
Methyl tert-butyl ether	19.3		μg/l "		20.0		96.5	80-120		
Methyl tert-butyl ether	19.3		μg/l 		20.0		96.5	70-130		
4-Methyl-2-pentanone (MIBK)	17.3		μg/l		20.0		86.5	70-130		
Methylene chloride	18.9		μg/l		20.0		94.5	80-120		
Naphthalene	18.0		μg/l		20.0		90.0	70-130		
Naphthalene	18.0		μg/l		20.0		90.0	80-120		
n-Propylbenzene	20.4		μg/l		20.0		102	80-120		
Styrene	21.0		μg/l 		20.0		105	80-120		
1,1,1,2-Tetrachloroethane	23.9		μg/l "		20.0		120	80-120		
1,1,2,2-Tetrachloroethane	22.5		μg/l		20.0		112	80-120		
Tetrachloroethene	20.7		μg/l 		20.0		104	80-120		
Toluene	20.2		μg/l		20.0		101	80-120		
Coluene	20.2		μg/l		20.0		101	70-130		
1,2,3-Trichlorobenzene	21.8		μg/l		20.0		109	80-120		
I,2,4-Trichlorobenzene	19.7		μg/l		20.0		98.5	80-120		
I,1,1-Trichloroethane	16.0		μg/l		20.0		80.0 107	80-120 80-120		
1,1,2-Trichloroethane	21.4		μg/l		20.0		107	80-120		
Frichloroethene	20.3		μg/l		20.0		102	80-120		
Frichlorofluoromethane (Freon 11)	21.8		μg/l		20.0		116	80-120		
1,2,3-Trichloropropane	23.3		μg/l /l		20.0		103	80-120		
1,2,4-Trimethylbenzene	20.6		μg/l		20.0 20.0		103	70-130		
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	20.6		μg/l		20.0		99.5	70-130		
1,3,5-Trimetrylbenzene	19.9 19.9		μg/l		20.0		99.5	80-120		
/inyl chloride	21.1		μg/l		20.0		106	80-120		
m,p-Xylene	41.6		μg/l		40.0		104	70-130		
n,p-Xylene	41.6		μg/l		40.0		104	80-120		
o-Xylene	21.6		µg/l µg/l		20.0		108	70-130		
o-Xylene	21.6		μg/l		20.0		108	80-120		
Fetrahydrofuran	16.5		μg/l		20.0		82.5	70-130		
Tert-amyl methyl ether	23.7		μg/l		20.0		118	70-130		
Ethyl tert-butyl ether	16.9		μg/l		20.0		84.5	70-130		
Di-isopropyl ether	17.0		μg/l		20.0		85.0	70-130		
Tert-Butanol / butyl alcohol	186		μg/l		200		93.0	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	80-120		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	80-120 80-120		
Surrogate: 1,2-Dichloroethane-d4	40.1		μg/l		50.0 50.0		80.2 80.2	80-120 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	40.1 43.6		μg/l μg/l		50.0 50.0		87.2	80-120		
Surrogate: Dibromoliuoromethane Surrogate: Dibromofluoromethane	43.6 43.6		μg/l		50.0		87.2	70-130		
-			, •							
<u>_CS Dup (6031617-BSD1)</u> Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Benzene	16.8		uo/i		20.0		84.0	70-130	12.8	30
DOMESTIC	10.0		μg/l		20.0		50	. 5 . 50		-

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Result	riag	Offics	·KDL	Level	Result	70ICLC	Lillies	NI D	Dillil
Batch 6031617 - SW846 5030 Water	MS									
LCS Dup (6031617-BSD1)										
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Ethylbenzene	17.7		μg/l		20.0		88.5	70-130	18.0	30
Methyl tert-butyl ether	18.4		μg/l		20.0		92.0	70-130	4.77	30
Naphthalene	15.5		μg/l		20.0		77.5	70-130	14.9	30
Toluene	17.5		μg/l		20.0		87.5	70-130	14.3	30
1,2,4-Trimethylbenzene	17.2				20.0		86.0	70-130	18.0	30
1,3,5-Trimethylbenzene	16.2		μg/l α/l		20.0		81.0	70-130	20.5	30
m,p-Xylene	35.1		μg/l ug/l		40.0		87.8	70-130	16.9	30
			μg/l //				95.5	70-130	12.3	30
o-Xylene	19.1		μg/l		20.0			70-130	12.3	30
Surrogate: 4-Bromofluorobenzene	51.1		μg/l		50.0		102 101	70-130 70-130		
Surrogate: Toluene-d8	50.3		μg/l		50.0 50.0		80.6	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	40.3 43.2		μg/l		50.0 50.0		86.4	70-130 70-130		
Surrogate: Dibromofluoromethane	43.2		μg/l		30.0		00.4	70 700		
Matrix Spike (6031617-MS1) Source	: SA42493-05									
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Benzene	16.5		μg/l		20.0	BRL	82.5	70-130		
Benzene	16.5		μg/l		20.0	BRL	82.5	80-120		
Chlorobenzene					20.0	BRL	102	70-130		
	20.5		μg/l					80-120		
Chlorobenzene	20.5		µg/l		20.0	BRL	102	70-130		
1,1-Dichloroethene	18.9		μg/l		20.0	1.57	86.6			
1,1-Dichloroethene	18.9		μg/l		20.0	1.57	86.6	80-120		
Toluene	18.2		µg/l		20.0	BRL	91.0	80-120		
Toluene	18.2		μg/l		20.0	BRL	91.0	70-130		
Trichloroethene	18.9		μg/l		20.0	BRL	94.5	70-130		
Trichloroethene	18.9		μg/l		20.0	BRL	94.5	80-120		
Surrogate: 4-Bromofluorobenzene	48.2		μg/l		50.0		96.4	80-120		
Surrogate: 4-Bromofluorobenzene	48.2		μg/l		50.0		96.4	70-130		
Surrogate: Toluene-d8	49.5		µg/l		50.0		99.0	80-120		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	40.9		μg/l		50.0		81.8	80-120		
Surrogate: 1,2-Dichloroethane-d4	40.9		μg/l		50.0		81.8	70-130		
Surrogate: Dibromofluoromethane	42.9		μg/l		50.0		85.8	80-120		
Surrogate: Dibromofluoromethane	42.9		μg/l		50.0		85.8	70-130		
Matrix Spike Dup (6031617-MSD1) Source	: SA42493-05									
Prepared: 28-Mar-06 Analyzed: 29-Mar-06										
Benzene	16.8		μg/l		20.0	BRL	84.0	70-130	1.80	30
Benzene	16.8		μg/l		20.0	BRL	84.0	80-120	1.80	20
Chlorobenzene	20.3		μg/l		20.0	BRL	102	70-130	0.00	30
Chlorobenzene	20.3				20.0	BRL	102	80-120	0.00	20
1,1-Dichloroethene	20.3 19.0		μg/l ug/l		20.0	1.57	87.2	80-120	0.690	20
· ·			μg/l		20.0	1.57	87.2	70-130	0.690	30
1,1-Dichloroethene	19.0		μg/l		20.0	BRL	92.5	80-120	1.63	20
Toluene	18.5		μg/l /					70-130	1.63	30
Toluene	18.5		μg/l		20.0	BRL	92.5			30
Trichloroethene	19.4		µg/l		20.0	BRL	97.0	70-130	2.61	
Trichloroethene	19.4		μg/l		20.0	BRL	97.0	80-120	2.61	20
Surrogate: 4-Bromofluorobenzene	48.5		μg/l		50.0		97.0	70-130		
Surrogate: 4-Bromofluorobenzene	48.5		μg/I		50.0		97.0	80-120 70-120		
Surrogate: Toluene-d8	49.6		μg/l		50.0		99.2	70-130 80-120		
Surrogate: Toluene-d8	49.6		μg/l /		50.0		99.2 80.8	70-120		
Surrogate: 1,2-Dichloroethane-d4	40.4		μg/l		50.0 50.0		80.8	80-120		
Surrogate: 1,2-Dichloroethane-d4	40.4		µg/l		50.0 50.0		80.8 87.8	80-120 80-120		
Surrogate: Dibromofluoromethane	43.9 43.9		μg/l		50.0 50.0		87.8	70-130		
Surrogate: Dibromofluoromethane	43.3		μg/l		50.0		37.0	. 5 150		

Batch 6031652 - SW846 5030 Water MS

Blank (6031652-BLK1)

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
D 4.1. (021/52 SW94/ 502)	O Water MC	:	,	-						
Batch 6031652 - SW846 503	u water MS									
Prepared & Analyzed: 29-Mar-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
•				1.0						
laphthalene	BRL		μg/l							
oluene	BRL		μg/l	1.0						
Trichloroethene	BRL		µg/l	1.0						
,2,4-Trimethylbenzene	BRL		µg/l	1.0						
,3,5-Trimethylbenzene	BRL		μg/l	1.0						
n,p-Xylene	BRL		μg/l	2.0						
-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	46.3		μg/l		50.0		92.6	70-130		
Surrogate: Toluene-d8	49.4		μg/l		50.0		98.8	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.7		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-u4 Surrogate: Dibromofluoromethane	46.1		μg/l		50.0		92.2	70-130		
ourrogate. Dibromondoromethane	40.1		רט"		55.0					
_CS (6031652-BS1)			•							
Prepared & Analyzed: 29-Mar-06										
Benzene	21.7		μg/l		20.0		108	70-130		
					20.0		95.5	70-130		
Ethylbenzene	19.1		μg/l				102	70-130		
Methyl tert-butyl ether	20.5		μg/l		20.0					
Naphthalene	18.6		µg/l		20.0		93.0	70-130		
Toluene	20.2		μg/l		20.0		101	70-130		
1,2,4-Trimethylbenzene	17.5		μg/l		20.0		87.5	70-130		
1,3,5-Trimethylbenzene	17.1		μg/l		20.0		85.5	70-130		
m,p-Xylene	37.1		μg/l		40.0		92.8	70-130		
					20.0		91.0	70-130		
o-Xylene	18.2		μg/l		50.0		94.0	70-130		
Surrogate: 4-Bromofluorobenzene	47.0		μg/l		50.0 50.0		97.2	70-130		
Surrogate: Toluene-d8	48.6		μg/i		50.0 50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/i		50.0 50.0		94.2	70-130		
Surrogate: Dibromofluoromethane	47.1		μg/l		30.0		34.2	70-100		
LCS Dup (6031652-BSD1)										
Prepared & Analyzed: 29-Mar-06										
Benzene	19.8		μg/l		20.0		99.0	70-130	8.70	30
					20.0		88.0	70-130	8.17	30
Ethylbenzene	17.6		μg/l				91.5	70-130	10.9	30
Methyl tert-butyl ether	18.3		μg/l		20.0					
Naphthalene	17.9		µg/l		20.0		89.5	70-130	3.84	30
Toluene	18.8		μg/l		20.0		94.0	70-130	7.18	30
1,2,4-Trimethylbenzene	16.1		μg/l		20.0		80.5	70-130	8.33	30
1,3,5-Trimethylbenzene	15.8		μg/l		20.0		79.0	70-130	7.90	30
m,p-Xylene	34.8		μg/l		40.0		87.0	70-130	6.45	30
•	17.0				20.0		85.0	70-130	6.82	30
o-Xylene			μg/l		50.0		94.6	70-130		
Surrogate: 4-Bromofluorobenzene	47.3		μg/l		50.0 50.0		94.6 98.4	70-130 70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0 50.0		99.8	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0 50.0		89.2	70-130 70-130		
Surrogate: Dibromofluoromethane	44.6		μg/l		50.0		UJ.Z	, 0 100		
Matrix Spike (6031652-MS1)	Source: SA42319-07									
Prepared & Analyzed: 29-Mar-06										
Benzene	23.5		μg/l		20.0	BRL	118	70-130		
					20.0	BRL	95.5	70-130		
Chlorobenzene	19.1	014.07	μg/l			BRL	178	70-130		
1,1-Dichloroethene	35.5	QM-07	μg/l		20.0					
Toluene	21.0		μg/l		20.0	BRL	105	70-130		
Trichloroethene	21.5		μg/l		20.0	BRL	108	70-130		
Surrogate: 4-Bromofluorobenzene	46.0		μg/l		50.0		92.0	70-130		
Surrogate: Toluene-d8	47.3		μg/l		50.0		94.6	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.4		μg/l		50.0		98.8	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		1 145		- RDB	20101		701000	2		
Batch 6031652 - SW846 503	0 Water MS									
Matrix Spike (6031652-MS1) Prepared & Analyzed: 29-Mar-06	Source: SA42319-07									
Surrogate: Dibromofluoromethane	46.2		μg/l		50.0		92.4	70-130		
Matrix Spike Dup (6031652-MSD1)	Source: SA42319-07									
Prepared & Analyzed: 29-Mar-06										
Benzene	24.1		μg/l		20.0	BRL	120	70-130	1.68	30
Chlorobenzene	19.0		μg/l		20.0	BRL	95.0	70-130	0.525	30
,1-Dichloroethene	39.2	QM-07	μg/l		20.0	BRL	196	70-130	9.63	30
oluene	21.5		μg/l		20.0	BRL.	108	70-130	2.82	30
richloroethene	22.3		μg/l		20.0	BRL	112	70-130	3.64	30
Surrogate: 4-Bromofluorobenzene	44.8		μg/l		50.0		89.6	70-130		
Surrogate: Toluene-d8	47.0		μg/l		50.0		94.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.8		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	46.9		μg/l		50.0		93.8	70-130		
Batch 6031740 - SW846 503	0 Water MS									
Blank (6031740-BLK1)										
Prepared & Analyzed: 30-Mar-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene	BRL			1.0						
			µg/l							
,1-Dichloroethene	BRL		μg/l	1.0						
thylbenzene	BRL		μg/l	1.0						
lethyl tert-butyl ether	BRL		μg/l	1.0						
laphthalene	BRL		μg/l	1.0						
oluene	BRL		μg/l	1.0						
richloroethene	BRL		μg/l	1.0						
,2,4-Trimethylbenzene	BRL		μg/l	1.0						
,3,5-Trimethylbenzene	BRL			1.0						
•			μg/l	2.0						
n,p-Xylene	BRL		μg/l	2.0 1.0						
-Xylene	BRL	_ 	µg/l	1.0	50.0		93.4	70-130		
Surrogate: 4-Bromofluorobenzene	46.7		μg/l		50.0 50.0		103	70-130 70-130		
Surrogate: Toluene-d8	51.4 50.0		μg/l		50.0 50.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.8		μg/l		50.0 50.0		96.2	70-130		
Surrogate: Dibromofluoromethane	48.1		μg/l		50.0		50.2	70-130		
.CS (6031740-BS1)										
Prepared & Analyzed: 30-Mar-06										
Benzene	22.6		μg/l		20.0		113	70-130		
Ethylbenzene	18.7		μg/l		20.0		93.5	70-130		
Methyl tert-butyl ether	20.6		μg/l		20.0		103	70-130		
Naphthalene	17.5		μg/l		20.0		87.5	70-130		
Toluene	20.4		μg/l		20.0		102	70-130		
,2,4-Trimethylbenzene	17.1		μg/l		20.0		85.5	70-130		
,3,5-Trimethylbenzene	16.9		μg/l		20.0		84.5	70-130		
n,p-Xylene	36.7				40.0		91.8	70-130		
			μg/l		20.0		92.0	70-130		
o-Xylene	18.4		μg/l				92.0	70-130		
Surrogate: 4-Bromofluorobenzene	46.0		μg/l		50.0		92.0 99.6	70-130 70-130		
Surrogate: Toluene-d8	49.8 51.7		μg/l		50.0 50.0		99.6 103	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.7 48.2		μg/l μg/l		50.0 50.0		96.4	70-130 70-130		
Surrogate: Dibromofluoromethane _CS Dup (6031740-BSD1)	70.2		ra''		00.0					
Prepared & Analyzed: 30-Mar-06										
Benzene	23.8		μg/l		20.0		119	70-130	5.17	30
Ethylbenzene	19.7		μg/l		20.0		98.5	70-130	5.21	30
•					20.0		103	70-130	0.00	30
Methyl tert-butyl ether	20.6		μg/l		20.0		89.0	70-130	1.70	30
			11/1/1		20.0		U.GO	10-130	1.70	JU
Naphthalene Toluene	17.8 21.4		μg/l μg/l		20.0		107	70-130	4.78	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6031740 - SW846 503	0 Water MS									
LCS Dup (6031740-BSD1)										
Prepared & Analyzed: 30-Mar-06										
1,2,4-Trimethylbenzene	17.5		μg/l		20.0		87.5	70-130	2.31	30
1,3,5-Trimethylbenzene	17.6		μg/l		20.0		88.0	70-130	4.06	30
m,p-Xylene	38.4		μg/l		40.0		96.0	70-130	4.47	30
o-Xylene	19.1		μg/l		20.0		95.5	70-130	3.73	30
Surrogate: 4-Bromofluorobenzene	46.6		μg/l		50.0		93.2	70-130		
Surrogate: Toluene-d8	50.1		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.1		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	48.9		μg/l		50.0		97.8	70-130		
Matrix Spike (6031740-MS1)	Source: SA42545-01									
Prepared & Analyzed: 30-Mar-06										
Benzene	108		μg/l		20.0	83.1	124	70-130		
Chlorobenzene	24.1		μg/I		20.0	BRL	120	70-130		
1,1-Dichloroethene	38.2	QM-07	μg/l		20.0	BRL	191	70-130		
Toluene	31.8		μg/l		20.0	6.13	128	70-130		
Trichloroethene	26.3	QM-07	μg/l		20.0	BRL	132	70-130		
Surrogate: 4-Bromofluorobenzene	49.8		µg/l		50.0		99.6	70-130		•
Surrogate: Toluene-d8	47.8		μg/l		50.0		95.6	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.8		µg/l		50.0		99.6	70-130		
Surrogate: Dibromofluoromethane	46.4		µg/l		50.0		92.8	70-130		
Matrix Spike Dup (6031740-MSD1)	Source: SA42545-01									
Prepared & Analyzed: 30-Mar-06										
Benzene	103		μg/l		20.0	83.1	99.5	70-130	21.9	30
Chlorobenzene	17.4	QR-02	μg/l		20.0	BRL	87.0	70-130	31.9	30
1,1-Dichloroethene	28.5	QM-07	μg/l		20.0	BRL	142	70-130	29.4	30
Toluene	25.4		μg/l		20.0	6.13	96.4	70-130	28.2	30
Trichloroethene	19.4	QR-02	μg/l		20.0	BRL	97.0	70-130	30.6	30
Surrogate: 4-Bromofluorobenzene	46.5		μg/l		50.0		93.0	70-130		
Surrogate: Toluene-d8	47.6		μg/l		50.0		<i>95.2</i>	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.5		μg/l		50.0		99.0	70-130		
Surrogate: Dibromofluoromethane	46.3		μg/l		50.0		92.6	70-130		

Notes and Definitions

- QC-2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample
- QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data
- S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 1 of 3

Special Handling: Special Handling: ✓ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.

Report To: <u>EC</u>	S		Invoi	ce To:]	Project	No.: ∠	18-1	205	686.0	0	
65 MILLET	ST. SUITE	301	=										Site Nai	me: _ረ	aux	NDE	KRY_	CITEO	
Kichnowo	, UT 05477								200-	2116]	Location	n:	aus	w D	EKRY	Sta	ite: VT
Project Men			$ \frac{1}{R}$	T						146		ı i					٠.	TEATHER LAD	
	=HCl 3=H ₂ SO ₄		P.O. 1				<u> </u>		ntain	T PC	<u> </u>		F -		yses:		·	QA Repor	
	-11C1 3-11 ₂ 3O ₄ 3 : NaHSO ₄ 9=				<u></u>			Co	mtain	ers:				Ana	yses.			(check if	
	Water GW=Grou											34						☐ Provide MA DEF	
O=Oil SW=S	Surface Water SC	=Soil SL=Sl	udge A=Air				als	Jass	ass			18						☐ Provide CT DPH	-
XI=	X2=					Preservative	of VOA Vials	of Amber Glass	of Clear Glass	tic		2	!					QA/QC Rep ☐ Standard	
	G=Grab C=	Composite	T	ن آ	, <u>×</u>	erva	ΛΟ,	Aml	Cle	of Plastic	:	1/6						☐ Other	
Lab Id:	Sample Id:	Date:	Time:	Туре	Matrix	Pres	Jo#	# of		# of	1	91400						State specific rep	orting standards:
4251601	Thip	3/2//06	0.700	G	Gω	2	2					×							
\sim \sim	MW-53	1	1340			1	1.					a							·
05	UW-52		1345	\prod								П							
04	MW-6		1350																
OS	Mw-7		1355																
06	11w-3		1400																
07	MW-4		1415																
08	MW-IR		1410																
1 09	11w-11		1405									\prod							
V (0)	MW-2R	V	1425	V	1	\bigvee	1				,	V							
E Fox regults	when available to (`				Reli	nquis	shed	by:					Recei	ved by	/:	•	Date:	Time:
İ	when available to (11	1/10		12	1	_									3/21/02	1730
	OUI AN E ESZON			1	<u>~ ~</u>	~!	01					9		HD.	11	1 0	2/	3/23/11	941)
	receipt: Ticed D		<i>-</i> ,		_	t								,,,,,,		A	<i>×</i> /	104/00	

Featuring

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Special Handling:

✓ Standard TAT - 7 to 10 business days
☐ Rush TAT - Date Needed:

All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

Report To: _E		· · · · · · · · · · · · · · · · · · ·	Invoid	ce To:								I	Project	. No.: _	08	<u>-265</u>	686.	00			
65 MILL	T ST. SUITE	301		>								5	Site Na	ame: _	LON	וניסס	DERR	9 (21560		_
AICHMONE	D, WT 0547	7																	Stat		-
Project Mgr.: _	MIKE DORM)	P.O. 1	No.: _				RQ	N: _1	110	CF	5	Sample	er(s): 4	HIK	E D	urn	<u>ر</u>	HEATHER (LOUKE	
	=HCl 3=H ₂ SO ₄ 4 = NaHSO ₄ 9=							Co	ntain	ers:		•		Ana	lyses	:			QA Reporti		
O=Oil SW= S	Water GW=Groun Surface Water SO X2=	=Soil SL=S	Sludge A=Air		1	tive	Vials	of Amber Glass	r Glass	ic		Vr 502							☐ Provide MA DEP☐ Provide CT DPH☐ QA/QC Repo☐ Standard	RCP Report	port
Lab Id:	G=Grab C=C Sample Id:	Composite Date:	Time:	Type	Matrix	Preservative	# of VOA Vials		# of Clear Glass	# of Plastic		9/208							OtherState specific repo		_ s:
12516-11	MW-10	3/21/06	1430	G	CW	<u>_</u>	2					*									
12	MW-8	1	1420	,		٠,	1					9									
).3	DUP		1435																		
1 19	CHURCH		10 30																		
15	CHUKCH STORE		1045																		
16	KOGERS		1345																		
17	ROWLEY		0940									\prod									
18	PLATT		1150																		
N/ 19	JELLY		1110									1/									
20	CORDON	1	1210	4	V	1	V					J									
☐ Fay results	when available to ()				Reli	nqui	shed	by:					Recei	ved b	y:			Date:	Time:	
	☐ Fax results when available to () ☐ E-mail to							ih,	,										3/21/06	1730	
							20	Z	1			خ		In	UL	M	S		3/23/06	940)
	receipt: 🗹 Iced 🗆 A					1													777		

5 AM 2516

Featuring

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page ______ of _______

Special Handling:

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

- All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Report To:	رّع		Invoic	e To:								.	Proje	ect No.:	0	8-2	056.86.	60	
l	ET ST. SUIDE		_	\								-	Site	Name:		مده	SNOGZ	RY CATGO	
RICHMON	10, VT 05477	7	-	<u> </u>								-	Loca	tion: _	ىدە	00~~	ERRY	Sta	te: _ VT
Project Mgr.: _	MIKE DORN		P.O. N	lo.:				RQ	N: 🔽	+ 0	CE	-	Sam	pler(s):	μı	KE	Dorwi	HEATHER !	LOUKE
	=HCl 3=H ₂ SO ₄ 4 = NaHSO ₄ 9=				id —			Coı	ntain	ers:				Ar	nalys	es:		QA Report	
O=Oil SW= S	Water GW=Groun Surface Water SO= X2=	=Soil SL=Sluc	dge A=Air			ve	of VOA Vials	of Amber Glass	of Clear Glass			gozib						☐ Provide MA DEP☐ Provide CT DPH☐ QA/QC Repo	RCP Report
	G=Grab C=C					rvati	OA	mbe	lear (astic	Ì	00	4					☐ Standard ☐ Other	•
Lab Id:	Sample Id:	Time:	Type	Matrix	Preservative	y do #	# of A	# of C	# of Plastic		多少	524					State specific rep		
425/621	JUKER	3/21/04	1310	G	GW	2	2					2							
(33	ALLEN	/ / /	1520		1	1													
	ABDOTT		1130									47							
24	MAN SUPPLY EFF.		1450										2						
11 25	MIN SUPRY INF.		1455	4	4	4							4		\perp				
\ <u>\</u>										. <u> </u>					-				
<u> </u>																			
																		 	
	1 211					Reli	nquis	hed t	oy:			1	}	Rec	eived	by:		Date:	Time:
	when available to (_ when available to (_ when available to (_			H	Ska	~ (In	Di							/			3/22/06	1555
					7	¥	· l	d	X				7		NES	ÜÜ	U	3/23/06	941
Condition upon	receipt: Clced A	mbient □°C	3																

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page ____ of _____

Special Handling:

- ☑ Standard TAT 7 to 10 business days
- ☐ Rush TAT Date Needed:_
- · All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Keport 10: <u>& (</u>	5		Invo	ice To	:								Froject	INO.: Z	<i>J</i> .: *	<u>~03</u>	60 Be. 6				
15 MILLE	T ST. Suisc	501		5									Site Nar	ne: <u>1</u>	100 N	11 DE	1. (≟a <u>j</u>	C1860			
KIRILMOUT	VY 02417																•			ate:	
																	-	e.			
· · · · · · · · · · · · · · · · · · ·	- IKE TORES							RÇ	N: <u>#</u>	8 16.	<i>b</i> :		Sampler	:(s): <u>~</u>	611161	· • • • • • • • • • • • • • • • • • • •	ostas f	HE ATHER	- (-4)	solet	
1=Na ₂ S2O ₃ 2 7=CH ₃ OH 8	$2=HC1 3=H_2SO_4$ $= NaHSO_4 9=\underline{\hspace{1cm}}$	4=HNO ₃ 5=N ₃	aOH 6=Ascor	bic A	cid			Co	ntain	ers:				Ana	lyses	:		QA		ting Notes: f needed)	
O=Oil SW=	Water GW=Grou Surface Water SC X2=	D=Soil SL=Sl	udge A=Air			ve	Vials	of Amber Glass	of Clear Glass			アドルシン						☐ Provid Q A	le CT DPH M QC Re p	P MCP CAM Rep I RCP Report porting Level	ort
	G=Grab C=	Composite				vati	AC.	nbe	ear	astic		- 1				1				□ No QC	
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of A	# of Cl	# of Plastic	6	26214,						1		porting standards	:
	TRIP	3/21/06	6700	6	66	2	2				7	L									_
	d140-53		1540		,	<u> </u>					.										
	1115-52		1345																		
	A110-6	e de la companya de l	1350	distribution of the state of th	1		Charles were														
	1110-7		1355																		•
	dies-3		1400																		
	asiles 4		1415	- Constant																	
:	Dec - 1R	- Sheeperson	1410																		
	3110-11		1405			and the same of th															
	Mu-JR	V	1475	V	1	V	V				V				4.						
☐ Fax results	when available to ()				Rel	inqui	shed	by:]	Recei	ved b	y:		Da	ite:	Time:	
	Edatan Cecsen			, a.	1/71			1										3/21	los	1730	
	12.6.			6			- /-					•						17			
Condition upon	receipt: 🗆 Iced 🗆 .	Ambient □ °C		1											-						
																		1		1	

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Special	Handling:
---------	-----------

✓ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

- All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Report To: 🗷	(=			Invoic	e To:									Project No.: OS	- 765686.00	-	
	T ST. SUITE			- Section 1 to 1										Site Name: 600	DULLVEKTY	circo	
jill llanes an	5 VT 6547	7												Location: <u>دهمان</u>	LNDEEL Y	Sta	te: <u> </u>
Project Mgr.: _	MIKE WORKE	,		P.O. N	lo.:	-			RQ	N: _	T 8 6	۴		Sampler(s): Alve	E Disa-	HEASHER !	ADUK!
	=HCl 3=H ₂ SO ₄ 4 = NaHSO ₄ 9=					id			Co	ntain	ers:			Analyses	:	QA Report	
O=Oil SW=	Water GW=Grou Surface Water SO X2=	=Soil	SL=Sludge	A=Air			ive	Vials	of Amber Glass	of Clear Glass	8	١ ,	1 1000			☐ Provide MA DEP☐ Provide CT DPH☐ QA/QC Rep☐	RCP Report
	G=Grab C=0	Composit	e				rvat	OA	mbe	lear	asti		<i>-</i>			☐ Standard ☐ Other	
Lab Id:	Sample Id:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of A	# of C	# of Plastic	11020	1/200			State specific rep			
	Mw-10	3/21/	06 1	430	6	GW	2	2				7				-	
	Min-8	/ /		120	,	١.	\	. ×				1					
	DUP	1	10	135		ra i sa terme	Ì	i					Service Action				
	CHURCH		10	30			\perp	1									
	CHURCH STORE		10	,45		COMMETENCE											
	KOGERS			345		7											,
	Rowecy		09	940	ŀ												
	PLATT			50	<u> </u>		_										
	Telly		11	10	<u> </u>		-										
	GURDON	1	12	10	4	V	V	Ą)					
☐ Fay results	when available to (_)					Reli	nquis	hed t	oy:				Received	oy:	Date:	Time:
	_				ئر.	F. F. S. S.	1.	11/	1					\$		3/21/06	1750
	A Jorgan Cecsion	15:11-16.	667		1	(In	· · · · · · · · · · · ·	f	n							17/106	
Condition upon	receipt: 🗆 Iced 🗖 A	mbient	□°C														

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page _____ of ______

Special Handling:

☐ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

Report To: <u>£</u>	<u> </u>			се То	:							_	Proje	ect No	: <u> </u>	9 - 2	05656	. 60	
65 MILL	ET ST. SUITE	<u> </u>	ENGLANCE AND ADDRESS OF THE PARTY OF T	-								_	Site	Name:	_ (0 0000	24100 C	Cy 0.760	
Kin it wor	-0,57 6-475	}-		<u> </u>								_	Loca	tion: _	<u> (</u>	A street	De April A	S1	ate: <u>\\\\\</u>
Project Mgr.:	MIKE DURAN		P.O. 1	No.: _				RQ	N: <u>i.</u>	4 8 3	しだ		Sam	pler(s)	: _4;	e C	Cerca ~	/ HERMING	(Araket
	2=HCl 3=H ₂ SO ₄ 4 = NaHSO ₄ 9=			bic A	cid			Co	ntain	ers:		- ·		A	nalys	es:		 	rting Notes: if needed)
O=Oil SW=	Water GW=Grour Surface Water SO= X2= G=Grab C=C	=Soil SL=Slu X3=	udge A=Air		7	ative	A Vials	of Amber Glass	of Clear Glass	tic		Saw 80216	7					Provide CT DP	P MCP CAM Report H RCP Report porting Level I No QC
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of Am	# of Clea	# of Plastic		A SOW	524.					OtherState specific re	porting standards:
	JUKER	3/21/16	1310	G	GN	2	2					2							
	ALLEN	1 , "	1720	and the same	Care														
	A DOTT	ĺ	1170									4							
	MAIN SUPPLY LIF		1450										2						
	MAND SHAP INF.	V	1455	4	+	4							₽ 						
☐ Fax results	when available to ()	•		- 15	Reli	nquis	shed l	by:	 -				Red	eive	l by:		Date:	Time:
E-mail to	ndoran@ pescons	sull com		Ħ	spe.	n (Dar	ببكر										3/22/06	1555
EDD Format																			
Condition upon	receipt:	mbient □°C																	

Report Date: 02-May-06 10:58

Final Report
Re-Issued Report

☐ Revised Report :

Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Mike Doran

Project: Londonderry Citgo - Londonderry, VT

Project 08-205686.00

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA43784-01	Breznick	Ground Water	17-Apr-06 10:30	19-Apr-06 09:36
SA43784-02	Thorne-Thompson EFF	Ground Water	17-Apr-06 12:15	19-Apr-06 09:36
SA43784-03	Thorne-Thompson MID	Ground Water	17-Apr-06 12:20	19-Apr-06 09:36
SA43784-04	Thorne-Thompson INF	Ground Water	.17-Apr-06 12:25	19-Apr-06 09:36
SA43784-05	Platte	Ground Water	17-Apr-06 12:40	19-Apr-06 09:36

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 7 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777

Florida # E87600/E87936 Maine # MA138

Maine # MA130

New Hampshire # 2538/2972

New York # 11393/11840

Rhode Island # 98

USDA # S-51435

Vermont # VT-11393

Hanibal C. Tayeh, Ph.D.
President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

Sample Identification	1
Breznick	
SA43784-01	

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 17-Apr-06 10:30

CAS NO	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
	ed by method SW846 503	30 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	25-Apr-06	26-Apr-06	6041510	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1		u	ü	а	п
1634-04-4	Methyl tert-butyl ether	BRL .		μ g /l	1.0	1	n .	a	b	u	и
91-20-3	Naphthalene	BRL		μg/l	1.0	1		0	o	u	
108-88-3	Toluene	BRL		μ g /l	1.0	1	n	n	и	а	
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g /l	1.0	1	n	u	II	u	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	n	u	п	u	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	II .	a	a	п	n
95-47-6	o-Xylene	BRL		μg/l	1.0	1	11	n	e e	u	11
Surrogate	recoveries:					**					
460-00-4	4-Bromofluorobenzene	96.0		70-130	%			п	u	н	n
2037-26-5	Toluene-d8	97.3		70-130				п	n	В	n
17060-07-0	1,2-Dichloroethane-d4	80.7		70-130			n	н	u	u	u
1868-53-7	Dibromofluoromethane	82.0		70-130			ıı	и	u	v	n
<u> </u>											
	ple Identification		Clien	t Proiect #	‡	Matrix	Collectio	n Date/Tin	ne	Receive	ed
Tho	rne-Thompson EFF			t Project # 05686.00		<u>Matrix</u> round Wat		<u>n Date/Tin</u> r-06 12:15		Receive	
Tho				<u>t Project #</u> 05686.00		<u>Matrix</u> round Wat		<u>n Date/Tin</u> r-06 12:15		Receive 19-Apr-	
Thor SA4:	rne-Thompson EFF	Result								19-Apr-(06
Thor SA4:	rne-Thompson EFF 3784-02 Analyte(s)	Result	08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:15		19-Apr-(06
Thor SA4: CAS No. Volatile	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds	Result	08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:15		19-Apr-(06
Thor SA4: CAS No. Volatile Volatile O	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B		08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:15		19-Apr-(06
Thors SA4. CAS No. Volatile Volatile OPrepare	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B ord by method SW846 503	30 Water MS	08-2	05686.00 Units	* <i>RDL</i>	round Wat	er 17-Ap	Prepared	Analyzed	Batch	06 Analys
Thore SA4: CAS No. Volatile Operation of the Color of t	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B od by method SW846 503 Benzene	30 Water MS BRL	08-2	Units	* <i>RDL</i>	Dilution	er 17-Ap	r-06 12:15		Batch	06
CAS No. Volatile Volatile O Prepare 71-43-2 100-41-4	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B od by method SW846 503 Benzene Ethylbenzene	30 Water MS BRL BRL	08-2	Units µg/l µg/l	***RDL 1.0 1.0	Dilution	er 17-Ap	Prepared	Analyzed	Batch	06 Analys
Thorself SA4: CAS No. Volatile Over the Volati	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Description of the body method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether	30 Water MS BRL BRL BRL	08-2	Units µg/l µg/l µg/l	**RDL 1.0 1.0 1.0	Dilution 1 1	er 17-Ap	Prepared	Analyzed	Batch	06 Analys
Thorself SA4: CAS No. Volatile O Prepare 71-43-2 100-41-4 1634-04-4 91-20-3	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B o	30 Water MS BRL BRL BRL BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0	Dilution 1 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch	06 Analys
Thor SA4: CAS No. Volatile O Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds Irganic Compounds by 8260B I	80 Water MS BRL BRL BRL BRL BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch	06 Analys
Thor SA4: CAS No. Volatile Concept of the Concept	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds b	BO Water MS BRL BRL BRL BRL BRL BRL BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch	06 Analys
Thor SA4: CAS No. Volatile Oprepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch	06 Analys
Thot SA4: CAS No. Volatile OPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds organic Compo	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	Dilution 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch	06 Analys
Thor SA4: CAS No. Volatile O Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds organic Compounds organic Compounds by 8260B organic Compounds organic Compou	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	Batch	Analys
Thor SA4: CAS No. Volatile Concept of the second of the	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds by 8260B organic Compounds organi	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	Batch	Analys
Thor SA4: CAS No. Volatile Corperate 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds organic Co	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	ир/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	Batch	Analys
Thor SA4: CAS No. Volatile O Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	rne-Thompson EFF 3784-02 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds by 8260B organic Compounds organi	BO Water MS BRL BRL BRL BRL BRL BRL BRL BR	08-2	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	Batch	Analys

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 17-Apr-06 12:20

CAS NO	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile C	rganic Compounds by 8260B										
,	ed by method SW846 503	30 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	25-Apr-06	26-Apr-06	6041510	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n	n	b	u	
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	а	n	D	a	u
91-20-3	Naphthalene	BRL		μg/l	1.0	1	a	n	1)	u	u
108-88-3	Toluene	BRL		μg/l	1.0	1	u	u	0	n	a
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	n		0	1)	a
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	n	n	11
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	н	n	n	1)	4
95-47-6	o-Xylene	BRL		μg/l	1.0	1	п	n	11	11	11
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	92.7		70-130 9	%		u	U	n	ŧI	u
2037-26-5	Toluene-d8	99.3		70-130 9	%		n		u	u	11
17060-07-0	1,2-Dichloroethane-d4	<i>79.7</i>		70-130 9	%		u	u	II .	n	a
1868-53-7	Dibromofluoromethane	79.3		70-130 %	%		u	u	u	п	0
											
Com	ala Idantification										
	ple Identification			t Project #		<u>Matrix</u>		n Date/Tin		Receive	
Tho	ple Identification rne-Thompson INF 3784-04			t Project # 05686.00		<u>Matrix</u> round Wat		n <u>Date/Tin</u> r-06 12:25		<u>Receive</u> 19-Apr-	
Tho	rne-Thompson INF	Result						r-06 12:25		19 - Apr-	06
Thor SA4	rne-Thompson INF 3784-04 . Analyte(s)	Result	08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:25		19 - Apr-	06
Thor SA4: CAS No. Volatile	rne-Thompson INF 3784-04 . Analyte(s) Organic Compounds	Result	08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:25		19 - Apr-	06
Thor SA4: CAS No. Volatile Volatile C	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B		08-2	05686.00	G	round Wat	er 17-Ap	r-06 12:25		19 - Apr-	06
Thors SA4: CAS No. Volatile Volatile C Prepare	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B organic W846 503	30 Water MS	08-2	Units	G	round Wat	er 17-Ap	r-06 12:25		19-Apr- Batch	06
Thors SA4: CAS No. Volatile Volatile C Prepare 71-43-2	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene	30 Water MS BRL	08-2	05686.00 <i>Units</i> μg/l	* <i>RDL</i>	Dilution	er 17-Ap	Prepared	Analyzed	19-Apr- Batch	06 Analys
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds organic Compounds by 8260B ord by method SW846 503 Benzene Ethylbenzene	30 Water MS	08-2	Units	**************************************	Dilution	er 17-Ap	Prepared	Analyzed	19-Apr- Batch	06 Analys
Thor SA4. CAS No. Volatile Concept of the Concept	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether	30 Water MS BRL BRL	08-2	Units µg/l µg/l µg/l	*RDL	Dilution 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- Batch	06 Analys
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds organic Compounds by 8260B ord by method SW846 503 Benzene Ethylbenzene	30 Water MS BRL BRL 33.2	08-2	Units μg/l μg/l	1.0 1.0 1.0	Dilution 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	Batch 6041510	06 Analys
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds 30 Water MS BRL BRL 33.2 BRL	08-2	Units µg/l µg/l µg/l µg/l	**RDL 1.0 1.0 1.0 1.0 1.0	Dilution 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	19-Apr- **Batch** 6041510***	06 Analys	
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Co	30 Water MS BRL BRL 33.2 BRL BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0 1.0	Dilution 1 1	er 17-Ap	Prepared	Analyzed 26-Apr-06	19-Apr- **Batch** 6041510***	06 Analys
Thoi SA4. CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Co	BO Water MS BRL BRL 33.2 BRL BRL BRL BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK
Thor SA4: CAS No. Volatile Concept 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Co	BO Water MS BRL BRL 33.2 BRL BRL BRL BRL BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK
Thor SA4: CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds Berganic Compounds Berganic Compounds Wasses Berganic Compounds Be	BO Water MS BRL BRL 33.2 BRL BRL BRL BRL BRL BRL	08-2	υnits μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds O	BRL BRL 33.2 BRL BRL BRL BRL BRL BRL BRL BRL BRL	08-2	υnits μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds organic Compounds by 8260B organic Compounds Helpid State Tolune 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene recoveries:	BO Water MS BRL BRL 33.2 BRL BRL BRL BRL BRL BRL	08-2	υnits μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK
Thor SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	rne-Thompson INF 3784-04 Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Co	BO Water MS BRL BRL 33.2 BRL BRL BRL BRL BRL BRL BRL	08-2	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 17-Ap	Prepared	Analyzed	19-Apr- <i>Batch</i> 6041510	Analys EK

Sample Identification
Platte
SA43784-05

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 17-Apr-06 12:40

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	25-Apr-06	26-Apr-06	6041510	EK
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1		19	D	H	u
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	n	ti .	п	0	a
91-20-3	Naphthalene	BRL		μg/l	1.0	1			b	u	a
108-88-3	Toluene	BRL		μg/l	1.0	1		ű	u	e	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	D	u	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	u	0	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	и	u	u	u	n
95-47-6	o-Xylene	BRL		μg/l	1.0	1	II.	a	U		n
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.7		70-130	%		u	U		6	u
2037-26-5	Toluene-d8	94.3		70-130	%		II .	u	n	a	a
17060-07-0	1,2-Dichloroethane-d4	76.0		70-130	%		n	u	n	u	n
1868-53-7	Dibromofluoromethane	<i>76.3</i>		70-130	%		n	ta	D		Ð

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6041510 - SW846 503	0 Water MS			_					•	
Blank (6041510-BLK1)										
Prepared & Analyzed: 25-Apr-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0		ì				
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	28.0		μg/l		30.0		93.3	70-130		
Surrogate: Toluene-d8	28.4		μg/l		30.0		94.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	24.3		μg/l		30.0		81.0	70-130		
Surrogate: Dibromofluoromethane	24.2		μg/l		30.0		80.7	70-130		
LCS (6041510-BS1)										
Prepared & Analyzed: 25-Apr-06										
Benzene	24.0		μg/l		20.0		120	70-130		
Ethylbenzene	20.2		μg/l		20.0		101	70-130		
Methyl tert-butyl ether	19.5		μg/l		20.0		97.5	70-130		
Naphthalene	14.0		μg/l		20.0		70.0	70-130		
Toluene	20.7		μg/l		20.0		104	70-130		
1,2,4-Trimethylbenzene	19.8		μg/l		20.0		99.0	70-130		
1,3,5-Trimethylbenzene	19.6				20.0		98.0	70-130		
m,p-Xylene	42.0		μg/l μg/l		40.0		105	70-130		
o-Xylene	21.5		μg/l		20.0		108	70-130		
Surrogate: 4-Bromofluorobenzene	28.5		μg/l		30.0		95.0	70-130		
Surrogate: Toluene-d8	28.5		μg/l		30.0		95.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/l		30.0		76.3	70-130		
Surrogate: Dibromofluoromethane	24.2		μg/l		30.0		80.7	70-130		
LCS Dup (6041510-BSD1)										
Prepared & Analyzed: 25-Apr-06										
Benzene	24.4		μg/l		20.0		122	70-130	1.65	30
Ethylbenzene	21.4		μg/l		20.0		107	70-130	5.77	30
Methyl tert-butyl ether	19.7		μg/l		20.0		98.5	70-130	1.02	30
Naphthalene	13.5	QC-1	μg/l		20.0		67.5	70-130	3.64	30
Toluene	21.2		μg/l		20.0		106	70-130	1.90	30
1,2,4-Trimethylbenzene	20.0		μg/l		20.0		100	70-130	1.01	30
1,3,5-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	5.94	30
m,p-Xylene	43.7		μg/l		40.0		109	70-130	3.74	30
o-Xylene	21.8		μg/l		20.0		109	70-130	0.922	30
Surrogate: 4-Bromofluorobenzene	29.1		μg/l		30.0		97.0	70-130		
Surrogate: Toluene-d8	29.7		μg/l		30.0		99.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	23.0		μg/l		30.0		76.7	70-130		
Surrogate: Dibromofluoromethane	24.7		μg/l		30.0		82.3	70-130		
Matrix Spike (6041510-MS1)	Source: SA43784-05									
Prepared: 25-Apr-06 Analyzed: 26-Apr	pr-06									
Benzene	26.2	QM-07	μg/l		20.0	BRL	131	70-130		
Chlorobenzene	21.0		μg/l		20.0	BRL	105	70-130		
1,1-Dichloroethene	19.9		μg/l		20.0	BRL	99.5	70-130		
Toluene	22.6		µg/l		20.0	BRL	113	70-130		
Trichloroethene	20.7		μg/l	******	20.0	BRL	104	70-130		
Surrogate: 4-Bromofluorobenzene	27.9		µg/l		30.0		93.0	70-130		

· · · · · · · · · · · · · · · · · · ·					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6041510 - SW846 5030) Water MS									
Matrix Spike (6041510-MS1)	Source: SA43784-05									
Prepared: 25-Apr-06 Analyzed: 26-Ap	r-06									
Surrogate: Toluene-d8	30.0		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.1		μg/l		30.0		87.0	70-130		
Surrogate: Dibromofluoromethane	27.0		µg/l		30.0		90.0	70-130		
Matrix Spike Dup (6041510-MSD1)	Source: SA43784-05									
Prepared: 25-Apr-06 Analyzed: 26-Ap	r-06									
Benzene	20.6		μg/l		20.0	BRL	103	70-130	23.9	30
Chlorobenzene	17.2		μg/l		20.0	BRL	86.0	70-130	19.9	30
1,1-Dichloroethene	15.1		μg/l		20.0	BRL	75.5	70-130	27.4	30
Foluene	18.0		μg/l		20.0	BRL	90.0	70-130	22.7	30
Frichloroethene	16.2		μg/l		20.0	BRL	81.0	70-130	24.9	30
Surrogate: 4-Bromofluorobenzene	27.7		μg/l		30.0		92.3	70-130		
Surrogate: Toluene-d8	29.2		μg/l		30.0		97.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	25.9		μg/l		30.0		86.3	70-130		
Surrogate: Dibromofluoromethane	25.8		μg/l		30.0		86.0	70-130		

Notes and Definitions

QC-1 Analyte out of acceptance range.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

Featuring

CHAIN OF CUSTODY RECORD

Page ____ of ____

Special Handling:

■ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. · Samples disposed of after 60 days unless otherwise instructed.

HANIBAL TECHNOLOGY													otherwise i	nstructed.	
Report To: ECS	Invoi	ce To:								Projec	ct No.: .	08-70	5686,00	>	
65 MILLET ST. SUITE 301		\Rightarrow								Site N	Jame: _	LOUDON	NERKU	CITGO	
LICHMOND, VT 05477				le	009	527	8	<u></u>					•	Sta	
Project Mgr.: MICHAEL DORW	P.O.	No.: _				RQ	N: _			Samp	ler(s): _	MIKE	Dorn		
1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 7=CH ₃ OH 8= NaHSO ₄ 9=			eid —			Co	ntain	ers:		•	Ana	ilyses:		QA Report (check if	
DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil S X1=X2=	L=Sludge A=Air X3=		٦	tive	Vials	of Amber Glass	Glass	ic	V SCH					☐ Provide MA DEP☐ Provide CT DPH☐ QA/QC Repo☐ Standard	RCP Report
G=Grab C=Composite Lab Id: Sample Id: Date		Type	Matrix	Preservative	# of VOA Vials	# of Amb	# of Clear Glass	# of Plastic	v 415/18					OtherState specific repo	
4578401 BREENCE 4/17	104 1030	6	CW	2	2				×						
OR THORNE-THOUSEN EFF	1215	1	1	4	1				1						
03 Morece-Thompsen uno	1220	$\parallel I$													
OY THORENE THOUPEN WE	1725				1/										
V 05 PLATTE	1246	1	1	V	1				V						
7 E				Reli	inqui	shed	by:				Rece	ived by:		Date:	Time:
☐ Fax results when available to (362) 43 ☐ E-mail to <u>underlane et slowsult con</u>			M	oh.	[]!	W	2			7	edl	S. S.		4/17/00	1700
EDD Format				7	rol	Ex			W	ani	0 7	Felice	iond	4/19/06	936
Condition upon receipt: Coced Ambient	o <u>5</u>														

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page ____ of ____

Special Handling:

X Standard TAT - 7 to 10 business days
☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

Report To: <u>£</u>	<u>(\$</u>		Invoic	e To:								Pr	oject No.:	08	- 705	686,0	20	
65 MILLS	T ST. SUITE 3	61										Sit	te Name:	cae	10>CANS	CEEV	C:160	
KICH MONE	VT 05477															•	Sta	
Project Mgr.:	MICHAEL DOE	لب	P.O. N	lo.: _				RQ	N: _			Sa	mpler(s):	All	CE B	or and	1	
1=Na ₂ S2O ₃ 7=CH ₃ OH 8	2=HCl	=HNO ₃ 5=Na	OH 6=Ascort 10=	oic Ac	id —			Co	ntain	ers:			Ar	alyses	3:			ting Notes:
O=Oil SW=	Water GW=Groun Surface Water SO= X2= G=Grab C=C	=Soil SL=Slu X3=	ıdge A=Air]	Preservative	# of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	VT SCAN						☐ Provide CT DPH QA/QC Rep	oorting Level
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preser)A Jo #	# of Ar	# of Cl	# of Pla	JICSP.	256						porting standards:
	BRECHE	4/17/04	1030	6	GW	2	2				×							
	THURAK - THEAREN CH	• /	1215	1		,	1				1							
	THENEWE - THOMPSON AL	i	1720								C Company							
	THORIGET HAPPEN WE	=	1725				1											
	PLATTC		1246	\	1	V	V				V	/						
,																		
												<u> </u>						
																		·
	when available to (§	62) 434-60	076	-	-1	Reli	nqui	shed	by: デク	- \			Rec	eived	oy:		Date:	Time:
	judoreno ección			j.	11	Ma.	<u> [].</u>	fl	<u>_</u>								4/17/06	1700
EDD Format							•										/	
Condition upon	receipt: 🗆 Iced 🗀 A	mbient □ °C						· • • • • • • • • • • • • • • • • • • •								-		

Report Date: 02-May-06 11:00

Final Report ☐ Re-Issued Report ☐ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Project 08-205686.00 Attn: Mike Doran

Project: Londonderry Citgo - Londonderry, VT

Laboratory ID	Client Sample ID	•	<u>Matrix</u>	Date Sampled	Date Received
SA43786-01	MW-1R		Ground Water	17-Apr-06 11:00	19-Apr-06 09:32
SA43786-02	MW-2R		Ground Water	17-Apr-06 11:15	19-Apr-06 09:32

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met. Please note that this report contains 6 pages of analytical data plus Chain of Custody document(s). This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island #98 USDA # S-51435 Vermont # VT-11393

Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

Client Project # 08-205686.00

Matrix Ground Water Collection Date/Time 17-Apr-06 11:00

	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	66.6		μg/l	5.0	5	SW846 8260B	27-Apr-06	27-Apr-06	6041730	EK
100-41-4	Ethylbenzene	BRL		μg/l	5.0	5	р	п	u	u	ŋ
1634-04-4	Methyl tert-butyl ether	72.0		μg/l	5.0	5	n	11	ti		11
91-20-3	Naphthalene	BRL		μg/l	5.0	5	0		ti .	u	II
108-88-3	Toluene	34.8		μg/l	5.0	5	n	а	t)	11	
95-63-6	1,2,4-Trimethylbenzene	6.8		μg/l	5.0	5	n	4	a	Ħ	u
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	5.0	5	"		а		n
1330-20-7	m,p-Xylene	17.4		μg/l	10.0	5	u	ď	II .	ı	n
95-47-6	o-Xylene	30.0		μg/l	5.0	5	ti	U	u	п	U
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	98.0		70-130 9	%		u	u	II		n
2037-26-5	Toluene-d8	101		70-130 9	%		u	II .	u	n	D
17060-07-0		85.0		70-130 9	%		и	n	0	0	u
1868-53-7	Dibromofluoromethane	82.0		70-130 %	%		u	u	n	n	u
C	ula Idantification					an ang ang ang ang ang ang ang ang ang a					
	ple Identification		Clien	t Project #		<u>Matrix</u>		n Date/Tin		Receive	
MW SA4	3786-02		08-2	05686.00	G	round Wat	er 17-Ap	r-06 11:15		19-Apr -	06
CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
		Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile Volatile C	Organic Compounds Organic Compounds by 8260B		Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile Volatile C Prepare	Organic Compounds Organic Compounds by 8260B and by method SW846 503	0 Water MS	Flag			Dilution 1	Method Ref. SW846 8260B	Prepared 26-Apr-06	Analyzed 26-Apr-06		<i>Analys</i> EK
Volatile Volatile C Prepare 71-43-2	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene	0 Water MS BRL	Flag	μg/l	1.0						
Volatile Volatile C Prepare 71-43-2 100-41-4	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene Ethylbenzene	60 Water MS BRL BRL	Flag	hâ\J	1.0 1.0	1	SW846 8260B				
Volatile C Prepare 71-43-2 100-41-4 1634-04-4	Organic Compounds Organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds be by 8260B organic Compounds	60 Water MS BRL BRL 1.1	Flag	hā\J hā\J	1.0 1.0 1.0	1 1	SW846 8260B				
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene	80 Water MS BRL BRL 1.1 BRL	Flag	hā\J hā\J hā\J	1.0 1.0 1.0 1.0	1 1	SW846 8260B				
Volatile OPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene	BO Water MS BRL BRL 1.1 BRL BRL BRL	Flag	hâ\l hâ\l hâ\l	1.0 1.0 1.0 1.0	1 1	SW846 8260B				
Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	BRL BRL 1.1 BRL BRL BRL BRL	Flag	hâ\l hâ\l hâ\l hâ\l	1.0 1.0 1.0 1.0	1 1	SW846 8260B				
Volatile Volatile CPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Comp	BRL BRL 1.1 BRL BRL BRL BRL BRL	Flag	hâyl hâyl hâyl hâyl hâyl	1.0 1.0 1.0 1.0 1.0 1.0	1 1	SW846 8260B				
Volatile Volatile CPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Draganic Compounds Dr	BRL BRL 1.1 BRL BRL BRL BRL BRL	Flag	hây hây hây hây hây	1.0 1.0 1.0 1.0 1.0	1 1	SW846 8260B				
Volatile Control Volati	Organic Compounds Organic Compounds by 8260B Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	BRL BRL 1.1 BRL BRL BRL BRL BRL	Flag	hâyl hâyl hâyl hâyl hâyl	1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1	SW846 8260B		26-Apr-06	6041607	
Volatile Volatile CPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Organic Compounds Organic Compounds by 8260B Organic Compounds Description Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene Organic Compounds Organic Compo	BRL BRL 1.1 BRL BRL BRL BRL BRL BRL BRL	Flag	h8y h8y h8y h8y h8y h8y	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1	SW846 8260B		26-Apr-06	6041607	
Volatile Volatile CPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Comp	BRL BRL 1.1 BRL BRL BRL BRL BRL BRL BRL	Flag	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1	SW846 8260B		26-Apr-06	6041607	
Volatile Volatile CPrepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Comp	BRL BRL 1.1 BRL BRL BRL BRL BRL BRL BRL	Flag	h8y h8y h8y h8y h8y h8y	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1	SW846 8260B		26-Apr-06	6041607	

			=	Source				RPD
Result	Flag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Water MS								
BRL	ua/l	1.0						
	μg/l	1.0						
27.7	μg/l		30.0		92.3	70-130		
28.6	μg/l							
	hā\J							
26.1	μ g/ l		30.0		87.0	70-130		
05.4	/1		20.0		107	70 120		
20.2	μg/l							
20.3	μg/l					70-130		
44.2	μg/l		40.0		110	70-130		
22.0	μg/l		20.0		110	70-130	•	
26.7	μg/l		30.0		89.0			
28.8	μg/l							
25.2	μg/l		30.0		84.0	70-130		
04.5			20.0		122	70.120	4.02	30
								30
								30
								30
								30
								30
								30
42.7	μg/l							30
21.5	µg/l						1.83	30
28.0	μg/l							
28.7	μg/l							
23.8	μg/I		30.0		79.3	70-130		
Source: SA43785-04								
20.7	uo/l		20.0	RRI	114	70-130		
								•
				BRL	100	70-130 70-130		
20.0	μg/l		20.0	BHL	100			
17.5	μg/l		20.0	BRL.	87.5	70-130		
	BRL	BRL	BRL	BRL	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC	Result Flag Units *RDL Level Result %REC Limits	Result Flag Units *RDL Level Result %REC Limits RPD

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6041607 - SW846 5030) Water MS									
Matrix Spike (6041607-MS1)	Source: SA43785-04									
Prepared & Analyzed: 26-Apr-06	Source: 3A43703-04									
Surrogate: Toluene-d8	28.7		μg/l		30.0		95.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	23.0		μg/l		30.0		76.7	70-130		
Surrogate: Dibromofluoromethane	23.1		μg/l		30.0		77.0	70-130		
Matrix Spike Dup (6041607-MSD1) Prepared & Analyzed: 26-Apr-06	Source: SA43785-04									
Benzene	18.4		μg/l		20.0	BRL	92.0	70-130	21.4	30
Chlorobenzene	15.7		μg/l		20.0	BRL	78.5	70-130	24.1	30
1,1-Dichloroethene	13.6	QM-07			20.0	BRL	68.0	70-130	18.7	30
Foluene		QW-07	μg/l /1		20.0	BRL	78.0	70-130	24.7	30
Frichloroethene	15.6		μg/l		20.0	BRL	70.0 72.5	70-130	18.8	30
	14.5		μg/l		30.0	DITL	96.7	70-130	10.0	
Surrogate: 4-Bromofluorobenzene	29.0 28.3		μg/l μg/l		30.0 30.0		94.3	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	20.3 24.4		μg/I μg/l		30.0		81.3	70-130		
Surrogate: Dibromofluoromethane	25.0		μg/l		30.0		83.3	70-130		
Batch 6041730 - SW846 5030			, 0							
Blank (6041730-BLK1)										
Prepared & Analyzed: 27-Apr-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	29.9		μg/l		30.0		99.7	70-130		
Surrogate: Toluene-d8	29.2		μg/l		30.0		97.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.6		μg/l		30.0		88.7	70-130		
Surrogate: Dibromofluoromethane	25.1		μg/l		30.0		83.7	70-130		
LCS (6041730-BS1)										
Prepared & Analyzed: 27-Apr-06			_		00.5		105	70 400		
Benzene	25.0		μg/l		20.0		125	70-130		
Ethylbenzene	21.7		µg/l		20.0		108	70-130		
Methyl tert-butyl ether	20.0		μg/l		20.0		100	70-130		
Naphthalene 	15.4		µg/l		20.0		77.0	70-130		
Toluene	21.4		μg/l		20.0		107	70-130		
1,2,4-Trimethylbenzene	19.8		μg/l "		20.0		99.0	70-130		
1,3,5-Trimethylbenzene	20.1		μg/l		20.0		100	70-130		
m,p-Xylene	43.7		μg/l		40.0		109	70-130 70-130		
o-Xylene	21.5		µg/l		20.0		108	70-130		
Surrogate: 4-Bromofluorobenzene	27.7 20.4		μg/l		30.0 30.0		92.3 94.7	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	28.4 24.0		μg/l μg/l		30.0		80.0	70-130		
Surrogate: 1,2-Dictioroethane-u4 Surrogate: Dibromofluoromethane	24.6		ha\l		30.0		82.0	70-130		
LCS Dup (6041730-BSD1)										
Prepared & Analyzed: 27-Apr-06										
Benzene	25.0		μg/l		20.0		125	70-130	0.00	30
Ethylbenzene	21.2		μg/l		20.0		106	70-130	1.87	30
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130	0.995	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
Batch 6041730 - SW846 503	0 Water MS									
LCS Dup (6041730-BSD1)										
Prepared & Analyzed: 27-Apr-06										
Naphthalene	15.8		μg/l		20.0		79.0	70-130	2.56	30
Toluene	21.6		μg/l		20.0		108	70-130	0.930	30
1,2,4-Trimethylbenzene	20.6		μg/l		20.0		103	70-130	3.96	30
1,3,5-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	3.92	30
m,p-Xylene	44.0		μg/l		40.0		110	70-130	0.913	30
o-Xylene	21.7		μg/l		20.0		108	70-130	0.00	30
Surrogate: 4-Bromofluorobenzene	28.2		μg/l		30.0		94.0	70-130		
Surrogate: Toluene-d8	29.6		μg/l		30.0		98.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	23.7		μg/l		30.0		79.0	70-130		
Surrogate: Dibromofluoromethane	24.6		μg/l		30.0		82.0	70-130		
Matrix Spike (6041730-MS1)	Source: SA43927-04	PH								
Prepared: 27-Apr-06 Analyzed: 28-Ap	or-06									
Benzene	21.6		μg/l		20.0	BRL	108	70-130		
Chlorobenzene	20.0		μ g /l		20.0	BRL	100	70-130		
1,1-Dichloroethene	15.9		μg/l		20.0	BRL	79.5	70-130		
Toluene	19.2		μg/l		20.0	BRL	96.0	70-130		
Trichloroethene	17.2		μg/l		20.0	BRL	86.0	70-130		
Surrogate: 4-Bromofluorobenzene	29.1		μg/l		30.0		97.0	70-130		
Surrogate: Toluene-d8	27.6		μg/l		30.0		92.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	24.0		μg/l		30.0		80.0	70-130		
Surrogate: Dibromofluoromethane	24.6		µg/l		30.0		82.0	70-130		
Matrix Spike Dup (6041730-MSD1)	Source: SA43927-04	PH								
Prepared: 27-Apr-06 Analyzed: 28-Ap	or-06									
Benzene	18.4		μg/l		20.0	BRL	92.0	70-130	16.0	30
Chlorobenzene	16.3		μg/l		20.0	BRL	81.5	70-130	20.4	30
1,1-Dichloroethene	13.0	QM-07	μg/l		20.0	BRL	65.0	70-130	20.1	30
Toluene	15.3		μ g /l		20.0	BRL	76.5	70-130	22.6	30
Trichloroethene	13.5	QM-07	μg/l		20.0	BRL	67.5	70-130	24.1	30
Surrogate: 4-Bromofluorobenzene	28.1		μg/l		30.0		93.7	70-130		
Surrogate: Toluene-d8	28.1		μg/l		30.0		93.7	70-130	•	
Surrogate: 1,2-Dichloroethane-d4	23.9		μg/l		30.0		79.7	70-130		
Surrogate: Dibromofluoromethane	24.9		μg/l		30.0		83.0	70-130		

Notes and Definitions

PH Insufficient preservative to reduce the sample pH to less than 2.

OM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

SA437860

Featuring

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page _____ of ____

Special Handling:

☑ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

Report To:	<u>.</u> s		Invoic	e To:								Pı	roject N	Io.: 1	8-20	5686.0	0	
65 MILL	CT ST SUITE	301		>													CITED	
KICHMANT	5, VT 65477					Lec	<u>05</u>) 2 2	$\mathcal{D}_{\mathcal{C}}$	<u></u>		L	ocation	: Lou	Dave	ERRY	Sta	te:
Project Mgr.:	MIKE DORM)		lo.:				RQ	N: _			Sa	ampler((s):	IRE	DORA	پ	
	=HCl 3=H ₂ SO ₄ 4 NaHSO ₄ 9=		OH 6=Ascorb	ic Ac				Co	ntain	ers:		<u> </u>		Analys	es:		QA Report	
O=Oil SW=S	Water GW=Grous Surface Water SO X2=	=Soil SL=Slu	dge A=Air			ve	Vials	of Amber Glass	of Clear Glass	0	(, , , ,	745					☐ Provide MA DEP☐ Provide CT DPH☐ QA/QC Repo	RCP Report
	G=Grab C=0	Composite		_		rvati	OA	mbe	lear	lastic		5					☐ Standard ☐ Other	
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of A	# of C	# of Plastic	11016	9.500					State specific repo	
14378001	du-ik	4/17/06	1106	G	CW	2	_				×							
V 02	MW-ZR	14'	1115	V	U	1	1				1	/						
:										-	_							
												-						
												 						
☑ Fax results	when available to (802) 434- 61	576		//	7	1	shed l	· ·					Receive			Date:	Time:
	rudoran e o caso				[hc	lul	<u> </u>	16					Fee	dEx	<u>-</u>		4/17/06	1700
					//c	70	d	Ex			2	læ	- لند	7 Fe	lic	iaid	4/19/04	932
Condition upon 1	receipt: Ced 🗆 A	Ambient C	5					·										

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page __/__ of __/__

Special	Handling:
---------	-----------

- ☑ Standard TAT 7 to 10 business days
- ☐ Rush TAT Date Needed:
- · All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Report To:	5		Invoid	ce To:								_	Project	No.: ہ	18.	- 20	568	76.0	0	-
65 MILL	ETST SUITE	301		<u>~</u>								_	Site Na	ne:	ONI	SOP	2614	CY 2	CITED	
KILIMAN	D, VF 65477	2	_									_	Location	n· / /		٠,٠	34° 00 1	s · /	Sta	nta: I/T
		******	_									_						ø		
Project Mgr.: _	MIKE DORAL	<i>)</i>	P.O. N	No.:				RQ	N:			_	Sample	r(s):	£1 1 b	66	DE	v-A	~	
	=HCl 3=H ₂ SO ₄ 4 = NaHSO ₄ 9=							Co	ntain	ers:				Anal	yses	•			QA Repor	ting Notes:
	Water GW=Grou											_					T		☐ Provide MA DEF	
	Surface Water SO						als	lass	iss			ş							☐ Provide CT DPH	RCP Report
X1=	X2=	X3=				ive	Vig	er G	3	ွ		35								orting Level
	G=Grab C=0	Composite				rvat	OA	mpe	lear	asti	•	٧Ţ							☐ Other	□ No QC
Lab Id:	Sample Id:	Date:	Time:	Туре	Matrix	Preservative	# of VOA Vials	# of Amber Glass	# of Clear Glass	# of Plastic		50216							State specific rep	
	die-1K	4/17/00	1100	6	CW	2	2					×		<u> </u>						
	Mu-ZR	11	1115	1	L	1	1					1/								
						Reli	nquis	shed l	 эу:					Receiv	ed b	y:		.1	Date:	Time:
Fax results	when available to (302) <u>434-6</u>	076		11	1	1.0	17											de la	179
■ E-mail to _	Hichran & acce	correlt.com		f.!	1	1 . 2.5	/_/	11/1	ســـــــــــــــــــــــــــــــــــــ										4/17/06	1700
EDD Format																			/	
Condition upon	receipt: 🗆 Iced 🗆 A	Ambient □°C																		

Report Date: 04-May-06 15:53

Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Mike Doran

Project: Londonderry Citgo - Londonderry, VT

Project 08-205688.00

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA44074-01	(E) 052 MID	Ground Water	20-Apr-06 13:15	25-Apr-06 10:00
SA44074-02	(B) 046 MID	Ground Water	20-Apr-06 13:20	25-Apr-06 10:00
SA44074-03	TRIP	Ground Water	20-Apr-06 07:00	25-Apr-06 10:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met Please note that this report contains 12 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island #98 USDA # S-51435 Vermont # VT-11393

Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

Client Project # 08-205688.00

Matrix Ground Water Collection Date/Time 20-Apr-06 13:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
	geable Organic Compounds										
Prepare	d by method SW846 5030 W	ater MS									
67-64-1	Acetone	BRL		µg∕l	10.0	1	EPA 524.2	30-Apr-06	30-Apr-06	6041877	KS
07-13-1	Acrylonitrile	BRL		µg⁄l	1.0	1	H .	n	o	n	n
71-43-2	Benzene	BRL		μ g ⁄l	0.5	1		u	п	u	n
108-86-1	Bromobenzene	BRL		µg⁄l	0.5	1	u	n	n	a	
74-97-5	Bromochloromethane	BRL		µg⁄l	0.5	1	п	Ð	II	u	19
75-27-4	Bromodichloromethane	BRL		μg⁄i	0.5	1	u	u	и	u	0
75-25-2	Bromoform	BRL		μg/i	0.5	1		u	n	u	u
74-83-9	Bromomethane	BRL		μg⁄l	0.5	1		u	a	u	"
78-93-3	2-Butanone (MEK)	BRL		μg⁄l	10.0	1	n		u	i)	u
104-51-8	n-Butylbenzene	BRL		μg⁄l	0.5	1	n	п	n	u u	o
135-98-8	sec-Butylbenzene	BRL		μg⁄l	0.5	1	n	B	u	u	n
98-06-6	tert-Butylbenzene	BRL		μ g /l	0.5	1	0	o	n	u	n
75-15-0	Carbon disulfide	BRL		μg/l	0.5	1	a	u	U	u	u
56-23-5	Carbon tetrachloride	BRL		µg⁄l	0.5	1	и	a	n	"	u
108-90-7	Chlorobenzene	BRL		µg⁄l	0.5	1	p	u	II		"
75-00-3	Chloroethane	BRL		μgʻl	0.5	1	u	ıı	n	D	"
67-66-3	Chloroform	BRL		μg/l	0.5	1	ii	н	a	u	
74-87-3	Chloromethane	BRL		μg⁄l	0.5	1			a	n	u
5-49-8	2-Chlorotoluene	BRL		μg⁄l	0.5	1		u	0	B	u
06-43-4	4-Chlorotoluene	BRL		μg/l	0.5	1	u	H	u	u	u
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μ g /l	0.5	1		u	4	B	u
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	n	u	u	tt .	u
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg⁄l	0.5	1	a	U	u	a	13
4-95-3	Dibromomethane	BRL		μg/l	0.5	1	15	H	u	u	O.
5-50-1	1,2-Dichlorobenzene	BRL		μg⁄l	0.5	1	a	II .	a	U	D
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	0.5	1	u	u	н	n	ti
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	0.5	1	D		a	a	u
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/i	0.5	1	u	u	u		
75-34-3	1,1-Dichloroethane	BRL		μg⁄l	0.5	1	и	II	O	n	D
07-06-2	1,2-Dichloroethane	BRL		μg⁄l	0.5	1	u	u	u	n	
75-35-4	1,1-Dichloroethene	BRL		μg⁄l	0.5	1	u	u	0	u	
156-59-2	cis-1,2-Dichloroethene	BRL		μg⁄l	0.5	1	u	u	12	B	u
56-60-5	trans-1,2-Dichloroethene	BRL		μg⁄l	0.5	1	a	n	u	o	D
78-87-5	1,2-Dichloropropane	BRL		μgʻl	0.5	1	"	II.	đ	a	u
142-28-9	1,3-Dichloropropane	BRL		μg⁄l	0.5	1	u		u	o	u
94-20-7	2,2-Dichloropropane	BRL		μg⁄l	0.5	1	н	u	U	11	
63-58-6	1,1-Dichloropropene	BRL		μ g /l	0.5	1	11	u	G	a	u
10061-01-5	cis-1,3-Dichloropropene	BRL		μg⁄l	0.5	1	u	u	9		u
10061-02-6	trans-1,3-Dichloropropene	BRL		μg⁄l	0.5	1		II .	n	"	b
100-41-4	Ethylbenzene	BRL		μg/l	0.5	1	п	a		a	n
37-68-3	Hexachlorobutadiene	BRL		μg⁄l	0.5	1		"	u	"	13
591-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	u u	u	a	u	н
98-82-8	Isopropylbenzene	BRL		μg/l	0.5	1	п	ü	6	n	0
99-87-6	4-Isopropyltoluene	BRL		μg/l	0.5	1	п	u	п	b	ü
1634-04-4	Methyl tert-butyl ether	BRL		μg⁄l	0.5	1	u	u		u	в .
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg⁄l	10.0	1	n	II	e	t	n
5-09-2	Methylene chloride	BRL		μg/l	0.5	1	H	n	G	n	ø
91-20-3	Naphthalene	BRL		µg/l	0.5	1	a	u	o	a	u
103-65-1	n-Propylbenzene	BRL		μg/l	0.5	1	п	19	si	"	u
100-42-5	Styrene	BRL		μg/l	0.5	1	a	n	a		

Sample Identification (E) 052 MID SA44074-01

Client Project # 08-205688.00

Matrix Ground Water Collection Date/Time 20-Apr-06 13:15

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
524.2 Pui	rgeable Organic Compounds										
Prepare	ed by method SW846 5030 W	ater MS									
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5	1	EPA 524.2	30-Apr-06	30-Apr-06	6041877	KS
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	u u	u	a	n	n
127-18-4	Tetrachloroethene	BRL		μg/l	0.5	1	u	u	u	u	n
108-88-3	Toluene	BRL		μg/l	0.5	1	В	II .	п	u	n
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	0.5	1	u	e e	n		e
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	0.5	1	H .	u	a	u	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	0.5	1		u	o	0	u
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	0.5	1	u	"	4	п	n
79-01-6	Trichloroethene	BRL		μg/l	0.5	1	o	a	u	a	b
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5	1	a	u	n	ıı	u
96-18-4	1,2,3-Trichloropropane	BRL		μg⁄l	0.5	1		u	0	a	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	0.5	1		ıı	u	u	u
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g ⁄l	0.5	1	n	a	и	u	u
75-01-4	Vinyl chloride	BRL		μg/l	0.5	1	a	a	0	U	u
1330-20-7	m,p-Xylene	BRL		μg/l	0.5	1	u	u	u		0
95-47-6	o-Xylene	BRL		μ g /l	0.5	1	u	u	B	u	u
109-99-9	Tetrahydrofuran	BRL		μ g /l	10.0	1	u		u	a	u
994-05-8	Tert-amyl methyl ether	BRL		μg/l	0.5	1		H		a	п
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	0.5	1	и	u	u	a	n
108-20-3	Di-isopropyl ether	BRL		μg⁄l	0.5	1	a	u	O	u	0
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg⁄l	10.0	1	o o	U	п	u	a
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	95.4		80-120	%		u	u	o	n	
2037-26-5	Toluene-d8	101		80-120	%		n	u	H	п	
17060-07-0	1,2-Dichloroethane-d4	103		80-120	%		u	u		a	u
1868-53-7	Dibromofluoromethane	97.8		80-120	%		п	n	и	и	

Sample Identification (B) 046 MID SA44074-02

Client Project # 08-205688.00

Matrix Ground Water Collection Date/Time 20-Apr-06 13:20

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B		PH								
Prepare	ed by method SW846 5030	Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	01-May-06	01-May-06	6050033	EK
100-41-4	Ethylbenzene	BRL		μ g /l	1.0	1			0	a	ú
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	u	U	u	ti.	n
91-20-3	Naphthalene	BRL		μg⁄l	1.0	1	п		10	u	u
108-88-3	Toluene	BRL		μ g /l	1.0	1		a	a		
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1			ø	u	ıı
108-67-8	1,3,5-Trimethylbenzene	BRL		μg⁄l	1.0	1	n	н	Ħ		a
1330-20-7	m,p-Xylene	BRL		μg/i	2.0	1	0	n	U	ч	u
95-47-6	o-Xylene	BRL		μg/i	1.0	1	e e	O	и	u	u
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	96.0		70-130	1%		. u	D	u	u	IJ
2037-26-5	Toluene-d8	100		70-130	%		u·	ti .	u	U	n
17060-07-0	1,2-Dichloroethane-d4	84.0		70-130	%		u	n	II .	U	ш
1868-53-7	Dibromofluoromethane	81.0		70-130	%		g.	a		a	

Sample Identification TRIP SA44074-03

Client Project # 08-205688.00

Matrix Ground Water Collection Date/Time 20-Apr-06 07:00

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
	ed by method SW846 503	30 Water MS									
71-43-2	Benzene	BRL		μg⁄l	1.0	1	SW846 8260B	01-May-06	01-May-06	6050033	EK
100-41-4	Ethylbenzene	BRL		μg⁄l	1.0	1		п	u	n	и
1634-04-4	Methyl tert-butyl ether	BRL		μ g ⁄l	1.0	1		B	u	u	п
91-20-3	Naphthalene	BRL		μ g ⁄l	1.0	1		u	0	u	H
108-88-3	Toluene	BRL		μ g /l	1.0	1	u	u	u	a	u
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g /l	1.0	1	u	u	u	n	u
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	u	u	u	a a	u
1330-20-7	m,p-Xylene	BRL		µg/l	2.0	1	u	II	u	a	a
95-47-6	o-Xylene	BRL		µg∕l	1.0	1	ti	0	ı		o
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	103		70-130	%		n		4		
2037-26-5	Toluene-d8	<i>95.7</i>		70-130	%		н	H	a	9	
17060-07-0	1,2-Dichloroethane-d4	82.0		70-130	%		ti.	0			a
1868-53-7	Dibromofluoromethane	<i>79.7</i>		70-130	%		u	u	n	п	e

Analyte(s)	Result F	lag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6041877 - SW846 5030 Wa	nter MS								
Blank (6041877-BLK1)									
Prepared & Analyzed: 30-Apr-06									
Acetone	BRL	μg/l	10.0						
Acrylonitrile	BRL	μg/l	1.0						
Benzene	BRL	μg/l	0.5						
Bromobenzene	BRL	μg/l	0.5						
Bromochloromethane	BRL	μg/l	0.5						
Bromodichloromethane	BRL	μg/l	0.5						
Bromoform	BRL	μg/l	0.5						
Bromomethane	BRL	μg/l	0.5						
2-Butanone (MEK)	BRL	μg/l	10.0						
n-Butylbenzene	BRL	μg/l	0.5						
sec-Butylbenzene	BRL	μg/l	0.5						
tert-Butylbenzene	BRL	μ g /l	0.5						
Carbon disulfide	BRL	μg/l	0.5						
Carbon tetrachloride	BRL	μg/l	0.5						
Chlorobenzene	BRL	μg/l	0.5						
Chloroethane	BRL	μg/l	0.5						
Chloroform	BRL	μg/l	0.5						
Chloromethane	BRL	μg/l	0.5						
2-Chlorotoluene	BRL	μg/l	0.5						
4-Chlorotoluene	BRL	μg/l	0.5						
1,2-Dibromo-3-chloropropane	BRL	μg/l	0.5						
Dibromochloromethane	BRL	μg/i	0.5						
1,2-Dibromoethane (EDB)	BRL	μg/l	0.5						
Dibromomethane	BRL	μg/l	0.5						
1,2-Dichlorobenzene	BRL	, μg/l	0.5						
1,3-Dichlorobenzene	BRL	μg/l	0.5						
1,4-Dichlorobenzene	BRL	μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL	μg/l	0.5						
1,1-Dichloroethane	BRL	μg/l	0.5						
1,2-Dichloroethane	BRL	μg/l	0.5						
1,1-Dichloroethene	BRL	μg/l	0.5						
cis-1,2-Dichloroethene	BRL	μg/l	0.5						
trans-1,2-Dichloroethene	BRL	μg/l	0.5						
1,2-Dichloropropane	BRL	μg/l	0.5						
1,3-Dichloropropane	BRL	μg/l	0.5						
2,2-Dichloropropane	BRL		0.5						
1,1-Dichloropropene	BRL	μg/l μg/l	0.5						
cis-1,3-Dichloropropene	BRL	μg/l	0.5						
trans-1,3-Dichloropropene	BRL	μg/l	0.5						
Ethylbenzene	BRL	μg/l	0.5						
Hexachlorobutadiene	BRL	μg/l	0.5						
2-Hexanone (MBK)	BRL	μg/l	10.0						
sopropylbenzene	BRL	μg/l	0.5						
4-Isopropyltoluene	BRL	μg/l	0.5						
Methyl tert-butyl ether	BRL	μg/l μg/l	0.5						
4-Methyl-2-pentanone (MIBK)	BRL	μg/l	10.0						
Methylene chloride	BRL	μg/l	0.5						
Naphthalene	BRL	μg/i	0.5						
n-Propylbenzene	BRL	μ g/ Ι	0.5						
Styrene	BRL	μg/l	0.5						
I,1,1,2-Tetrachloroethane	BRL	μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL	μg/l	0.5						
T, 1,2,2-1 etractiloroethane Tetrachloroethene	BRL	µg/l	0.5						
Toluene	BRL	μg/i μg/i	0.5						
1,2,3-Trichlorobenzene	BRL		0.5						
1,2,0-111011010081128118	DNL	μg/l	0.0						

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6041877 - SW846 5030 Wat	er MS								
Blank (6041877-BLK1)									
Prepared & Analyzed: 30-Apr-06									
1,2,4-Trichlorobenzene	BRL	μg/l	0.5						
1,1,1-Trichloroethane	BRL	μg/l	0.5						
1,1,2-Trichloroethane	BRL	μg/l	0.5						
Trichloroethene	BRL	μg/l	0.5						
Trichlorofluoromethane (Freon 11)	BRL	μg/l	0.5						
1,2,3-Trichloropropane	BRL	μg/l	0.5						
1,2,4-Trimethylbenzene	BRL	μg/l	0.5						
1,3,5-Trimethylbenzene	BRL	μg/l	0.5						
Vinyl chloride	BRL	μg/l	0.5						
m,p-Xylene	BRL	μg/l	0.5						
o-Xylene	BRL	μg/l	0.5						
Tetrahydrofuran	BRL	μg/l	10.0						
Tert-amyl methyl ether	BRL	μg/l	0.5						
Ethyl tert-butyl ether	BRL	μg/l	0.5						
Di-isopropyl ether	BRL	μg/l	0.5						
Tert-Butanol / butyl alcohol	BRL	μg/l	10.0						
Surrogate: 4-Bromofluorobenzene	48.5	μg/l	10.0	50.0		97.0	80-120		
Surrogate: Toluene-d8	50.1	μg/l		50.0		100	80-120		
Surrogate: 1,2-Dichloroethane-d4	50.8	μg/l		50.0		102	80-120		
Surrogate: Dibromofluoromethane	48.4	μg/l		50.0		96.8	80-120		
LCS (6041877-BS1)									
Prepared & Analyzed: 30-Apr-06						445	70.400		
Acetone	23.4	μg/l "		20.0		117	70-130		
Acrylonitrile	21.3	μg/l		20.0		106	70-130		
Benzene Bromobenzene	20.4	μg/l		20.0		102	80-120		
Bromochloromethane	21.9	μg/l		20.0		110	80-120		
Bromodichloromethane	19.5	μg/l		20.0		97.5	80-120		
Bromoform	20.3	μg/l		20.0		102	80-120 80-120		
Bromomethane	21.4	μg/l /		20.0		107			
	16.5	μg/l		20.0		82.5	80-120		
2-Butanone (MEK) n-Butylbenzene	21.6	μg/l "		20.0		108	70-130 80-120		
sec-Butylbenzene	18.3	μg/l		20.0		91.5			
•	20.4	μg/l		20.0		102	80-120		
tert-Butylbenzene	21.2	μg/l		20.0		106	80-120		
Carbon disulfide	14.8	μg/l		20.0		74.0	70-130		
Carbon tetrachloride	19.1	μg/l		20.0		95.5	80-120		
Chlorobenzene Chloroethane	22.8	μg/l		20.0		114	80-120		
Chloroform	22.5	μg/l		20.0		112	80-120		
Chloromethane	18.5	μg/l		20.0		92.5	80-120		
2-Chlorotoluene	20.9	μg/l /		20.0		104	80-120 80-120		
	22.4	μg/l /l		20.0		112			
4-Chlorotoluene 1,2-Dibromo-3-chloropropane	21.4	μg/l α/l		20.0 20.0		107 107	80-120 80-120		
Dibromochloromethane	21.4	μg/l				99.0	80-120		
1,2-Dibromoethane (EDB)	19.8	μg/l		20.0		99.0 98.0	80-120 80-120		
Dibromomethane	19.6	μg/l α/l		20.0		100	80-120 80-120		
1,2-Dichlorobenzene	20.1	μg/l		20.0		100	80-120 80-120		
•	21.6	μg/l α/l		20.0		108	80-120 80-120		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	20.9	μg/l		20.0 20.0		104	80-120 80-120		
Dichlorodifluoromethane (Freon12)	21.8	μg/l		20.0		94.5	80-120		
1,1-Dichloroethane	18.9	μg/l				94.5 109	80-120		
1,2-Dichloroethane	21.8	μg/l		20.0		109	80-120		
1,1-Dichloroethene	20.3	μg/l		20.0		97.0	80-120 80-120		
cis-1,2-Dichloroethene	19.4	μg/l		20.0		102	80-120		
•	20.5	μg/l α/l		20.0					
trans-1,2-Dichloroethene	18.6	μg/l		20.0		93.0	80-120		

Analyta(c)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)		riag	Onits	RDL	Level	Result	70KLC	Lillits	M D	Lillit
Batch 6041877 - SW846 5030 Wa	iter MS									
LCS (6041877-BS1)										
Prepared & Analyzed: 30-Apr-06										
1,2-Dichloropropane	21.1		μg/l		20.0		106	80-120		
1,3-Dichloropropane	20.9		μg/l		20.0		104	80-120		
2,2-Dichloropropane	18.9		μg/l		20.0		94.5	80-120		
1,1-Dichloropropene	19.4		μg/l		20.0		97.0	80-120		
cis-1,3-Dichloropropene	19.0		μg/l		20.0		95.0	80-120		
trans-1,3-Dichloropropene	18.5		μg/l		20.0		92.5	80-120		
Ethylbenzene	23.1		μg/l		20.0		116	80-120		
Hexachlorobutadiene	15.1	QC-1	μg/l		20.0		75.5	80-120		
2-Hexanone (MBK)	18.5		μg/l		20.0		92.5	70-130		
Isopropylbenzene	21.7		μg/l		20.0		108	80-120		
4-Isopropyltoluene	20.8		μg/l		20.0		104	80-120		
Methyl tert-butyl ether	20.1		μg/l		20.0		100	80-120		
4-Methyl-2-pentanone (MIBK)	19.8		μg/l		20.0		99.0	70-130		
Methylene chloride	18.5		μg/l		20.0		92.5	80-120		
Naphthalene	13.6	QC-1	μg/l		20.0		68.0	80-120		
n-Propylbenzene	21.4		μg/l		20.0		107	80-120		
Styrene	21.9		μg/l		20.0		110	80-120		
1,1,1,2-Tetrachloroethane	23.1		μg/l		20.0		116	80-120		
1,1,2,2-Tetrachloroethane	19.8		μg/l		20.0		99.0	80-120		
Tetrachloroethene	19.6		μg/l		20.0		98.0	80-120		
Toluene	19.6		μg/l		20.0		98.0	80-120		
1,2,3-Trichlorobenzene	15.8	QC-2	μg/l		20.0		79.0	80-120		
1,2,4-Trichlorobenzene	15.8	QC-2	μg/l		20.0		79.0	80-120		
1,1,1-Trichloroethane	20.4		μg/l		20.0		102	80-120		
1,1,2-Trichloroethane	21.0		μg/l		20.0		105	80-120		
Trichloroethene	21.9		μg/l		20.0		110	80-120		
Trichlorofluoromethane (Freon 11)	21.7		μg/l		20.0		108	80-120		
1,2,3-Trichloropropane	27.9	QC-2	μg/l		20.0		140	80-120		
1,2,4-Trimethylbenzene	21.7		μg/l		20.0		108	80-120		
1,3,5-Trimethylbenzene	21.2		μg/l		20.0		106	80-120		
Vinyl chloride	20.8		μg/l		20.0		104	80-120		
m,p-Xylene	45.9		μg/l		40.0		115	80-120		
o-Xylene	23.2		μg/l		20.0		116	80-120		
Tetrahydrofuran	21.0		μg/l		20.0		105	70-130		
Tert-amyl methyl ether	20.5		μg/l		20.0		102	70-130		
Ethyl tert-butyl ether	20.4		μ g/l		20.0		102	70-130		
Di-isopropyl ether	21.0		μg/l		20.0		105	70-130		
Tert-Butanol / butyl alcohol	214		μg/l		200		107	70-130		
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	80-120		
Surrogate: Toluene-d8	43.6		μg/l		50.0		87.2	80-120		
Surrogate: 1,2-Dichloroethane-d4	43.7		µg/l		50.0		87.4 04.6	80-120		
Surrogate: Dibromofluoromethane	42.3		µg/l		50.0		84.6	80-120		
LCS Dup (6041877-BSD1)										
Prepared & Analyzed: 30-Apr-06			n		00.0		100	70.120	0.76	30
Acetone	25.8		μg/l		20.0		129	70-130	9.76	30
Acrylonitrile	22.9		μg/l		20.0 20.0		114 118	70-130 80-120	7.27 14.5	20
Benzene	23.5		μg/l				108	80-120 80-120	1.83	20
Bromoblersenethere	21.6		μg/l		20.0		108	80-120 80-120	13.8	20
Bromochloromethane	22.4		μ g/l		20.0					20
Bromodichloromethane	24.0		μg/l		20.0		120	80-120	16.2	20
Bromoform	20.9		μg/l		20.0		104	80-120	2.84	20
Bromomethane	19.2		μg/l		20.0		96.0 94.0	80-120 70-130	15.1 13.0	30
2-Butanone (MEK)	18.8		μg/l		20.0		94.0 05.5	70-130	13.9	30 20
n-Butylbenzene	19.1		μg/l		20.0		95.5	80-120	4.28	
sec-Butylbenzene	20.6		μg/l		20.0		103	80-120	0.976	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Kesuit	riag	Omis	RDL	Level	Result	70KEC	Limits	KI D	Limit
Batch 6041877 - SW846 5030 Wa	iter MS									
LCS Dup (6041877-BSD1)										
Prepared & Analyzed: 30-Apr-06										
tert-Butylbenzene	21.4		μg/l		20.0		107	80-120	0.939	20
Carbon disulfide	18.0		μg/l		20.0		90.0	70-130	19.5	30
Carbon tetrachloride	22.7		μg/l		20.0		114	80-120	17.7	20
Chlorobenzene	23.0		μg/l		20.0		115	80-120	0.873	20
Chloroethane	26.7	QC-1	μg/l		20.0		134	80-120	17.9	20
Chloroform	21.1		μg/l		20.0		106	80-120	13.6	20
Chloromethane	24.4	QC-1	μg/l		20.0		122	80-120	15.9	20
2-Chlorotoluene	22.8		μg/l		20.0		114	80-120	1.77	20
4-Chlorotoluene	21.7		μg/l		20.0		108	80-120	0.930	20
1,2-Dibromo-3-chloropropane	21.1		μg/l		20.0		106	80-120	0.939	20
Dibromochloromethane	22.7		μg/l		20.0		114	80-120	14.1	20
1,2-Dibromoethane (EDB)	21.7		μg/l		20.0		108	80-120	9.71	20
Dibromomethane	22.7		μg/l		20.0		114	80-120	13.1	20
1,2-Dichlorobenzene	22.0		μg/l		20.0		110	80-120	1.83	20
1,3-Dichlorobenzene	21.4		μg/l		20.0		107	80-120	2.84	20
1,4-Dichlorobenzene	21.5		μg/l		20.0		108	80-120	0.922	20
Dichlorodifluoromethane (Freon12)	22.5		μg/l		20.0		112	80-120	16.9	20
1,1-Dichloroethane	25.0	QC-1	μg/l		20.0		125	80-120	13.7	20
1,2-Dichloroethane	23.4		μg/l		20.0		117	80-120	13.7	20
1,1-Dichloroethene	22.1		μg/l		20.0		110	80-120	12.6	20
cis-1,2-Dichloroethene	23.7		μg/l		20.0		118	80-120	14.5	20
trans-1,2-Dichloroethene	21.2		µg/l		20.0		106	80-120	13.1	20
1,2-Dichloropropane	24.4	QC-1	μg/l		20.0		122	80-120	14.0	20
1,3-Dichloropropane	23.3		μg/l		20.0		116	80-120	10.9	20
2,2-Dichloropropane	21.5		μg/l		20.0		108	80-120	13.3	20
1,1-Dichloropropene	22.6		μg/l		20.0		113	80-120	15.2	20
cis-1,3-Dichloropropene	21.5		μg/l		20.0		108	80-120	12.8	20
trans-1,3-Dichloropropene	21.3		μg/l		20.0		106	80-120	13.6	20
Ethylbenzene	23.4		μg/l		20.0		117	80-120	0.858	20
Hexachlorobutadiene	15.3	QC-1	μg/l		20.0		76.5	80-120	1.32	20
2-Hexanone (MBK)	20.6		μg/l		20.0		103	70-130	10.7	30
Isopropylbenzene	22.0		μg/l		20.0		110	80-120	1.83	20
4-Isopropyltoluene	21.4		μg/l		20.0		107	80-120	2.84	20
Methyl tert-butyl ether	23.0		μg/l		20.0		115	80-120	14.0	20
4-Methyl-2-pentanone (MIBK)	22.6		μg/l		20.0		113	70-130	13.2	30
Methylene chloride	21.1		μg/l		20.0		106	80-120	13.6	20
Naphthalene	13.6	QC-1	μg/l		20.0		68.0	80-120	0.00	20
n-Propylbenzene	21.9		μg/l		20.0		110	80-120	2.76	20
Styrene	22.1		μg/l		20.0		110	80-120	0.00	20
,1,1,2-Tetrachloroethane	22.9		μg/l		20.0		114	80-120	1.74	20
1,1,2,2-Tetrachloroethane	18.9		μg/l		20.0		94.5	80-120	4.65	20
Tetrachloroethene	22.5		μg/l		20.0		112	80-120	13.3	20
Toluene	22.8		μg/l		20.0		114	80-120	15.1	20
1,2,3-Trichlorobenzene	15.8	QC-2	μg/l		20.0		79.0	80-120	0.00	20
1,2,4-Trichlorobenzene	15.4	QC-2	μg/l		20.0		77.0	80-120	2.56	20
1,1,1-Trichloroethane	23.5		μg/l		20.0		118	80-120	14.5	20
,1,2-Trichloroethane	23.3		μg/l		20.0		116	80-120	9.95	20
Trichloroethene	25.6	QC-1	μg/l		20.0		128	80-120	15.1	20
richlorofluoromethane (Freon 11)	25.4	QC-1	μg/l		20.0		127	80-120	16.2	20
,2,3-Trichloropropane	25.9	QC-2	μg/i		20.0		130	80-120	7.41	20
1,2,4-Trimethylbenzene	21.2		μg/l		20.0		106	80-120	1.87	20
I,3,5-Trimethylbenzene	21.5		μg/l		20.0		108	80-120	1.87	20
Vinyl chloride	24.4	QC-1	μg/l		20.0		122	80-120	15.9	20
m,p-Xylene	45.9		μg/l		40.0		115	80-120	0.00	20
o-Xylene	23.6		μg/l		20.0		118	80-120	1.71	20

					Spike	Source	·	%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6041877 - SW846 5030 Wate	r MS									
LCS Dup (6041877-BSD1)										
Prepared & Analyzed: 30-Apr-06										
Tetrahydrofuran	23.2		μg/l		20.0		116	70-130	9.95	30
Tert-amyl methyl ether	22.5		μg/l		20.0		112	70-130	9.35	30
Ethyl tert-butyl ether	23.5		μg/l		20.0		118	70-130	14.5	30
Di-isopropyl ether	24.0		μg/l		20.0		120	70-130	13.3	30
Tert-Butanol / butyl alcohol	236		μg/l		200		118	70-130	9.78	30
Surrogate: 4-Bromofluorobenzene	50.2		<u>μ</u> g/l		50.0		100	80-120		
Surrogate: Toluene-d8	49.9		μg/l		50.0		99.8	80-120		
Surrogate: 1,2-Dichloroethane-d4	49.8		μg/l		50.0		99.6	80-120		
Surrogate: Dibromofluoromethane	48.5		μg/l		50.0		97.0	80-120		
Matrix Spike (6041877-MS1) Source	e: SA44114-01R	E1								
Prepared: 30-Apr-06 Analyzed: 01-May-06										
Benzene	19.8		μg/l		20.0	BRL	99.0	80-120		
Chlorobenzene	19.4		μg/l		20.0	BRL	97.0	80-120		
1,1-Dichloroethene	18.0		μg/l		20.0	BRL	90.0	80-120		
Toluene	19.2		μg/l		20.0	BRL	96.0	80-120		
Trichloroethene	18.6		μg/l		20.0	BRL	93.0	80-120		
Surrogate: 4-Bromofluorobenzene	47.4	-	μg/l	*	50.0		94.8	80-120		
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	50.4		μg/l		50.0 50.0		101	80-120		
Surrogate: 1,2-Dichloroethane-d4	51.5		μg/l		50.0		103	80-120		
Surrogate: Dibromofluoromethane	48.6		μg/l		50.0		97.2	80-120		
Matrix Spike Dup (6041877-MSD1) Source	e: SA44114-01R	F1								
	c. 9A++11+-01n.									
Prepared: 30-Apr-06 Analyzed: 01-May-06			•		00.0	DD!	07.0	00.400	0.04	00
Benzene	19.4		μg/l		20.0	BRL	97.0	80-120	2.04	20
Chlorobenzene	19.2		μg/l		20.0	BRL	96.0	80-120	1.04	20
1,1-Dichloroethene	17.4		µg/l		20.0	BRL	87.0	80-120	3.39	20
Toluene	18.6		μg/l		20.0	BRL	93.0	80-120	3.17	20
Trichloroethene	18.5		µg/l	±	20.0	BRL	92.5	80-120	0.539	20
Surrogate: 4-Bromofluorobenzene	47.4		μg/l		50.0		94.8	80-120		
Surrogate: Toluene-d8	49.8		μg/l		50.0		99.6 100	80-120 80-120		
Surrogate: 1,2-Dichloroethane-d4	50.2 48.7		μg/l		50.0 50.0		100 97.4	80-120 80-120		
Surrogate: Dibromofluoromethane			µg/l		30.0		57.4	00 120		
Batch 6050033 - SW846 5030 Water	r MS									
Blank (6050033-BLK1)										
Prepared & Analyzed: 01-May-06										
Benzene	BRL		μg/l 	1.0						
Chlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		µg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
	BRL		μg/l	1.0						
o-Xylene			μg/l		30.0		92.0	70-130		
o-Xylene Surrogate: 4-Bromofluorobenzene	27.6						100	70-130		
The same of the sa	27.6 30.1		μg/l		30.0					
Surrogate: 4-Bromofluorobenzene			μg/l μg/l		30.0		81.7	70-130		
Surrogate: Toluene-d8	30.1		μg/l							
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	30.1 24.5		μg/l μg/l		30.0		81.7	70-130		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	30.1 24.5		μg/l μg/l		30.0		81.7	70-130		

		17-100-7			Spike	Source		%REC		RPD
Analyte(s)	Result	Flag U	nits	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6050033 - SW846 5030	0 Water MS									
-CS (6050033-BS1)										
Prepared & Analyzed: 01-May-06										
Ethylbenzene	01.0		л		20.0		110	70-130		
•	21.9	μg			20.0		110			
Methyl tert-butyl ether	19.6	μg			20.0		98.0	70-130		
Naphthalene 	14.2	μg			20.0		71.0	70-130		
Toluene	20.5	μg			20.0		102	70-130		
1,2,4-Trimethylbenzene	20.7	μg			20.0		104	70-130		
1,3,5-Trimethylbenzene	21.2	μg	/I		20.0		106	70-130		
n,p-Xylene	44.9	μg	/I		40.0		112	70-130		
o-Xylene	22.7	μg	/I		20.0		114	70-130		
Surrogate: 4-Bromofluorobenzene	28.7	μg	/I	•	30.0		95.7	70-130		
Surrogate: Toluene-d8	28.8	μg			30.0		96.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	24.5	μg	/I		30.0		81.7	70-130		
Surrogate: Dibromofluoromethane	25.1	μg	/I		30.0		83.7	70-130		
.CS Dup (6050033-BSD1)										
Prepared & Analyzed: 01-May-06										
Benzene	24.1	μg	/1		20.0		120	70-130	1.68	30
Ethylbenzene	22.3	μg			20.0		112	70-130	1.80	30
Methyl tert-butyl ether	19.9	μg.			20.0		99.5	70-130	1.52	30
Naphthalene	15.9	μg			20.0		79.5	70-130	11.3	30
Toluene	20.6	μg.			20.0		103	70-130	0.976	30
,2,4-Trimethylbenzene	20.9				20.0		104	70-130	0.00	30
,3,5-Trimethylbenzene		μg			20.0		106	70-130	0.00	30
-	21.3	μg								30
n,p-Xylene	44.0	μg			40.0		110	70-130	1.80 0.00	30
o-Xylene	22.9	μg			20.0		114	70-130	0.00	30
Surrogate: 4-Bromofluorobenzene	29.4	μg			30.0		98.0 97.7	70-130 70-130		
Surrogate: Toluene-d8	29.3 23.2	μg	/ I /I		30.0 30.0		77.3	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	23.2 24.9	μ g. μg.			30.0		83.0	70-130 70-130		
- ,		rs	•							
Matrix Spike (6050033-MS1)	Source: SA43978-02									
Prepared & Analyzed: 01-May-06						20.0	70.0	70.400		
Benzene	43.2	μg			20.0	29.2	70.0	70-130		
Chlorobenzene	18.2	μg			20.0	BRL	91.0	70-130		
1,1-Dichloroethene	18.9	μg			20.0	BRL	94.5	70-130		
Toluene	22.8	μg			20.0	5.59	86.0	70-130		
Trichloroethene	16.7	μg			20.0	BRL	83.5	70-130		
Surrogate: 4-Bromofluorobenzene	29.0	μg			30.0		96.7	70-130		
Surrogate: Toluene-d8	29.5	μg			30.0		98.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	25.0	μg			30.0		83.3	70-130		
Surrogate: Dibromofluoromethane	25.4	μg	"		30.0		84.7	70-130		
Matrix Spike Dup (6050033-MSD1)	Source: SA43978-02									
Prepared & Analyzed: 01-May-06			_			.		20 / 22	0.5=	
Benzene	44.5	μg			20.0	29.2	76.5	70-130	8.87	30
Chlorobenzene	17.9	μg			20.0	BRL	89.5	70-130	1.66	30
1,1-Dichloroethene	16.8	μg	/1		20.0	BRL	84.0	70-130	11.8	30
Toluene	22.9	μg	/1		20.0	5.59	86.6	70-130	0.695	30
0.00110	15.9	μg	1		20.0	BRL	79.5	70-130	4.91	30
	10.9									
richloroethene	28.4	μg			30.0		94.7	70-130		
Trichloroethene Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	28.4 29.4		1		30.0		98.0	70-130		
Trichloroethene Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	28.4	μg	/I							

Notes and Definitions

PH Insufficient preservative to reduce the sample pH to less than 2.

QC-1 Analyte out of acceptance range.

QC-2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

SA44074 @

Featuring

CHAIN OF CUSTODY RECORD

Page ______ of _____

, Special Handling:
opecial Handling.
Standard TAT - 7 to 10 business days
Standard TAT - / to 10 business days
☐ Rush TAT - Date Needed:
Li Rusii 1 A 1 - Date Needed.

All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.
 Samples disposed of after 60 days unless.

Samples disposed of after 60 days unless otherwise instructed.

НА	NIBAL TECHNOLOGY																	se instructed.					
Report To:			Invoi	ce To:								.	_				2056	_					
	ECS	~ _		Ecs								_ Site Name: LONDON DERRY CITGO											
	65 Miller			# 60036888								- Location: LONDON MERRY State: VT											
	Richmonin 1	V-1	i i	9								Sampler(s): It, LADIKE											
			P.O. 1						N: _														
1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascon 7=CH ₃ OH 8= NaHSO ₄ 9= 10=								Co	ntain	ers:				An	alyse	es:		QA	A Report (check if	ing Notes:			
O=Oil SW=	Water GW=Grou Surface Water SO X2=	=Soil SL=Sl	udge A=Air			, ve	Vials	of Amber Glass	of Clear Glass				Sazib					☐ Provid	le CT DPH M QC Rep o	MCP CAM Report RCP Report orting Level			
	G=Grab C=0	Composite				vati	OA.	mbe	ear	astic	1	4	Scitt							□ No QC			
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of A	# of Cl	# of Plastic		524.2	× ×							orting standards:			
SA44074-01	(E) 052 MID	4.20.06	1315	G	GW	2	2					2											
-62	(B) 046 MID	4	1320	1	1	1		1					2										
-03	TRIP	4	0700	4	4)	4	4	}					2										
								;															
																$\overline{}$							
						-																	
								-															
		1						*												····			
	<u> </u>		I	 	I	Reli	nguis	shed l	by:					Rece	eived	bv:		Da	 ite:	Time:			
_	when available to (mdoran@ecs.com			di	rth		λ	il								<u>-7-</u>		4/21/	-	930			
EDD Format						ten	1 A	2					7)		111	'./L	les	4/25	5/0Co	10:00			
Condition upon	receipt: Diced A	Ambient □°C	2				-,					,			-			17	17				

Featuring

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page _____ of _____

Special Handling:	
Standard TAT - 7 to 10 business days	
☐ Rush TAT - Date Needed:	

All TATs subject to laboratory approval.
Min. 24-hour notification needed for rushes.
Samples disposed of after 60 days unless otherwise instructed.

Report To:	ce To:									Proje	ect No.	: <u> </u>	28-2	20561	77.00						
	ECS							Site Name: LONDON DERRY CITGO													
	65 MillEr Richmonis	<u>अ.</u>									Location: LONDON CRY State:										
	RICHMOUD	V1		0. No.: RQN:							Sampler(s): H. LADUKE										
	Milia De		··						N: _				Sam								
1=Na ₂ S2O ₃ 7=CH ₃ OH 8	$2=HC1 3=H_2SO_4$ $= NaHSO_4 9=\underline{\hspace{1cm}}$	4=HNO ₃ 5=N ₈	aOH 6=Ascort	bic Ac	eid 			Со	ntain	ers:				A	nalyse	es:			orting Notes: if needed)		
O=Oil SW=	g Water GW=Grou Surface Water SC X2=	D=Soil SL=Sl	udge A=Air			ve	Vials	of Amber Glass	of Clear Glass				9021b					☐ Provide CT DF	EP MCP CAM Report PH RCP Report eporting Level		
	G=Grab C=	Composite				vati	OA	mbe	lear	astic		4	KAR.						d □ No QC		
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	# of A	# of Cl	# of Plastic		524.2	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						eporting standards:		
	(E) 052 MID	4.20.06	1315	G	GW	2	2					2									
	(B) 096 MID	4	1320			-							2								
	TRIP		0700	4	4	t	4						2								
						_							-								
				<u> </u>					ASSESSED TO		AND DESCRIPTION OF THE PERSON					\backslash					
						-		CONTROL III													
																			Control of the Contro		
. D.R	1 '111 4 (,				Reli	nqui	shed	by:	!			·r	Rec	eived	by:	-L 	Date:	Time:		
	when available to (modoran@ecscon			11	nth	ml	AD	ule.	•	```	संस्था <u>ः</u>							4/21/06	930		
EDD Format	·																				
Condition upor	receipt:	Ambient □ °C													-						