Shelburne Road Variety 1855 Shelburne Road South Burlington, Vermont

SMS Site #2010-4047 KAS Job #410090357

SPRING/SUMMER 2016 GROUNDWATER MONITORING AND REMEDIAL SYSTEM OPERATION & MAINTENANCE REPORT

September 14, 2016

Prepared for:

Champlain Oil Company PO Box 2126 South Burlington, Vermont 05403

589 Avenue D, Suite 10 PO Box 787 Williston, VT 05495

www.kas-consulting.com

802 383.0486 p 802 383.0490 f

Table of Contents

1.0	Introduction and Background	1
2.0	Remedial System Status Summary	1
2.1 2.2 2.3	General System Opertaion and Maintenance SVE/AS System Monitoring Hydrocarbon Recovery Volumes and Rates	. 1 . 2 . 2
3.0	Groundwater Monitoring	3
3.1 3.2	Determination of Groundwater Flow Direction and Gradient Groundwater Sample Collection and Analysis	. 3 . 3
4.0	Sensitive Receptor Risk Assessment	6
5.0	Conclusions	7
6.0	Recommendations	8

Appendices

Appendix A	1) Site Location Map
	2) Site Map
	3) Groundwater Contour Maps
	4) Contaminant Distribution Maps
Appendix B	SVE/AS System Operational Data
Appendix C	Liquid Level Monitoring Data
Appendix D	Groundwater Quality Summary
Appendix E	Analytical Laboratory Reports

1.0 Introduction and Background

This report summarizes the March 2016 and July 2016 groundwater monitoring events conducted at the Shelburne Road Variety property located at 1855 Shelburne Road in South Burlington, Vermont, ("Site"). This report also includes a summary of the soil vapor extraction (SVE) and air sparge (AS) system operation and maintenance (O&M) visits performed between November 10, 2015 and June 23, 2016. A Site location Map is included as Appendix A. KAS, Inc. (KAS) conducted this work for the Champlain Oil Company (COCO), the owner of the Site. Previous reports documenting site history, investigative work, groundwater monitoring and remedial activities are on file at the Vermont Department of Environmental Conservation (VTDEC) in Montpelier, Vermont.

Petroleum contamination was first encountered at the Site during underground storage tank (UST) removal activities conducted in October 2009 and April 2010. Subsequent monitoring of groundwater beneath and in the vicinity of the Site indicated dissolved phase petroleum-related constituents in excess of applicable Vermont Groundwater Enforcement Standards (VGES). Additionally, light non-aqueous phase liquid (LNAPL) has been detected in select wells and impacts to nearby surface water and low lying wet areas has been documented. Since June 2015, KAS has operated a SVE/AS remediation system at the Site. To date, the SVE/AS system has removed approximately 290 gallons of product (weathered gasoline) from the subsurface. The system was briefly shut down between March 4, 2016 and May 6, 2016 due to poor recovery rates and to evaluate recharge after a period of the system being off. The system was shut down again on June 23, 2016 due to poor recovery rates and remains off as of the date of the report.

The current scope of work at the Site includes biweekly monitoring of the SVE/AS system when the system is in operation, quarterly groundwater monitoring of key site-related monitoring wells (MW10-2 thru MW10-6, MW12-14, MW13-17 and MW13-18), semi-annual groundwater monitoring of perimeter wells (MW10-1, MW11-8 thru MW11-10, MW12-13 and MW12-15), and a visual inspection of sensitive receptors (low wet area and drainage area) during each monitoring event. A data deliverable package for the results of the most recent quarterly monitoring event conducted in March 2016 was submitted to the VTDEC on April 21, 2016. Results of the semi-annual monitoring event conducted in July 2016 are detailed in this report; however, a discussion and analysis of the March 2016 sampling event is also included. A data deliverable package for the SVE/AS system O&M visits conducted from November 10, 2015 thru February 16, 2016 was submitted on February 18, 2016 ahead of this formal O&M report per VTDEC request. In general, KAS has provided biweekly updates of the systems performance to the VTDEC via email correspondence to allow input on system operation. This report provides a summary of the systems performance from November 2015 thru June 2016.

2.0 Remedial System Status Summary

A total of sixteen SVE/AS system O&M site visits were conducted biweekly (every other week) while the system was in operation from November 10, 2015 to June 23, 2016 (reporting period) and are summarized in this report. Tabular and graphic summaries of system monitoring data and hydrocarbon recovery calculations are included in Appendix B.

2.1 General System Opertaion and Maintenance

Basic system O&M tasks include measuring/recording the following: influent pressure, influent/effluent vapor concentrations, Falco 300 Catalytic Oxidizer (CatOx) temperatures, CatOx hour meter, vapor control valve (VCV) status, water knockout status, SVE blower vacuums, vapor concentrations/vacuums at each vent point, AS compressor temperature/pressure, and flow/pressure at each sparge point.

Pressure, temperature, and hour system readings were collected by reading system gauges. VCV status was obtained by measuring the pin that indicates the amount of dilution air being introduced into the system. The water knockout was checked periodically when the system was shut down by opening the drain valve which allows water, if present, to be released. Vacuum readings were collected by reading system gauges and using magnehelic gauges. Vapor concentrations were measured with a photoionization detector (PID) equipped with a minimum 10.6 eV bulb. An air pump was used to draw vapor on the vacuum side of the system for measurement with a PID. During each O&M site visit, all measurements/readings were taken upon arrival. If the system was shut down for adjustments, secondary measurements/readings were taken approximately one hour after SVE/AS system restart. The above mentioned tasks were completed during each O&M site visit conducted during the reporting period.

2.2 SVE/AS System Monitoring

Data collected during the reporting period indicates the SVE/AS system attained a low rate of vapor removal as compared to the initial reporting period. Vapor concentrations from the influent air stream, as determined by the CatOx temperatures and/or using a PID, have shown that overall, vapor concentrations have significantly declined since a maximum of 1,600 parts per million (ppm) was recorded on July 17, 2015. At the end of the previous reporting period (October 29, 2015) influent concentrations were measured at 72.0 ppm. During this reporting period, influent concentrations averaged 22 ppm (maximum of 76.7 ppm) and a concentration of 1.7 ppm was recorded during the most recent site visit conducted on June 23, 2016. Influent air flow rates as calculated by a pressure gauge pre-CatOx have steadily decreased from a high of 223 standard cubic feet per minute (scfm) to a current rate of 122 scfm. Conversely, vacuum readings pre-SVE blower steadily increased until an adjustment was made to the variable frequency drive (VFD) which controls the blower on February 4, 2016. The increased vacuum and reduced flow rates were likely the result of tight soil conditions (decreased porosity due to frost) during winter months. Vacuums were lowered due to the potential for localized groundwater mounding and to prevent unnecessary energy usage.

Vapor wells SVE-1A (shallow) and SVE-1B (deep) exhibited the highest PID readings during this reporting period with maximum vapor concentrations of 579.4 ppm and 194 ppm, respectively. Concentrations in both vapor wells have since declined to below 0.3 ppm based on the most recent PID readings obtained on June 23, 2016. Adjustments were made periodically to the vapor wells (closing poor performing wells) in an effort to increase influent concentrations. On several occasions, water was observed in shallow and deep vent wells when drawing on them with an air pump. No water was observed in the vapor wells after the system vacuum was lowered as discussed above. This indicates that some amount of the localized mounding was likely occurring at higher vacuums. A slight increase in vapor concentrations was observed at select locations with these adjustments.

Since system startup, select AS points have not operated at optimal flows (>4cfm) which limits the amount of successful air sparging occurring. These points include AS-1 and AS-3 which are located on northwestern portion of the property and downgradient of the source area. While AS-1 has periodically produced flows close to 4 cfm, AS-3 has not operated above 2 cfm. For this reporting period, AS-1 thru AS-4 have operated at less than optimal flow rates despite system adjustments. The three AS points located near the source area (AS-5 thru AS-7) have operated successfully during this reporting period. Several adjustments to the flow rates have been made in an effort to increase vapor concentrations. Limited evidence of a correlation between vapor concentrations and adjustments performed during this reporting period has been identified. Tight soil conditions (decreased porosity due to frost) over the winter months likely contributed to the poor AS flow rates.

2.3 Hydrocarbon Recovery Volumes and Rates

The hydrocarbon recovery during the reporting period is estimated to be approximately 8 gallons of equivalent weathered gasoline and since system startup in June 2015 the recovery is estimated at

approximately 290 gallons of equivalent weathered gasoline. Hydrocarbon recovery was estimated based on methodology provided by the manufacturer of CatOx installed at the Site.

Several adjustments have been made in an effort to increase efficiency of the system and recovery rates. These include: increasing/decreasing AS flow rates, reducing overall system vacuums, closing poor performing SVE wells, and system shutdowns. Of these adjustments, the system shutdown which occurred between March 4, 2016 and May 6, 2016 resulted in the largest increase in system efficiency and recovery rates. Prior to system shutdown, the influent concentration was 9.8 parts per million (ppm) and the recovery rate was 0.1 pound per day. After system restart, the influent concentration and recovery rates were observed again after 48 days of operation. Based on the influent vapor concentrations observed over this reporting period it appears treatment with a CatOx may no longer be warranted and a cost evaluation for treatment via carbon should be performed. The need for periodic system shutdowns to increase system efficiency should also be evaluated.

A summary of the SVE/AS system performance to date is included in Appendix B.

3.0 Groundwater Monitoring

3.1 Determination of Groundwater Flow Direction and Gradient

Water level measurements were collected from select site-related monitoring wells in March and July 2016 using a Keck[™] interface probe (IP). Measurements were collected while the SVE/AS system was temporarily shut down.

On March 30, 2016, depth to water in eight on-site wells ranged from 14.42 to 21.49 feet below top of casing (btoc). One off-site well (MW12-14) was also gauged during this quarterly monitoring event and depth to water was recorded at 4.54 feet btoc. No LNAPL was detected in any of the wells gauged. These measurements are within range of previous levels observed during the spring season.

On July 8, 2016, depth to water in eight on-site wells ranged from 12.23 to 22.28 feet btoc. Depth to water measured in three off-site wells ranged from 5.81 to 8.95 feet btoc. No LNAPL was detected in any of the wells gauged. The water level measurements obtained during this semi-annual event are within range of previous levels observed during the summer season.

For each gauging event, the water level measurements were subtracted from the top of casing to determine the water table elevation at each of the wells. Groundwater level data are recorded in Appendix C. Groundwater elevation data for the July event was used to generate a Groundwater Contour Map which is included in Appendix A. The groundwater flow direction for the July 8, 2016 gauging event was generally oriented to the northwest at a hydraulic gradient of 6.9%. The groundwater contour map for the March 2016 monitoring event is also included in Appendix A and flow/gradients are generally consistent with the July 8, 2016 data.

3.2 Groundwater Sample Collection and Analysis

Quarterly sampling of eight key site-related monitoring wells (MW10-2 thru MW10-6, MW12-14, MW13-17 and MW13-18) was conducted on March 30, 2016. Surface water sampling was not necessary for the quarterly sampling event as no visible sheens were observed.

A semi-annual groundwater sampling event was conducted on July 8, 2016. Groundwater samples were collected from seven key site-related monitoring wells (MW10-2 thru MW10-6, MW13-17 and MW13-18) and from four perimeter wells (MW10-1, MW11-9, MW12-13 and MW12-15). A sample could

not be collected from key site well MW12-14 as this well was not located due to thick brush and an overgrowth of thorn bushes. Perimeter well MW11-8 could not be sampled due to a seized standpipe bolt. Additionally, a sample could not be collected from perimeter well MW11-10 due the absence of water in the well column. Surface water sampling was not necessary for the semi-annual sampling event as no visible sheens were observed.

Samples collected during both events were chilled and delivered under proper chain-of-custody procedures to Endyne, Inc. of Williston, Vermont. One trip blank and one duplicate sample were collected for quality assurance / quality control (QA/QC) analyses for each sampling event. All samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8021B. A tabulation and graphic presentation of current and historical analytical data is provided in Appendix D and compared with the applicable VGES and Vermont Water Quality Standards (VWQS). The laboratory reports and chain-of-custody forms are presented in Appendix E.

Analytical Results

Results of the March 2016 quarterly sampling event indicated contaminant concentrations in excess of VGES in seven of the eight wells sampled: MW10-2, MW10-3, MW10-5, MW10-6, MW12-14, MW13-17 and MW13-18. One compound, benzene, was reported in the sample collected from MW10-4 but the concentration was below VGES. Total reported VOC concentrations ranged from 1.1 ug/L to 40,413 ug/L (MW13-18).

Results of the July 2016 semi-annual sampling event indicated contaminant concentrations in excess of VGES in nine of the eleven wells sampled: MW10-2, MW10-3, MW10-5, MW10-6, MW11-9, MW12-13, MW12-15, MW13-17 and MW13-18. Select VOCs were reported in the samples collected from MW10-1 and MW10-4 but all concentrations were below VGES. Total reported VOC concentrations ranged from 4.2 ug/L to 27,766 ug/L (MW10-6).

Trend Analysis

For the March 2016 monitoring event, total VOC concentrations at MW12-14, MW13-17 and MW13-18 showed moderate to significant increases since the previous sampling event in January 2016; however all concentrations remain below average pre-system levels. An increase was also noted at MW10-3 since the previous sampling event for this well (October 2015); however the current concentration remains well below average pre-system levels. This is the first sampling event for MW10-6 since remedial system startup (June 2015). LNAPL was present in this well for four consecutive monitoring/gauging events after system startup but has since dissipated. Current dissolved phase concentrations in this well are indicative of the recent presence of LNAPL. While concentrations in MW10-6 are above average pre-system levels, it is worthy to note that similar levels were noted in this well in April 2011. Total VOC concentrations in the remaining wells sampled in March 2016 showed a decrease since previous sampling.

For the July 2016 monitoring event, a decrease in total VOC concentrations was observed at most well locations since the previous respective sampling and all concentrations, except MW10-6, remain lower than average pre-system levels. Increases were noted at MW10-2, MW10-4 and MW12-15; however, current concentrations at MW10-2 remain below VGES and concentrations at MW10-4 and MW12-15 are within range of historic fluctuations. Of note, concentrations reported at MW11-9 are presently the lowest reported to date.

Current and historical data indicates dissolved phase contaminant concentrations continue to fluctuate over time at select well locations; however, an overall long-term declining concentration trend has been observed at most well locations since monitoring began. Based on the current data, it appears the SVE/AS system, which began operation in June 2015, has been effective in reducing contaminant concentrations beneath the Site. To date, the SVE/AS system has removed approximately 290 gallons

of product (as weathered gasoline) from the subsurface. Percent decreases in wells to date since SVE/AS system operation are listed below. Because seasonal fluctuations in contaminant concentrations are observed at most well locations, an average pre-startup concentration was used to determine the percent decline to date. Percent declines for select wells are not listed due to a lack of post-startup analytical data.

MW10-1: 88.4% (95.9 to 11.1 ppb) MW10-2: 94.0% (103,724 to 6,244 ppb) MW10-3: 94.7% (57,021 to 3,014 ppb) MW10-4: 98.3% (242 to 4.2 ppb) MW10-5: 99.6% (85,981 to 365.1 ppb) MW10-6: (179%) (9,937 to 27,766 ppb) MW10-6: (179%) (837 to 1,548 ppb) MW11-8: (84.9%) (837 to 1,548 ppb) MW11-9: 75.7% (17,725 to 4,297 ppb) MW11-10: 98.1% (195 to 3.7 ppb) MW12-13: 66.4% (8,918 to 2,992 ppb) MW12-14: 19.3% (35,449 to 28,597 ppb) MW12-15: 22.5% (9,465 to 7,328 ppb) MW13-17: 20.4% (31,689 to 25,213 ppb) MW13-18: 96.2% (49,680 to 1,881 ppb) MW13-19: 18.9% (8,958 to 7,263 ppb)

As noted above, concentrations at wells MW10-6 and MW11-8 are above average pre-startup concentrations; however, similar levels have historically been reported at both locations.

LNAPL previously observed in monitoring wells MW10-2 and MW10-3 appears to have dissipated since system startup and dissolved phase concentrations at these locations are presently the second lowest to date. Groundwater levels in the vicinity of these wells have returned to similar levels when LNAPL was observed therefore the lack of observable LNAPL is not believed to be influenced by depressed groundwater levels but rather successful remediation via operation of the SVE/AS system. Depressed water table conditions in the vicinity of MW10-6 after system startup resulted in the appearance of LNAPL in this well. LNAPL in this well appears to have since dissipated based on the lack of observable LNAPL in March and July 2016. However, groundwater levels have increased at this location therefore it is unclear if LNAPL will reappear under future depressed conditions.

Contaminant Distribution

The highest levels of on-Site dissolved phase contaminants in March 2016 were reported in MW10-6, MW13-17 and MW13-18. Two of these wells, MW10-6 and MW13-17, also reported the highest on-Site contaminant levels in July 2016. These wells are located adjacent to or directly downgradient of the source area (former gasoline and diesel USTs) and have historically contained some of the highest concentrations noted on-Site. Reported concentrations of total targeted VOCs were plotted on the Site Map to create the Contaminant Distribution Maps (March 2016 and July 2016) in Appendix A. Based on these maps, the core of the dissolved phase plume is located on the northwestern portion of the property adjacent to and directly downgradient of the source area. The July 2016 map shows a clear break in the contaminant plumes located off-Site and on-Site. This indicates active remediation efforts occurring at the Site have successfully mitigated off-Site migration of the contaminant plume. Current and historical data indicates the dissolved phase plume has been mostly defined to the west, north and east where low to non-detectable concentrations have been reported in MW11-7, MW11-10, MW11-11, MW12-12, MW12-16 and upgradient well MW10-1. The plume likely terminates to the west shortly beyond MW11-10 and MW11-11 due to the significant reduction in VOCs from the source area to these well locations. The full extent of the plume to northwest (downgradient) has not been adequately defined. Under system operation a depression area in the vicinity of MW10-2 may cause migration of the plume to the southwest. System adjustments were made in an attempt to limit water table

depression in this area; therefore, the need for additional delineation to the southwest is not warranted at this time.

Quality Assurance and Quality Control

No VOCs were detected in the trip blank samples prepared on March 30, 2016 or July 8, 2016. Relative percent difference (RPD) is defined as one hundred times the difference between the actual sample and the duplicate sample, divided by the mean of the two samples. RPD values are used to determine if adequate quality assurance and control (QA/QC) were maintained during sample collection and analysis. For the March 2016 sampling event, the duplicate sample was collected from monitoring well MW10-6. RPD ranged from 0.3% to 5.3% for the detected compounds. The RPD for the total VOCs was 2.9% indicating excellent precision. For the July 2016 sampling event, the duplicate sample was collected compounds. The RPD for the total VOCs was 2.9% indicating excellent precision. For the July 2016 sampling event, the duplicate sample was collected from monitoring well MW13-7. RPD ranged from 0.0% to 10.6% for the detected compounds. The RPD for the total VOCs was 4.3% indicating excellent precision. A tabular presentation of duplicate sample data and RPD results is included in Appendix D.

4.0 Sensitive Receptor Risk Assessment

A sensitive receptor risk assessment of the area surrounding the Site is provided below, and a determination of the potential risk to identified receptors has been made based on proximity to the contaminant plume, groundwater flow direction, contaminant mobility and volatility, and contaminant concentration levels in subsurface soils and groundwater. Two sensitive receptors (low wet area and drainage swale surface water) other than soil and groundwater have been identified as being impacted from the subsurface petroleum contamination originating from the Site.

The Site is serviced by the public water system. No supply wells have been identified in close proximity to the Site as being at risk to subsurface petroleum contamination.

A low wet area is present in the immediate vicinity of the Site to the west/northwest where monitoring wells MW11-7 thru MW11-11 were installed. Petroleum sheens have previously been noted on the surface water in this area in addition to gasoline odors. Analytical testing of surface water in 2010 indicated petroleum constituents in excess of VWQS. A visual inspection of this area was performed during the March 2016 and July 2016 monitoring events; no surface water/groundwater seeps were observed during either event.

A drainage swale is located approximately 200 feet northwest of the Site. Petroleum sheens and odors have previously been observed in this area. Previous analytical testing of this area detected petroleum constituents in excess of VQWS. In October 2015, KAS collected a sample from the swale due to the observance of a visible sheen. Analytical testing indicated the sheen was likely biological nature however results confirmed that surface water continues to be impacted with petroleum constituents. A visual inspection of the area was performed during the March 2016 and July 2016 sampling events. No odors or sheens were observed. Previous analytical testing at upstream locations has confirmed that impacts to the surface water also originate from the adjacent Burlington Mitsubishi property (SMS# 99-2633).

The nearest major surface water is Lake Champlain, located approximately 1,500 west of the source area. This surface water is not believed to be at risk from the subsurface petroleum contamination originating from the Site due the significant distance from the source area.

The closest buried utilities are municipal water and sewer lines located to the east (upgradient) of the source area. At this time the utility corridors are not considered to be at risk of acting as conduits for plume migration based on the depth of groundwater and distance/direction in relation to the source area.

One main structure is present on the property, the convenience store building. The building is built on slab and was screened for VOCs with a photoionization detector (PID) during the UST closure assessment; no VOCs were measured above background conditions. Given its construction, the immediate and future risk for a vapor intrusion is considered to be low. The nearest off-Site building is located approximately 125 feet south of the Site and is not considered to be at risk for vapor intrusion based on distance/direction of the source area. The closest buildings downgradient of the Site are located approximately 250 feet northwest. These buildings are storage units built on concrete slabs. Given their purpose these buildings are presumed to not be occupied by humans for an extended period of time. Additional data is needed downgradient to determine if these buildings are at risk to vapor intrusion. There are no buildings located in the immediate vicinity of the site to the west or east. No residential buildings are present in the immediate vicinity of the Site.

5.0 Conclusions

Based on the results of the March /July 2016 groundwater monitoring events and the most recent SVE/AS O&M reporting period, the following conclusions are offered:

- SVE/AS system O&M site visits were conducted on a biweekly basis while the system was in operation from November 10, 2015 thru June 23, 2016. The hydrocarbon recovery during the reporting period is estimated to be 8 gallons of equivalent weathered gasoline and since system startup in June 2015 the recovery is estimated to be 290 gallons of equivalent weathered gasoline;
- The SVE/AS system was briefly shutdown between March 4, 2016 and May 6, 2016 due to poor recovery rates and to evaluate recharge after a period of the system being off. An increase in influent concentrations and recovery rates was observed after system restart. After 48 days of operation, the system was shut down on June 23, 2016 due to poor recovery rates and remains off as of the date of this report;
- Based on current system influent concentrations, it appears treatment with a CatOx may no longer be warranted and change out to carbon treatment should be considered as well as the need for brief system shutdowns to increase efficiency;
- > Depth to liquid measurements were within range of historic levels observed during spring and summer seasons;
- Groundwater flow beneath the Site is generally to the northwest at an approximate hydraulic gradient of 6.9%, which is generally consistent with historical results;
- Depressed water table conditions in the vicinity of MW10-6 after system startup in June 2015 resulted in the appearance of LNAPL in this well. LNAPL in this well appears to have since dissipated based on the lack of observable LNAPL in March and July 2016. However, groundwater levels have increased at this location therefore it is unclear if LNAPL will reappear under future depressed conditions;
- LNAPL previously observed in MW10-2 and MW10-3 appears to have dissipated due to successful remediation efforts in this area;
- Select dissolved phase petroleum-related VOCs were reported above VGES in seven of the eight wells sampled in March 2016. Total reported VOC concentrations ranged from 1.1 to 40,413 ug/L. A moderate to significant increase in contaminant levels was observed in three wells; however all concentrations remain below average pre-system levels. This was the first sampling round for MW10-6 since remediation system startup. Concentrations in this well are above average presystem levels and indicative of the recent presence of LNAPL;

- Semi-annual sampling of site-related wells in July 2016 indicated dissolved phase petroleum-related VOCs in excess of VGES in nine of the eleven wells sampled. Total reported VOC concentrations ranged from 4.2 to 27,766 ug/L. Most well locations showed a decrease in contaminant concentrations since previous respective sampling. The three wells that had slight increases either remain below VGES or well below historic peaks;
- Dissolved phase contaminant concentrations continue to fluctuate over time at select well locations; however, an overall long-term declining concentration has been observed at most well locations;
- It appears the SVE/AS system, which began operation in June 2015, has been effective in reducing contaminant concentrations in the vicinity of the Site. Contaminant concentrations in on-Site wells, except MW10-6, have declined by 18.9% to 99.6% when compared to average pre-system concentrations. Concentrations in off-Site wells have declined by at least 19.3% except at MW11-8. While a percent increase is noted at MW10-6 and MW11-8 when compared to an average presystem startup concentrations, the present concentrations are within range of levels previously observed;
- The full downgradient extent of the dissolved phase plume has not been fully defined at this time and appears to extend at least 200 feet in a northwesterly direction towards an off-Site drainage swale. However, the July 2016 Contaminant Distribution Map shows a clear break in the contaminant plumes located off-Site and on-Site. This indicates active remediation efforts occurring at the Site have successfully mitigated off-Site migration of the contaminant plume. The contaminant plume has been mostly defined to the west, north and east. Under system operation a depression area in the vicinity of MW10-2 may cause migration of the plume to the southwest. System adjustments have been made in an attempt to limit water table depression in this area; therefore, the need for additional delineation to the southwest is not warranted at this time; and,
- > Two sensitive receptors (low wet area and drainage swale surface water), other than soil and groundwater, have been identified as being at potential risk of impact from subsurface petroleum contamination during recent or past site investigations.

6.0 Recommendations

Based upon the above conclusions, KAS recommends the following actions:

- 1. Continued quarterly groundwater monitoring of key site-related wells, semi-annual sampling of perimeter wells and a visual inspection of sensitive receptors during each monitoring event; and,
- 2. Based on the influent vapor concentrations observed during the most recent reporting period, treatment with a CatOx may no longer be warranted therefore a cost evaluation to switch to carbon treatment should be performed. The system should be restarted in late-September and allowed to operate for one week to evaluate recharge rates and confirm influent vapor levels.

Appendix A

Site Location Map

 Site Map
 Groundwater Contour Maps
 Contaminant Distribution Maps

Appendix B

SVE/AS System Operational Data

SVE System Operational Data Product Recovery Calculations

PERIOD	FALCO	INTERVAL	INTERVAL	INTERVAL	INFLUENT	EST.		T1	T2	Т3	T2-T1	INTERVAL	HEAT	HEAT	PID	INFLUENT	EFFLUENT	INTERVAL	INTERVAL	AVG. DAY	CUMUL	. CUMUL.	SVE BLOWER	SVE FILTER	VCV	VCV	AIR	Notes
ENDING	METER	(days)	(hrs)	(min)	(in water)	(scfm)	(scfm)	(deg C)	(deg C)	(deg C)	(ppmv)	(ppmv)	(in open)	(% open)	USED	(ppmv)	(ppmv)	(lb)	(gal)	(lb)	(lb)	(gal)	(in water)	(in water)	(in open)	(% open)	(status)	
	13.1	0	0.17	10	36	311	311	330	416	363	688	688	0	0	MiniRae	330.2	0.0	0.2	0.02	23.1	0.2	0	30.0	3.0	-	-	off	
6/11/2015	-	0	0.50	30	-	311	311	330	409	381	632	660	0	0	-	-	-	0.5	0.1	22.2	0.6	0	30.0	3.0	0.75	33	off	
	36.7	0	1.40	1 302	37	316	313.5	340	503	399	808	716	0	0	MiniRae	363.1	0.0	25.4	0.2	24.2	2	0	28.0	- 25	0.75	33	off	
6/12/2015	37.3	0	0.60	36	36	311	321.5	335	466	403	1048	928	0	0	-	-	-	0.8	0.1	32.2	28	4	30.0	2.5	0.625	28	off	
	175.7	6	138.40	8,304	35	305	308	330	413	391	664	856	0	0	MiniRae	381.1	0.0	164.2	24.1	28.5	192	28	26.0	10.0	0.875	39	off	
6/10/2015	-	0	1.15	69	35	305	305	416	579	555	1304	984	0.5	33	MiniRae	500.1	0.0	1.6	0.2	32.4	194	28	35.0	13.0	0.5	22	off	lean wells closed (6A/B, 5A/B, 2A/B, 7A, 1B)
6/18/2015	-	0	1.90	33	- 30	278	291.5	369	539	497	1360	1332	0.5	33 67	MiniRae	461.5	0.0	3.3	0.5	41.9	197	29	35.0	14.0	0.5	- 22	off	
	179.9	0	0.60	36	28	266	273	336	525	475	1512	1416	1	67	MiniRae	410.2	0.0	1.0	0.2	41.6	199	29	34.0	18.0	0.75	33	off	
	298.0	5	118.10	7,086	-	-	266	-	-	-	-	1156	-	-	-	-	-	163.4	24.0	33.2	363	53	-	-	-	-	off	system off upon arrival, high water alarm
6/26/2015	-	12	0.90	54	-	-	266	-	-	-	800	800	1	67	-	-	-	0.9	0.1	0.1	364	53	80.0	80.0	2.25	0	off	system restart, water observed entering knockout
7/8/2015	299.7	0	260.70	48	20	216	241	330	429	411	792	1192	1	6/	MiniRae	359	0.0	1.0	16.4	31.0	365	54	53.0	48.0	2.25	0	off	system restart, iean wells opened (6A/B, 5A/B, 2A/B, 7A, 1B)
778/2013	606.0	2	45 56	2 734	30	278	254	329	335	369	48	420	0.25	17	MiniRae	374.8	0.0	2.1	0.4	10.5	470	70	35.0	2.5	0.5	22	on	AS startun - running for 30 min
	607.1	0	1.13	68	33	295	287	375	512	500	1096	572	0.25	17	-	-	-	0.8	0.1	17.7	479	70	35.0	0.0	0.25	11	on	
7/10/2015	607.7	0	0.60	36	30	278	287	379	416	387	296	696	0.25	17	-	-	-	0.5	0.1	21.5	480	70	40.0	0.0	0	0	on	
.,,	608.6	0	0.90	54	33	295	287	388	520	509	1056	676	0.25	17	MiniRae	320.2	0.0	0.8	0.1	20.9	481	71	35.0	0.0	0.125	6	on	
	610.0	0	0.33	20	27	278	269	365	523	488	1128	1192	0.23	41	- MiniRae	321.7	0.0	0.5	0.1	34.7	481	71	38.0	0.0	0.125	6	on	
	774.9	7	164.90	9,894	-	-	238	330	340	350	80	672	0.62	41	-	-	-	118.7	17.4	17.3	600	88	-	-	2.25	100	off	AS shut down upon arrival
	775.2	0	0.30	18	20	216	238	331	332	355	8	44	0.62	41	-	-	-	0.01	0.002	1.1	600	88	45.0	40.0	2.25	100	on	full system restart
7/17/2015	775.9	0	0.70	42	21	223	220	330	415	409	680	344	0.62	41	IonScience	412	0.0	0.2	0.03	8.2	601	88	45.0	40.0	2.25	100	on	
	776.9	0	1.00	60	22	229	226	333	510	475	1416	1048	0.62	41	IonScience	651	0.0	1.1	0.2	25.6	602	88	45.0	40.0	2.25	100	on	
	842.9	3	63.00	3 780	24	242	257	330	488	444	1264	1432	0.62	41	IonScience	729	0.0	104 3	15.3	39.7	711	104	25.0	15.0	1.62	72	on	
7/20/2015	844.0	0	1.10	66	28	266	269	331	502	449	1368	1316	0.62	41	-	-	-	1.8	0.3	38.2	713	101	25.0	15.0	-	-	on	
8/4/2015	1,202.9	7	167.90	10,074	25	248	232	330	414	394	672	656	0.25	17	MiniRae	650.4	5.2	115.0	16.9	16.4	1035	152	48.0	40.0	2.25	100	on	
8/21/2015	1,612.3	0	1.20	72	24	242	242	333	376	375	344	324	0	0	MiniRae	391.6	4.8	0.4	0.1	8.5	1256	184	48.0	42.0	2.25	100	on	system shutdown briefly, knockout empty, bypass closed
	1,852.4	10	240.10	14,406	-	-	242	51	51	55	-	432	0	0	-	-	-	113.0	16.6	11.3	1368	201	-	-	-	-	off	system shutdown upon arrival, T1 Low temp alarm, knockout empty
9/2/2015	1,853.2	0	0.80	48	24	242	242	331	396	392	520	432	0	0	MiniRae	327.9	5.6	0.4	0.1	11.3	1369	201	52.0	45.0	2.25	100	on	system restart, lean wells closed 1/2 way (1B thru 9B, 5A, 6A, 9A)
	2.237.3	16	383.70	23.022	23	240	243	330	357	358	216	424	0	0	MiniRae	267.5	3.4	177.2	26.0	11.1	1546	201	51.0	45.0	2.25	100	on	
9/18/2015	2,238.3	0	1.00	60	25.5	254	245	342	508	520	1328	772	0	0	MiniRae	658.4	2.2	0.9	0.1	20.4	1547	227	50.0	45.0	2.25	100	on	system restart after adjustments (closed-1B, 2B, 4B thru 8B; opened-3B)
10/2/2015	2,571.4	14	333.10	19,986	25	248	251	330	349	354	152	740	0	0	MiniRae	164	0.0	278.4	40.9	20.1	1826	268	57.0	52.0	2.25	100	on	
10/14/2015	2,860.6	12	289.20	17,352	24	242	245	330	354	356	192	172	0	0	IonScience	e 155	2.2	54.8	8.1	4.6	1880	276	55.0	50.0	2.25	100	on	adjustments - opened 8B 1/2 way
10/22/2015	3,027.1	7	166.50	9,990	23	236	239	330	336	346	48	120	0	0	MiniRae	122.4	7.9	21.9	3.2	3.2	1902	279	56.0	52.0	2.25	100	on	GWM visit. Air flow observed MW13-19, MW10-2
10/20/2015	3,032.8	0	5.70	342	23	236	236	330	335	345	48	48	0	0	MiniRae	118.7	5.4	0.7	0.1	3.0	1903	279	56.0	52.0	2.25	100	on	adjustments - opened 8B/7B, lowered AS-6 flow
10/23/2013	3,222.2	12	289.40	17 364	20	216	289	330	328	343	10	54	0	0	MiniRae	35.1	2.2	19.5	2.2	1.5	1910	282	60.0	56.0		100	on	
11/10/2015	3,513.7	0	2.10	126	20	223	220	330	331	341	8	33	0	0	MiniRae	31.5	2.0	0.1	0.01	0.7	1937	284	60.0	58.0		100	on	adjustments - opened all deep; closed all shallow half way, lowered all AS to < 4 cfm
11/24/2015	3,844.0	14	330.30	19,818	20	216	220	330	326	339	0	23	0	0	MiniRae	14.5	0.0	4.7	0.7	0.3	1942	285	65.0	63.0		100	on	increased AS to levels prior to 11/10
12/8/2015	3,941.7	4	97.70	5,862	-	-	220	3	3	4	-	15	0	0	MiniRae	-	-	1.4	0.2	0.3	1943	285	-	-		-	off	system shutdown upon arrival, T1 Low temp alarm, knockout empty, VFD trip
	3,942.9	0	1.20	72	20	216	220	330	331	340	8	37	0	0	MiniRae	37.4	0.0	0.04	0.007	0.9	1943	285	65.0	65.0		100	on	system restart
12/21/2015	4,250.6	13	307.70	18,462	19	209	213	330	326	338	0	24	0	0	MiniRae	10.0	0.0	7.0	1.0	0.5	1950	286	66.0	65.0		100	on	
1/6/2016	4,638.4	0	2.60	156	- 19	- 209	- 209		- 520		-	-	-	-	-	- 5.4	-	- 2.8	-	- 0.2	- 1955	- 207		- 00.0		- 100	-	system shutdown for GWM event next day
1/7/2016	4,638.4	0	0.00	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0	off	system restart after GWM
1/7/2018	4,639.4	0	1.00	60	19	209	209	330	326	339	0	2.3	0	0	MiniRae	2.3	0.0	0.002	0.0003	0.1	1953	287	69.0	66.0		100	on	
1/21/2016	4,970.4	14	331.00	19,860	18	202	206	330	326	338	0	4.3	0	0	MiniRae	6.3	0.0	1.3	0.2	0.1	1955	287	70.0	70.0	2.25	100	on	
2/4/2016	5,306.5	14	336.10	20,166	19	209	206	330	326	338	0	4.5	0	0	MiniRae	2.7	0.0	1.4	0.2	0.1	1956	287	68.0	66.0	2.25	100	on	VFD lowered to reduce blower vac, system shutdown briefly, knockout <1 gal, filter good
2/16/2016	5,307.8	12	287.30	/8	9	132	1/1	329	322	330	0	3.4	0	0	MiniRae	4.1	0.0	1.3	0.0005	0.1	1956	287	42.0	42.0	2.25	100	on	system restart, all SVE open 100%
2/10/2010	6.005.1	17	410.00	24.600	8	132	132	330	323	337	0	10.4	0	0	MiniRae	9.8	0.0	2.4	0.4	0.1	1960	288	41.0	40.0	2.23	100	on	
3/4/2016	6,005.8	0	0.70	42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	system shutdown upon departure to evaluate recharge
3/30/2016	6,006.5	0	0.70	42	9	132	127	-	-	-	-	8.2	0	0	MiniRae	8.2	0.0	0.003	0.0005	0	1960	288	45.0	40.0	2.25	100	on	system restart; operated for ~45 min; shutdown upon depart due to poor performance
	6,007.3	0	0.80	48	8.5	127	130	330	297	342	0	0.6	0	0	MiniRae	0.6	0.0	0.0003	0.00004	0.0	1960	288	44.0	42.0		100	off	system restart
E/6/2016	6,007.4	0	0.10	6	8.5	127	127	330	315	341	0	5.9	0	0	MiniRae	11.2	0.0	0.0003	0.0000	0.1	1960	288	44.0	42.0		100	on	AS startup
5/0/2010	6,009.7	0	1.70	102	9.5	137	132	330	320	345	0	48.6	0	0	MiniRae	49.0	0.0	0.01	0.002	0.4	1960	288	43.0	41.0		100	on	
	6,011.0	0	1.30	78	9.5	137	137	330	330	343	0	51.4	0	0	MiniRae	53.7	0.0	0.04	0.01	0.8	1960	288	43.0	41.0		100	on	
5/11/2016	6,127.7	5	116.70	7,002	8.5	127	132	330	335	346	40	65.2	0	0	MiniRae	76.7	0.0	4.5	0.7	0.9	1964	288	45.0	43.0	2.25	100	on	
5/23/2016	6,417.9	12	290.20	17,412	8	122	125	330	323	337	0	47.1	0	0	MiniRae	17.5	0.1	7.7	1.1	0.6	1972	290	45.0	43.0	2.25	100	on	
6/9/2016	6,822.4	17	404.50	24,270	8	122	122	330	322	337	0	16.1	0	0	MiniRae	14.6	0.5	3.6	0.5	0.2	1976	290	45.0	43.0	2.25	100	on	
6/23/2016	7,156.5	14	334.10	20,046	8	122	122	330	321	335	0	8.2	0	0	MiniRae	1.7	0.0	1.5	0.2	0.1	1977	290	45.0	42.0	2.25	100	on	system shutdown upon departure for uncoming CMMM system and due to near re-system and
	/,156./	U	0.20	12		1 -	-	-	-	-	<u> </u>	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-		-		system shutdown upon departure for upcoming GWM event and due to poor recovery rate.

Notes: 1. Recovery estimates based on methodology provided by Falmouth Industries, Falmouth, MA for the incineration unit installed at this Site; however, if T2-T1<14 deg C than influent PID concentration is used in calculation. 2. Airflow estimated from Falmouth flow rate/inlet calculator. 3. Vapor control valve (VCV) - 100% open equals no dilution

SVE System Operational Data

PERI	OD	FALCO	AIR	PID	SVE	-1A	SVE	E-1B	SVE	-2A	SV	/E-2B	SV	E-3A	SVE	-3B	SVE	-4A	SVE	-4B	SVE	-5A	SVE-	-5B	SVE	-6A	SVE	E-6B	SVE	E-7A	SVE-	7B	SVE-	8A	SVE	-8B	SVE	E-9A	S١	'E-9B	Notes
END	NG	HOUR	SPARGE	USED	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	PID	VAC	
		METER	(status)		(ppmv)	(in H2O)	(ppmv)	(in H2O)	(ppmv)	(in H2O) (ppmv)	(in H2O)	(ppmv)	(in H2O))																										
6/11/	2015	13.1	off	MiniRae	116.3	-	385.2	-	83.8	-	723.2	-	264.2	-	568.5	-	209.7	-	192.6	-	34.4	-	146.9	-	21.2	-	125.6	-	206.9	-	578.2	-	31.7	-	364.9	-	401.1	-	581.6	-	
6/12/	2015	36.7	off	MiniRae	173.2	-	208.1	-	108.9	-	91.4	-	203	-	385	-	197.2	-	363.2	-	24.7	-	53.2	-	22.6	-	41.5	-	240	-	531.1	-	368.2	-	296.3	-	622	-	675.2	-	
		175.1	off	MiniRae	222.0	34	3.2	33	2.9	32	3.0	34	49.1	31	167.8	32	31.7	34	392.7	33	2.1	33	2.4	31	3.2	30	6.3	34	18.6	31	231.7	32	61.6	34	467.5	32	185.3	32	693.6	32	
6/18/2	2015	-	off	MiniRae	200.4	32	clo	sed	clo	sed	cl	osed	232.7	31	206.4	31	205.3	31	496.2	31	clo	sed	close	ed	clo	ed .	clo	sed	clo	ised	344.8	30	75.5	31	563	31	244.7	32	794.2	30	
6/26/	2015	299.7	off	MiniRae	214.8	31	28.0	31	23.5	31	366.1	31	53.4	30	60.6	30	23.4	31	624.3	31	1.8	31	4.0	31	3.9	31	10.3	30	38.5	31	398.7	31	291.1	31	732.1	31	285.1	30	/3.0	30	
7/8/2	015	560.4	off	MiniRae	32.7	30	0.0	31	0.0	29	0.0	31	53.3	30	19.2	30	0.0	30	0.0	31	0.0	31	0.0	31	0.8	30	10.5	30	0.0	31	11.0	30	0.0	30	181.5	30	142.1	31	1.0	30	water observed in SVE-1B
.,		606.0	on	MiniRae	243.8	-	62.1	-	625.9	-	42.7	-	458.3	-	40.6	-	657.2	-	47.0	-	331.5	-	37.3	-	368.1	-	38.7	-	653.6	-	140.2	-	312.5	-	494.0	-	427.2	-	234.2	-	AS startup, running for 30 min
7/10/2	2015	608.6	on	MiniRae	319.6	31	239.4	30	507.3	30	237.7	30	560.4	31	52.3	31	550.4	31	270.7	31	346.6	30	214.4	31	408.0	31	200.4	31	489.6	31	272.2	31	497.2	32	261.5	30	641 5	30	325.9	30	
7/17/	2015	777.9	on	IonScience	79/ 0	30	237	32	1 130	32	31.3	32	972.0	32	12/	31	905.0	32	35.0	32	173.0	32	30.3	32	218.0	32	26.2	32	771.0	32	99.8	32	193.0	32	675	32	676.0	31	72.0	32	
7/20/	2015	842.9	on	IonScience	817.0	31	396	31	1 170	31	232	31	1 400	31	183	31	1 140	31	346.0	31	1 020	31	299.0	31	1 190	31	296	31	1 270	31	446.0	31	347.0	31	875	31	1 140	31	157.0	31	
7/28/	2015	1.035.0	on	MiniRae	760.7	29	-	30	623.6	30	19.8	30	703.2	30	185.6	30	656.2	30	18.5	30	917.0	30	23.6	30	495.2	30	29.1	30	602.6	30	64.9	30	670.5	29	22.2	30	252.2	30	80.7	30	water observed in SVE-1B
0/4/2	015	1,000.0	011	MiniRac	611 5	23	12.0	20	270.2	21	0.2	21	401.2	21	64.2	21	E02.0	21	12.0	21	280.2	21	15.7	20	225.2	20	15.2	22	522.5	20	52.2	20	720 5	22	14.2	21	50.2	21	64.2	21	water observed in SVE 15
0/4/2	2015	1,202.9	011	MiniDae	225.2	20	12.0	30	279.5	30	9.2	30	491.2	20	54.1	30	100.1	20	22.0	20	170.1	30	15.7	30	12.1	29	15.5	32	151.2	30	15.1	30	730.5	32	14.2	20	10.0	30	20.5	20	unter abarried in CVE 1D
8/21/2	2015	1,011.1	on	MiniRae	335.2	30	0.1	30	1/5.1	30	3.4	30	192.2	30	54.1	30	108.1	30	23.2	30	1/8.1	30	3.8	30	12.1	30	4.5	30	151.2	30	15.1	30	032.1	30	2.5	30	19.6	30	39.5	30	water observed in SVE-IB
9/2/2	015	1,853.2	on	winikae	2/9./	-	1.1	-	155.3	-	1.5	-	108.2	-	62.4	-	80.2	-	0.8	-	9.2	-	2.5	-	4.3	-	1.5	-	120.7	-	4.8	-	457.1	-	5.8	-	11.1	-	14.0	-	mag gauge manunction.
9/18/2	2015	2,237.3	on	MiniRae	337.1	38	1.6	11	159.3	38	0.5	40	525.4	38	324.5	38.5	142.2	38.5	2.8	38.5	5.4	32	1.1	39.1	5.7	37.5	0.8	38.5	218.8	38.5	1.4	39	791.1	38.5	2.9	38.5	3.2	38.5	20.3	20	lean wells closed 1/2 way (1B thru 9B, 5A, 6A, 9A)
10/2/2	2015	2,571.4	on	MiniRae	580.4	>40	1.1	closed	78.6	>40	0.0	closed	70.5	>40	63.0	>40	41.9	>40	0.0	closed	6.9	38	0.0	closed	0.1	38	0.0	closed	68.3	>40	0.0	closed	700.3	>40	48.3	closed	3.7	>40	0.0	28	water observed in SVE-58; lean wells closed (1B, 2B, 4B thru 8B); lean wells closed 1/2 way (5A, 6A, 9A/B)
10/14/	2015	2,860.6	on	IonScience	708.0	>40	29.6	closed	52.5	>40	4.9	closed	84.1	>40	57.0	>40	59.1	>40	4.2	closed	23.3	37	8.5	closed	0.8	34	23.9	closed	112.0	>40	2.9	closed	1200.0	>40	174	closed	8.7	>40	9.6	29	water observed in SVE-1A; opened 8B 1/2 way
10/29/	2015	3,222.2	on	MiniRae	727.8	>40	6.2	closed	53.9	>40	2.6	closed	85.5	>40	73.7	>40	33.9	>40	18.2	closed	83.9	36	14.8	closed	22.7	35	42.1	closed	75.9	>40	12.2	>40	119.2	>40	47.3	>40	16.6	>40	33.8	36	water observed in SVE-1A and 5B
11/10/	2015	3,511.6	on	MiniRae	579.4	>40	68.2	closed	101.2	>40	7.5	closed	42.7	>40	42.3	>40	35.7	>40	51.1	closed	39.9	>40	22.5	closed	15.2	>40	33.8	closed	67.2	>40	21.9	>40	481.2	>40	34.5	>40	30.5	>40	26.8	>40	opened all deep, closed all shallow half way
11/24/	2015	3,844.0	on	MiniRae	235.6	>40	113.4	>40	10.5	>40	1.9	>40	17.2	>40	34.1	>40	13.4	>40	8.2	>40	12.4	>40	4.7	>40	3.6	>40	2.3	>40	22.0	>40	3.4	>40	5.8	>40	26.8	>40	5.4	>40	3	>40	water observed in SVE-1A, 8A, 9A
12/8/7	2015	3,942.9	on	MiniRae	98.1	>40	194	>40	19.3	>40	0.9	>40	15.1	>40	16.6	>40	-	>40	13.6	>40	0.6	>40	0.3	>40	0.5	>40	0.1	>40	18.7	>40	13.9	>40	2.9	>40	31.4	>40	22.2	>40	17.3	>40	water observed in SVE-4A
12/21/	2015	4,250.6	on	MiniRae	0.0	>40	30.7	>40	2.0	>40	0.0	>40	9.3	>40	26.3	>40	4.8	>40	0.1	>40	0.0	>40	0.0	>40	0.0	>40	-	>40	-	>40	0.4	>40	-	>40	0.9	>40	2.2	>40	0.1	>40	water observed in SVE-7A, 8A, 5B, 6B
1/6/2	016	4,635.8	on	MiniRae	37.5	>40	0.8	18	5.1	28	-	>40	2.6	15	6.4	15	-	>40	0.0	14	0.5	>40	-	18	0.0	>40	-	>40	-	>40	0.0	14	-	>40	0.0	15	-	>40	0.0	15	water observed in SVE-4A, 7A, 8A, 9A, 2B, 5B, 6B
1/21/7	2016	4,970.4	on	MiniRae	0.5	20.0	0.1	15	0.9	27	0.0	>40	1.2	>40	1.0	15	0.5	>40	0.0	14	0.5	>40	0.0	14	0.4	21	0.1	>40	0.6	>40	0.6	14	0.5	>40	0.1	15	0.8	16	0.0	15	water observed in SVE-2B
2/4/2	016	5,306.5	on	MiniRae	4.1	>40	0.4	18	1.5	27	-	>40	-	>40	1.4	16	-	>40	0.4	15	0.4	>40	-	18	0.0	>40	-	>40	-	>40	0.1	16	-	>40	0.3	17	-	>40	0.1	17	Water observed in SVE-1A, 3A, 4A, 7A, 8A, 9A, 2B, 5B, 6B; opened all SV 100% upon depart
2/16/7	2016	5,595.1	on	MiniRae	11.1	35	0.2	37	5.0	36	0.2	38	4.8	36	25.8	38	2.5	36	0.2	37	0.1	36	0.3	38	0.1	36	0.2	37	3.7	37	1.1	37	2.0	36	0.4	38	1.2	36	0.4	37	no water, closed all deep half way, except 3B upon depart
3/4/2	016	6,500.1	on	MiniRae	23.4	37	0.1	39	4.5	37	0.1	40	4.9	38	1.6	39	2.8	37	0.1	39	0.1	38	0.2	39	0.1	37	0.1	39	4.0	38	0.3	39	5.2	37	0.4	39	0.9	38	0.3	39	system shutdown upon departure to evaluate recharge
3/30/2	2016	6,006.5	on	MiniRae	0.6	-	3.2	-	0.1	-	0.7	-	0.3	-	0.2	-	0.2	-	2.1	-	0.8	-	1.0	-	0.7	-	1.1	-	1.1	-	0.5	-	0.7	-	1.9	-	0.0	-	1.4	-	brief restart; all measurements taken without vacuum pump
5/6/2	016	6,007.3	otf	MiniRae	3.0	-	0.0	-	0.3	-	0.6	-	0.2	-	0.2	-	0.4	-	0.9	-	0.7	-	0.7	-	0.1	-	0.6	-	0.0	-	0.1	-	0.3	-	0.4	-	0.2	-	0.1	-	restart, AS off
		6,011.0	on	MiniRae	2.2	36	0.0	38	17.1	37.0	0.0	38	11.7	37	5.2	38	8.0	37	0.0	38	0.0	37	0.0	38	0.0	37	0.0	38	13.5	37	1.3	38	1.8	36	0.0	38	4.0	37	2.3	38	
5/11/2	2016	6,127.7	on	MiniRae	7.8	38	0.0	>40	14.0	>40	0.0	>40	14.0	>40	32.6	>40	7.0	>40	0.0	>40	1.0	38	0.0	>40	0.0	39	0.0	>40	13.7	>40	0.7	>40	3.3	>40	0.0	>40	0.7	>40	0.3	>40	
5/23/2	2016	6,417.9	on	MiniRae	3.8	39	0.1	>40	2.4	39.0	0.0	>40	2.8	39	7.6	>40	1.4	39	0.0	>40	0.0	39	0.0	>40	0.0	39	0.0	>40	2.7	39	0.0	>40	0.8	39	0.8	>40	0.3	39	0.0	>40	
6/9/2	016	6,822.4	on	MiniRae	2.5	39	0.0	>40	2.9	39.0	0.0	>40	1.4	39	/.2	>40	1.7	39	0.0	>40	1.1	39	0.0	>40	1.0	39	0.0	>40	2.8	39	0.0	>40	1.9	39	0.0	>40	0.3	>40	0.0	>40	
6/23/2	2016	7,156.5	on	MiniRae	0.3	>40	0.0	>40	0.4	>40	0.0	>40	0.3	>40	1.2	>40	0.2	>40	0.0	>40	0.0	40	0.0	>40	0.0	40	0	>40	0.2	>40	0.0	>40	0.5	>40	0.0	>40	0.2	>40	0.0	>40	system shutdown upon departure to evaluate recharge and GWM

AS System Operational Data

PERIOD	FALCO	SPARGE	SPARGE	A	\S-1		AS-2	ļ	4S-3		AS-4		\S-5		AS-6	ļ	4S-7	Notes
ENDING	HOUR	TEMP	PRESSURE	FLOW	PRESSURE													
	METER	(deg F)	(psi)	(cfm)	(psi)													
	606.0	210.0	15.0	2.5	18.0	2.5	20.0	2.0	21.5	4.0	20.0	4.0	7.0	4.0	7.5	4.0	4.0	initial startup, therr
7/10/2015	607.1	225.0	13.0	2.5	17.0	2.5	20.0	2.0	21.0	4.5	19.0	4.0	5.0	4.0	7.0	4.0	3.5	system restart, the
//10/2015	607.7	175.0	11.0	2.5	16.0	2.5	17.0	2.0	18.0	4.0	17.5	4.0	6.0	4.0	6.0	4.0	3.5	
	608.6	190.0	10.5	2.5	16.0	2.5	16.5	2.0	18.0	4.0	13.5	4.0	5.0	4.0	5.5	4.0	2.5	system operating @
	774.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	system off upon arr
	775.2	145.0	8.0	2.0	14.5	2.0	-	2.0	14.0	3.0	13.0	3.0	6.5	3.0	9.0	3.0	3.0	system restart, pres
7/17/2015	775.9	180.0	8.0	2.5	15.0	2.5	-	2.0	15.0	4.0	14.5	5.0	7.0	5.5	9.5	5.5	4.0	
	776.9	205.0	8.0	2.0	15.0	3.0	-	2.0	15.5	4.5	15.0	5.5	7.5	6.0	9.0	6.0	3.5	
	777.9	200.0	8.0	2.0	15.0	3.5	-	2.0	15.5	4.5	14.5	5.0	6.0	6.0	8.0	5.5	3.5	
7/20/2015	842.9	200.0	8.0	2.5	15.0	6.5	-	2.0	15.5	4.0	14.5	5.5	4.0	6.5	6.5	5.5	3.0	
7/28/2015	1,035.0	200.0	9.0	2.0	15.0	6.0	15.0	2.0	17.5	3.0	16.0	5.0	3.5	5.0	5.0	5.0	2.5	replaced AS-2 press
8/4/2015	1,202.9	200.0	7.0	2.0	15.0	7.0	10.0	1.0	15.0	3.0	13.0	5.0	6.0	6.0	5.0	9.0	4.0	
8/21/2015	1,611.1	205.0	9.0	2.0	15.0	6.5	10.0	1.0	17.0	3.0	14.5	15.5	6.0	6.0	5.0	9.5	4.0	
0/21/2015	1,612.3	205.0	7.0	2.0	15.0	6.0	10.0	1.0	16.5	3.0	14.0	12.0	4.5	8.5	7.5	11.5	5.0	
9/2/2015	1,853.2	200.0	7.5	1.0	15.0	2.0	8.0	1.0	22.0	2.0	13.0	13.0	6.0	10.5	10.0	13.0	5.5	
9/18/2015	2,237.3	195.0	5.8	1.0	15.0	2.0	5.0	1.0	25.0	2.5	12.0	13.0	4.5	15.5	7.0	11.8	4.8	
5/10/2015	2,287.3	195.0	5.5	1.0	14.5	2.5	5.0	1.0	25.0	2.5	11.0	13.0	4.5	15.0	7.0	11.5	4.5	
10/2/2015	2,571.4	170.0	7.0	2.0	15.0	5.0	6.0	1.0	22.5	4.0	11.0	12.5	4.0	15.25	6.5	11.25	4.5	
10/14/2015	2,860.6	175.0	7.0	3.0	15.0	5.0	4.0	1.0	26.0	3.3	11.0	12.5	4.0	15.0	6.0	11.0	4.5	
10/22/2015	3,027.1	155.0	8.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	GWM - air flow obs
	3,032.8	155.0	7.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	reduced overall spa
10/29/2015	3,222.2	160.0	6.0	3.7	15.0	5.0	4.0	1.0	27.0	3.0	12.0	8.9	2.0	8.5	3.0	9.0	3.0	
11/10/2015	3,511.6	180.0	6.0	3.8	15.0	5.0	4.0	1.0	27.0	3.0	11.0	8.8	2.0	8.8	3.0	9.0	3.0	reduced all AS to op
	3,513.7	185.0	7.0	3.8	15.0	4.0	4.0	1.0	27.0	2.5	14.0	4.0	1.0	4.0	2.5	4.0	2.0	
11/24/2015	3,844.0	180.0	6.0	3.0	15.0	3.5	2.0	1.0	>30	3.0	13.8	3.5	0.5	3.5	2.8	3.5	1.0	increased all AS to I
12/8/2015	3,941.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	system off upon arr
	3,942.9	165.0	7.0	1.0	15.0	1.0	3.0	1.0	>30	1.0	13.0	8.0	5.0	6.5	7.0	7.5	2.5	system restart
1/6/2016	4,365.8	155.0	5.3	2.0	14.8	3.3	1.0	1.0	>30	2.25	22.0	9.5	3.0	9.5	4.5	6.8	2.5	system shutdown u
1/21/2016	4,970.4	150.0	6.0	2.0	15.0	3.5	2.0	2.0	>30	2.5	26.0	10.0	3.0	9.0	4.0	7.0	2.0	lowered AS-5 and A
2/4/2016	5,306.5	168.0	5.4	2.0	15.0	4.0	1.0	1.0	>30	1.0	-	7.5	2.5	8.0	4.0	7.0	2.5	repaired AS-4 gauge
2/16/2016	5,595.1	1/0.0	6.5	2.0	15.0	3.5	1.0	2.0	>30	2.0	24.0	9.0	2.0	9.5	4.0	8.0	3.0	
3/4/2016	6,500.1	165.0	7.0	2.0	15.0	5.0	1.0	2.0	>30	2.5	25.0	9.0	3.0	9.0	4.0	8.0	3.0	system snutdown u
	6,007.4	145.0	8.0	1.0	15.0	1.0	0.0	1.0	>30	1.0	25.0	4.25	6.5	3.5	8.0	7.25	3.5	system restart
5/6/2016	6,008.0	185.0	7.5	1.0	15.0	1.0	0.0	1.0	>30	2.0	25.0	6.25	5.0	5.5	7.0	7.5	3.5	
	6,009.7	185.0	8.5	1.0	15.0	1.0	0.0	1.0	>30	2.5	26.0	7.5	5.0	7.0	7.0	8.0	3.5	
F /11 /2010	6,011.0	180.0	8.5	1.0	15.0	1.0	0.0	1.0	>30	3.0	26.0	8.0	5.0	7.5	6.5	8.0	3.5	de energe e d'éleur in A
5/11/2016	0,127.7	1/5.0	6.5	1.0	15.0	1.0	1.0	1.0	>30	4.0	25.0	7.75	3.0	7.75	5.0	7.25	3.5	decreased flow in A
5/23/2016	6,417.9	185.0	6.5	2.0	15.0	1.0	1.0	1.0	>30	4.0	25.0	6.5	2.5	7.0	4.5	6.5	2.5	
6/9/2016	6,822.4	190.0	7.0	2.0	15.0	1.0	1.0	1.0	>30	4.5	25.0	6.5	2.5	6.5	4.5	6.5	2.5	
6/23/2016	7,156.5	180.0	8.0	2.0	15.0	1.0	1.0	1.0	>30	3.5	25.0	6.5	2.0	6.5	4.5	6.5	2.5	system snutdown u

Shelburne Road Variety South Burlington, Vermont

mal overload shutdown after 30 min (225 deg F / 17psi)
rmal overload shutdown after 40 min (240 deg E / 16 psi)
200 deg E / 9 5 nsi upon departure
rival
ssure lowered AS-2 press gauge not working
Source lowered, AS 2 press. gauge not working
s. gauge, increased flow in all points prior to depart.
erved in MW13-19, MW10-2
arge flow with check valve, lowered AS-6
perate at less than 4 cfm
evels prior to 11/10/15
rival
pon departure for GWM event next day
S-6 to 8cfm upon departure
e during shutdown, increased system pressure to 7.5 psi
e during shatdown, meredsed system pressure to 7.5 ps
non departure to evaluate recharge
N-5,-6, -7 (to 7psi) and opened flow -1, -2, -3 upon depart. Sys press 7.5
pon departure due to poor recovery rates.

Appendix C

Liquid Level Monitoring Data

Measurement Date: March 30, 2016

			Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Well Depth	Well Depth	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	bsg	btoc	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW10-2	23.00	22.50	100.00	-	15.94	-	-	-	-	84.06
MW10-3	20.00	19.50	99.66	-	16.15	-	-	-	-	83.51
MW10-4	20.00	19.50	98.23	-	14.42	-	-	-	-	83.81
MW10-5	25.00	24.50	97.98	-	21.49	-	-	-	-	76.49
MW10-6	25.00	24.50	99.33	-	17.92	-	-	-	-	81.41
MW12-14	6.00	9.00	74.79	-	4.54	-	-	-	-	70.25
MW13-17	23.00	22.50	99.25	-	17.14	-	-	-	-	82.11
MW13-18	20.00	19.50	100.81	-	15.35	-	-	-	-	85.46
MW13-19	20.00	19.50	100.12	-	17.82	-	-	-	-	82.30

Measurement Date: July 8, 2016

			Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Well Depth	Well Depth	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	bsg	btoc	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW10-1	20.00	19.50	101.20	-	12.23	-	-	-	-	88.97
MW10-2	23.00	22.50	100.00	-	17.58	-	-	-	-	82.42
MW10-3	20.00	19.50	99.66	-	17.66	-	-	-	-	82.00
MW10-4	20.00	19.50	98.23	-	17.18	-	-	-	-	81.05
MW10-5	25.00	24.50	97.98	-	22.28	-	-	-	-	75.70
MW10-6	25.00	24.50	99.33	-	19.16	-	-	-	-	80.17
MW11-8	3.30	6.25	79.37	-	NM	-	-	-	-	NM
MW11-9	3.50	6.42	78.92	-	5.81	-	-	-	-	73.11
MW11-10	3.10	5.92	76.53	-	DRY	-	-	-	-	DRY
MW12-13	6.60	9.00	77.27	-	7.54	-	-	-	-	69.73
MW12-14	6.00	9.00	74.79	-	NM	-	-	-	-	NM
MW12-15	7.00	10.00	78.55	-	8.95	-	-	-	-	69.60
MW13-17	23.00	22.50	99.25	-	18.14	-	-	-	-	81.11
MW13-18	20.00	19.50	100.81	-	17.03	-	-	-	-	83.78

All Values Reported in Feet

bsg - Below Surface Grade

btoc - Below Top of Casing

NM - Not measured

Elevations determined relative to top of casing of MW10-2, which was arbitrarily set at 100'

Site surveyed by KAS, Inc. on June 30, 2010, April 11, 2011, January 10, 2013 and Sept. 26, 2013

Wells MW12-12 thru MW12-16 were surveyed by Button Professional Land Surveyors on July 16-17, 2014 and tied in to MW10-2.

	HISTORIC GROUNDWATER ELEVATION Well I.D. 7/15/2010 12/22/2010 4/22/2011 12/1/2011 7/11/2012 1/22/2013 5/7/2015 10/21/2015* 12/8/2015 1/6/2016* 1/7/2016 3/30/2016 7 N10-1 88.90 89.50 89.81 89.33 88.98 89.69 89.43 NM NM 89.54 89.57 NM 1 N10-2 83.25 84.10 85.80 83.50 82.88 83.12 82.17 82.01 82.88 80.55 81.98 84.06 1 N10-4 81.88 82.32 83.74 81.33 80.85 81.09 81.23 83.35 83.45 NM NM 83.81 1 N10-5 77.15 77.13 79.49 76.90 77.15 77.81 89.62 77.70 76.04 75.31 DRY 76.49 1 W10-6 81.36 80.94 83.32 80.46 80.72 80.97 80.17 77.81 78.08														
Well I.D.	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	10/21/2015*	12/8/2015	1/6/2016*	1/7/2016	3/30/2016	7/8/2016		
MW10-1	88.90	89.50	89.81	89.33	88.98	89.69	89.43	NM	NM	89.54	89.57	NM	88.97		
MW10-2	83.25	84.10	85.80	83.50	82.88	83.12	82.17	82.01	82.88	80.55	81.98	84.06	82.42		
MW10-3	82.37	83.18	84.80	82.51	81.95	82.12	81.29	83.26	82.00	82.17	80.56	83.51	82.00		
MW10-4	81.88	82.32	83.74	81.33	80.85	81.09	81.23	81.35	83.45	NM	NM	83.81	81.05		
MW10-5	77.15	77.13	79.49	76.90	77.15	77.56	89.62	77.70	76.04	75.31	DRY	76.49	75.70		
MW10-6	81.36	80.94	83.32	80.46	80.72	80.97	80.17	77.81	78.08	77.97	79.28	81.41	80.17		
MW11-7	-	-	77.16	77.02	76.70	77.12	76.46	NM	NM	NM	NM	NM	NM		
MW11-8	-	-	76.17	75.96	74.46	75.93	75.63	NM	NM	NM	75.59	NM	NM		
MW11-9	-	-	75.47	75.18	74.14	75.12	74.58	NM	NM	NM	74.54	NM	73.11		
MW11-10	-	-	72.78	72.32	69.84	71.81	71.33	NM	NM	NM	71.71	NM	DRY		
MW11-11	-	-	73.61	73.31	71.70	73.22	73.14	NM	NM	NM	NM	NM	NM		
MW12-12	-	-	-	-	59.81	63.07	63.28	NM	NM	NM	NM	NM	NM		
MW12-13	-	-	-	-	70.77	71.97	70.56	NM	NM	NM	71.75	NM	69.73		
MW12-14	-	-	-	-	69.22	69.57	70.00	67.20	NM	NM	69.71	70.25	NM		
MW12-15	-	-	-	-	69.10	72.01	71.77	NM	NM	NM	71.86	NM	69.60		
MW12-16	-	-	-	-	72.05	74.94	74.83	NM	NM	NM	NM	NM	NM		
MW13-17	-	-	-	-	-	80.91	80.60	81.76	81.11	78.00	78.90	82.11	81.11		
MW13-18	-	-	-	-	-	84.29	84.36	86.72	85.16	85.72	84.77	85.46	83.78		
MW13-19	-	-	-	-	-	NM	81.28	82.41	81.64	81.72	81.73	82.30	NM		

All Values Reported in Feet

NM - Not measured

Elevations determined relative to top of casing of MW10-2, which was arbitrarily set at 100'

Site surveyed by KAS, Inc. on June 30, 2010, April 11, 2011, January 10, 2013 and Sept. 26, 2013

Wells MW12-12 thru MW12-16 were surveyed by Button Professional Land Surveyors on July 16-17, 2014 and tied in to MW10-2.

LNAPL detected

* Measurements taken during SVE/AS system operation

Appendix D

Groundwater Quality Summary

March 30, 2016 Groundwater Quality Summary Table

Monitoring Well	MW10-2	MW10-3	MW10-4	MW10-5	MW10-6	MW12-14	MW13-17	MW13-18	
PARAMETER	8021B	8021B	8021B	8021B	8021B	8021B	8021B	8021B	VGES
Benzene	341	1,550	1.1	81.0	5,690	4,940	2,480	3,700	5
Toluene	512	8,100	ND(1.0)	175	7,320	15,600	13,800	20,700	1000
Ethylbenzene	281	1,490	ND(1.0)	53.5	2,380	1,090	2,520	2,080	700
Xylenes	1,800	7,500	ND(2.0)	438	10,700	5,680	12,900	11,900	10000
Total BTEX	2,934	18,640	1.1	748	26,540	27,310	31,700	38,380	-
MTBE	314	ND(200)	ND(2.0)	283	362	618	914	64.0	40
1,3,5-Trimethybenzene	119	173	ND(1.0)	ND(50.0)	312	127	382	500	
1,2,4-Trimethylbenzene	405	686	ND(1.0)	77.5	1,280	450	1,330	1,230	350
Naphthalene	ND(100)	130	ND(2.0)	ND(100)	257	92.4	ND(400)	239	20
Total Targeted VOCs	3,772	19,629	1.1	1,108	28,751	28,597	34,326	40,413	-

	Surface Water	Low Wet Area	
PARAMETER			VWQS
Benzene			1.2
Toluene	Visual	Visual	6,800
Ethylbenzene	Inspection	Inspection	3,100
Xylenes	Only	Only	-
Total BTEX			-
MTBE	No	No	-
1,3,5-Trimethybenzene	Odor or Sheen	Water	
1,2,4-Trimethylbenzene	Observed	Observed	-
Naphthalene			-
Total Targeted VOCs			-

July 8, 2016 Groundwater Quality Summary Table

Monitoring Well	MW10-1	MW10-2	MW10-3	MW10-4	MW10-5	MW10-6	MW11-8	
PARAMETER	8021B	8021B	8021B	8021B	8021B	8021B		VGES
Benzene	ND(1.0)	372	109	2.1	44.4	4,560		5
Toluene	ND(1.0)	562	1,080	ND(1.0)	17.2	8,400	No	1000
Ethylbenzene	ND(1.0)	781	247	ND(1.0)	15.6	2,670	Sample	700
Xylenes	ND(2.0)	3,100	1,390	ND(2.0)	89.0	10,100		10000
Total BTEX	ND	4,815	2,826	2.1	166.2	25,730		-
MTBE	11.1	243	ND(40.0)	2.1	95.3	ND(200)	Well Unable	40
1,3,5-Trimethybenzene	ND(1.0)	305	47.0	ND(1.0)	29.9	377	To Be Opened	250
1,2,4-Trimethylbenzene	ND(1.0)	881	141	ND(1.0)	67.5	1,400		330
Naphthalene	ND(2.0)	ND(200)	ND(40.0)	ND(2.0)	6.2	259		20
Total Targeted VOCs	11.1	6,244	3,014	4.2	365.1	27,766		-

Monitoring Well	MW11-9	MW11-10	MW12-13	MW12-14	MW12-15	MW13-17	MW13-18	
PARAMETER	8021B		8021B		8021B	8021B	8021B	VGES
Benzene	730		1,930		2,540	1,500	401	5
Toluene	62.3	No	43.5	No	918	8,720	132	1000
Ethylbenzene	600	Sample	497	Sample	859	2,170	359	700
Xylenes	1,730		121		1,890	10,200	519	10000
Total BTEX	3,122		2,592		6,207	22,590	1,411	-
MTBE	359	Well	289	Unable to	465	756	24.1	40
1,3,5-Trimethybenzene	136	Dry	ND(20.0)	locate/access	78.6	406	89.0	250
1,2,4-Trimethylbenzene	554		87.8	due to	499	1,220	324	330
Naphthalene	126		23.2	thick brush	78.0	241	32.5	20
Total Targeted VOCs	4,297		2,992		7,328	25,213	1,881	-

	Surface Water	Low Wet Area	
PARAMETER			VWQS
Benzene			1.2
Toluene	Visual	Visual	6,800
Ethylbenzene	Inspection	Inspection	3,100
Xylenes	Only	Only	-
Total BTEX			-
MTBE	No	No	-
1,3,5-Trimethybenzene	Odor or Sheen	Water	
1,2,4-Trimethylbenzene	Observed	Observed	-
Naphthalene			-
Total Targeted VOCs			-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

VWQS - Vermont Water Quality Standards (January 1, 2008)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration. Shaded values meet or exceed VGES / VWQS

All samples collected while SVE/AS system was <u>not</u> in operation

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B		8021B		8021B	
PARAMETER								VGES
Benzene	39.8	79.8	30.3		17.4		9.1	5
Toluene	ND<5.0	3.2	ND<1.0	Well	ND<1.0	Well	ND<5.0	1000
Ethylbenzene	ND<5.0	2.3	ND<1.0	Not	ND<1.0	Not	ND<5.0	700
Xylenes	ND<10.0	12.4	ND<2.0	Sampled	ND<2.0	Sampled	ND<10.0	10000
Total BTEX	39.8	97.7	30.3		17.4		9.1	-
MTBE	17.1	78.1	73.5		51.5		61.0	40
1,3,5-Trimethybenzene	ND<5.0	ND<1.0	ND<1.0		ND<1.0		ND<5.0	
1,2,4-Trimethylbenzene	ND<5.0	4.0	ND<1.0		ND<1.0		ND<5.0	350
Naphthalene	ND<10.0	ND<2.0	ND<2.0		ND<2.0		ND<10.0	20
Total Targeted VOCs	56.9	179.8	103.8		68.9		70.1	-
GW Elevation (ft bg)	88.90	89.50	89.81	89.33	88.98	89.69	89.43	-

Sample Date	1/6/2016	1/7/2016	7/8/2016			
Method		8021B	8021B			
PARAMETER	*SVE/AS on					VGES
Benzene		ND(1.0)	ND(1.0)			5
Toluene	No	ND(1.0)	ND(1.0)			1000
Ethylbenzene	Sample	ND(1.0)	ND(1.0)			700
Xylenes		ND(2.0)	ND(2.0)			10000
Total BTEX		ND	ND			-
MTBE		30.8	11.1			40
1,3,5-Trimethybenzene	Gauge	ND(1.0)	ND(1.0)			
1,2,4-Trimethylbenzene	Only	ND(1.0)	ND(1.0)			350
Naphthalene		ND(2.0)	ND(2.0)			20
Total Targeted VOCs		30.8	11.1			-
GW Elevation (ft bg)	89.54	89.57	88.97			-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005) ND - None detected above sample-specific compound detection limit **Bold** font indicates a detected concentration.

Shaded values meet or exceed VGES

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B			8021B		
PARAMETER								VGES
Benzene	9,920	18,900	13,400			7,520		5
Toluene	45,300	51,700	53,500	Well	Well	32,300	Well	1000
Ethylbenzene	3,420	4,550	4,710	Not	Not	3,790	Not	700
Xylenes	18,700	26,100	24,900	Sampled	Sampled	19,900	Sampled	10000
Total BTEX	77,340	101,250	96,510			63,510		-
MTBE	9,330	27,100	20,000	LNAPL	LNAPL	6,020	LNAPL	40
1,3,5-Trimethybenzene	505	734	889	Present	Present	ND<1,000	Present	
1,2,4-Trimethylbenzene	1,750	2,830	3,110	(0.01 ft)	(thin layer)	1,680	(0.02 ft)	350
Naphthalene	ND<1,000	ND<400	ND<1,000			ND<2,000		20
Total Targeted VOCs	91,265	131,914	120,509			71,210		-
GW Elevation (ft bg)	83.25	84.10	85.80	83.50	82.88	83.12	82.17	-

Sample Date	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	7/8/2016	
Method	8021B			8021B	8021B	8021B	
PARAMETER	*SVE/AS on		*SVE/AS on				VGES
Benzene	1,400			406	341	372	5
Toluene	17,600	No	No	4,310	512	562	1000
Ethylbenzene	3,680	Sample	Sample	1,560	281	781	700
Xylenes	22,900			9,130	1,800	3,100	10000
Total BTEX	45,580			15,406	2,934	4,815	-
MTBE	ND(400)			ND(400)	314	243	40
1,3,5-Trimethybenzene	1,290	Gauge	Gauge	739	119	305	
1,2,4-Trimethylbenzene	4,210	Only	Only	2,080	405	881	350
Naphthalene	550			282	ND(100)	ND(200)	20
Total Targeted VOCs	51,630			18,507	3,772	6,244	-
GW Elevation (ft bg)	82.01	82.88	80.55	81.98	84.06	82.42	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B	8021B			8021B	
PARAMETER								VGES
Benzene	12,600	4,860	9,600	6,100			2,260	5
Toluene	46,500	11,200	28,500	25,600	Well	Well	6,210	1000
Ethylbenzene	3,640	2,290	4,690	3,480	Not	Not	3,190	700
Xylenes	18,300	11,300	22,000	16,500	Sampled	Sampled	15,300	10000
Total BTEX	81,040	29,650	64,790	51,680			26,960	-
MTBE	4,120	885	3,060	743	LNAPL	LNAPL	ND<400	40
1,3,5-Trimethybenzene	520	685	1,310	617	Present	Present	1,540	
1,2,4-Trimethylbenzene	1,980	2,570	4,410	2,180	(thin layer)	(0.01 ft)	4,700	350
Naphthalene	ND<1,000	ND<400	ND<1,000	ND<400			477	20
Total Targeted VOCs	88,850	33,790	73,570	55,220			33,677	-
GW Elevation (ft bg)	82.37	83.18	84.80	82.51	81.95	82.12	81.29	-

Sample Date	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	7/8/2016	
Method	8021B			8021B	8021B	8021B	
PARAMETER	*SVE/AS on		*SVE/AS on				VGES
Benzene	ND(20.0)				1,550	109	5
Toluene	49.7	No	No	No	8,100	1,080	1000
Ethylbenzene	ND(20.0)	Sample	Sample	Sample	1,490	247	700
Xylenes	842				7,500	1,390	10000
Total BTEX	892				18,640	2,826	-
MTBE	68.4			Insufficient	ND(200)	ND(40.0)	40
1,3,5-Trimethybenzene	636	Gauge	Gauge	Amount	173	47.0	
1,2,4-Trimethylbenzene	305	Only	Only	of Water	686	141	350
Naphthalene	ND(40.0)				130	ND(40.0)	20
Total Targeted VOCs	1,901				19,629	3,014	-
GW Elevation (ft bg)	83.26	82.00	82.17	80.56	83.51	82.00	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B		8021B	8021B	8021B	
PARAMETER								VGES
Benzene	261	22.5	3.0		85.1	103	1.6	5
Toluene	40.3	12.1	1.9	Well	15.5	16.5	ND<1.0	1000
Ethylbenzene	ND<5.0	ND<1.0	ND<1.0	Not	ND<1.0	1.2	ND<1.0	700
Xylenes	ND<10.0	ND<2.0	ND<2.0	Sampled	3.5	4.1	ND<2.0	10000
Total BTEX	301	34.6	4.9		104.1	125	1.6	-
MTBE	475	14.8	3.2		114	132	ND<2.0	40
1,3,5-Trimethybenzene	ND<5.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	
1,2,4-Trimethylbenzene	ND<5.0	1.2	ND<1.0		ND<1.0	ND<1.0	ND<1.0	350
Naphthalene	ND<10.0	ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND<2.0	20
Total Targeted VOCs	918	50.6	8.1		218	257	1.6	-
GW Elevation (ft bg)	81.88	82.32	83.74	81.33	80.85	81.09	81.23	-

Sample Date	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	7/8/2016	
Method	8021B			8021B	8021B	8021B	
PARAMETER	*SVE/AS on		*SVE/AS on				VGES
Benzene	3.3				1.1	2.1	5
Toluene	ND(1.0)	No	No	No	ND(1.0)	ND(1.0)	1000
Ethylbenzene	ND(1.0)	Sample	Gauge	Sample	ND(1.0)	ND(1.0)	700
Xylenes	ND(2.0)				ND(2.0)	ND(2.0)	10000
Total BTEX	3.3				1.1	2.1	-
MTBE	2.1		Well	Well	ND(2.0)	2.1	40
1,3,5-Trimethybenzene	ND(1.0)	Gauge	Obstructed	Obstructed	ND(1.0)	ND(1.0)	
1,2,4-Trimethylbenzene	ND(1.0)	Only	by Snow Pile	by Snow Pile	ND(1.0)	ND(1.0)	350
Naphthalene	ND(2.0)				ND(2.0)	ND(2.0)	20
Total Targeted VOCs	5.4				1.1	4.2	-
GW Elevation (ft bg)	81.35	83.45			83.81	81.05	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B	8021B	8021B	8021B	8021B	
PARAMETER								VGES
Benzene	13,900	21,100	14,600	12,800	10,100	7,290	ND<1.0	5
Toluene	47,300	58,100	47,800	41,800	37,000	26,500	ND<1.0	1000
Ethylbenzene	3,580	6,470	4,370	2,980	3,400	2,320	ND<1.0	700
Xylenes	18,000	31,700	22,000	14,200	15,800	11,300	ND<2.0	10000
Total BTEX	82,780	117,370	88,770	71,780	66,300	47,410	ND	-
MTBE	4,500	4,690	4,520	2,880	1,600	1,370	ND<2.0	40
1,3,5-Trimethybenzene	555	2,420	1,010	ND<1,000	555	ND<500	ND<1.0	
1,2,4-Trimethylbenzene	1,890	7,660	3,400	1,590	1,840	1,000	ND<1.0	350
Naphthalene	ND<1,000	ND<1,000	ND<1,000	ND<2,000	ND<1,000	ND<1,000	ND<2.0	20
Total Targeted VOCs	89,725	132,140	97,700	76,250	70,295	49,780	ND	-
GW Elevation (ft bg)	77.15	77.13	79.49	76.90	77.15	77.56	89.62	-

Sample Date	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	7/8/2016	
Method	8021B			8021B	8021B	8021B	
PARAMETER	*SVE/AS on		*SVE/AS on				VGES
Benzene	ND(50.0)				81.0	44.4	5
Toluene	164	No	No	No	175	17.2	1000
Ethylbenzene	63.8	Sample	Sample	Sample	53.5	15.6	700
Xylenes	5,360				438	89.0	10000
Total BTEX	5,588				748	166.2	-
MTBE	101				283	95.3	40
1,3,5-Trimethybenzene	1,560	Gauge	Gauge	Well	ND(50.0)	29.9	
1,2,4-Trimethylbenzene	2,970	Only	Only	Dry	77.5	67.5	350
Naphthalene	673				ND(100)	6.2	20
Total Targeted VOCs	10,892				1,108	365.1	-
GW Elevation (ft bg)	77.20	76.04	75.31		76.49	75.70	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

Sample Date	7/15/2010	12/22/2010	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	
Method	8260B	8021B	8021B	8021B	8021B	8021B	8021B	
PARAMETER								VGES
Benzene	1,470	2,060	3,810	1,360	253	291	172	5
Toluene	6,500	7,600	13,900	1,700	426	378	239	1000
Ethylbenzene	873	876	1,450	434	65.3	121	297	700
Xylenes	4,080	3,520	6,190	1,460	304	377	939	10000
Total BTEX	12,923	14,056	25,350	4,954	1,048	1,167	1,647	-
MTBE	231	273	495	147	ND<100	107	ND<400	40
1,3,5-Trimethybenzene	274	268	332	109	58.5	82.6	277	
1,2,4-Trimethylbenzene	1,020	888	1,190	390	219	261	604	350
Naphthalene	141	189	238	128	169	214	ND<400	20
Total Targeted VOCs	14,704	15,674	27,605	5,728	1,495	1,832	2,528	-
GW Elevation (ft bg)	81.36	80.94	83.32	80.46	80.72	80.97	80.17	-

Sample Date	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	7/8/2016	
Method	8021B			8021B	8021B	8021B	
PARAMETER	*SVE/AS on		*SVE/AS on				VGES
Benzene					5,690	4,560	5
Toluene	Well	No Sample	No Sample	Well	7,320	8,400	1000
Ethylbenzene	Not	Gauge	Gauge	Not	2,830	2,670	700
Xylenes	Sampled	Only	Only	Sampled	10,700	10,100	10000
Total BTEX					26,540	25,730	-
MTBE	LNAPL	LNAPL	LNAPL	LNAPL	362	ND(200)	40
1,3,5-Trimethybenzene	Present	Present	Present	Present	312	377	
1,2,4-Trimethylbenzene	(0.1 ft)	(<2mm)	(0.02 ft)	(0.01 ft)	1,280	1,400	350
Naphthalene					257	259	20
Total Targeted VOCs					28,751	27,766	-
GW Elevation (ft bg)	77.81	78.08	77.98	79.28	81.41	80.17	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW11-8

Sample Date	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	1/7/2016	7/8/2016	
Method	8021B		8021B		8021B	8021B		
PARAMETER								VGES
Benzene	139		427		77.6	148		5
Toluene	19.3	Well	39.3	Well	7.8	16.9	No	1000
Ethylbenzene	11.9	Not	245	Not	11.6	255	Sample	700
Xylenes	101	Sampled	606	Sampled	147	804		10000
Total BTEX	271.2		1,317		244.0	1,224		-
MTBE	71.0		274		29.7	127	Well Unable	40
1,3,5-Trimethybenzene	25.7		15.2		12.0	26.8	To Be Opened	
1,2,4-Trimethylbenzene	53.3		99.0		65.0	155		350
Naphthalene	16.4		17.7		ND<10.0	15.3		20
Total Targeted VOCs	437.6		1,723		350.7	1,548		-
GW Elevation (ft bg)	76.17	75.96	74.46	75.93	75.63	75.59		-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW11-9

Sample Date	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	1/7/2016	7/8/2016	
Method	8021B	8021B	8021B	8021B	8021B	8021B	8021B	
PARAMETER								VGES
Benzene	7,160	7,470	7,110	4,860	4,190	2,120	730	5
Toluene	1,850	579	1,070	1,020	1,970	128	62.3	1000
Ethylbenzene	1,550	1,590	2,020	1,400	2,350	1,460	600	700
Xylenes	5,820	5,740	6,820	4,940	7,440	4,400	1,730	10000
Total BTEX	16,380	15,379	17,020	12,220	15,950	8,108	3,122	-
MTBE	2,020	535	1,140	1,010	651	439	359	40
1,3,5-Trimethybenzene	209	185	203	202	388	227	136	
1,2,4-Trimethylbenzene	818	769	784	669	1,300	870	554	350
Naphthalene	198	120	245	ND<200	231	162	126	20
Total Targeted VOCs	19,625	16,988	19,392	14,101	18,520	9,806	4,297	-
GW Elevation (ft bg)	75.47	75.18	74.14	75.12	74.58	74.54	73.11	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005) ND - None detected above sample-specific compound detection limit **Bold** font indicates a detected concentration. Shaded values meet or exceed VGES

MW11-10

Sample Date	4/22/2011	12/1/2011	7/11/2012	1/22/2013	5/7/2015	1/7/2016	7/8/2016	
Method	8021B	8021B	8021B	8021B	8021B	8021B		
PARAMETER								VGES
Benzene	38.7	5.6	4.4	65.2	ND<1.0	ND(1.0)		5
Toluene	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND(1.0)	No	1000
Ethylbenzene	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND(1.0)	Sample	700
Xylenes	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<2.0	ND(2.0)		10000
Total BTEX	38.7	5.6	4.4	65.2	ND	ND		-
MTBE	504	195	25.1	ND<2.0	137	3.7		40
1,3,5-Trimethybenzene	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND(1.0)	Well	
1,2,4-Trimethylbenzene	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND(1.0)	Dry	350
Naphthalene	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<2.0	ND(2.0)		20
Total Targeted VOCs	543	201	29.5	65.2	137	3.7		-
GW Elevation (ft bg)	72.78	72.32	69.84	71.81	71.33	71.71		-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW12-13

Sample Date	7/11/2012	1/22/2013	5/7/2015	1/7/2016	7/8/2016		
Method	8021B	8021B	8021B	8021B	8021B		
PARAMETER							VGES
Benzene	9,550	832	807	3,200	1,930		5
Toluene	957	27.2	28.9	261	43.5		1000
Ethylbenzene	1,380	87.6	139	1,190	497		700
Xylenes	5,790	150	72.3	3,650	121		10000
Total BTEX	17,677	1,097	1,047	8,301	2,592		-
MTBE	5,330	335	128	523	289		40
1,3,5-Trimethybenzene	ND<100	ND<10.0	4.6	120	ND(20.0)		
1,2,4-Trimethylbenzene	845	21.9	42.2	606	87.8		350
Naphthalene	219	ND<20.0	8.8	116	23.2		20
Total Targeted VOCs	24,071	1,454	1,231	9,666	2,992		-
GW Elevation (ft bg)	70.77	71.97	70.56	71.75	69.73		-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

 ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW12-14

Sample Date	7/11/2012	1/22/2013	5/7/2015	10/21/2015	1/7/2016	3/30/2016	7/8/2016	
Method	8021B	8021B	8021B	8021B	8021B	8021B		
PARAMETER				*SVE/AS on				VGES
Benzene	10,100	4,970	6,640	13.4	1,350	4,940		5
Toluene	24,400	10,400	14,300	ND(5.0)	2,010	15,600	No	1000
Ethylbenzene	1,330	249	1,150	ND(5.0)	280	1,090	Sample	700
Xylenes	10,400	6,470	6,920	12.9	1,340	5,680		10000
Total BTEX	46,230	22,089	29,010	26.3	4,980	27,310		-
MTBE	2,520	1,670	988	313	229	618	Unable to	40
1,3,5-Trimethybenzene	472	433	266	ND(5.0)	ND(50.0)	127	locate/access	
1,2,4-Trimethylbenzene	1,220	790	661	6.1	174	450	due to	350
Naphthalene	ND<400	ND<400	ND<100	ND(10.0)	ND<100	92.4	thick brush	20
Total Targeted VOCs	50,442	24,982	30,925	345	5,383	28,597		-
GW Elevation (ft bg)	69.22	69.57	70.00	67.20	69.71	70.25		-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW12-15

Sample Date	7/11/2012	1/22/2013	5/7/2015	1/7/2016	7/8/2016		
Method	8021B	8021B	8021B	8021B	8021B		
PARAMETER							VGES
Benzene	2,620	654	4,300	1,510	2,540		5
Toluene	2,920	12.5	4,640	1,930	918		1000
Ethylbenzene	712	142	1,050	516	859		700
Xylenes	4,110	362	4,040	2,070	1,890		10000
Total BTEX	10,362	1,171	14,030	6,026	6,207		-
MTBE	485	278	545	320	465		40
1,3,5-Trimethybenzene	149	37.6	170	89.9	78.6		
1,2,4-Trimethylbenzene	507	61.7	601	342	499		350
Naphthalene	ND<100	ND<20.0	ND<100	65.0	78.0		20
Total Targeted VOCs	11,503	1,548	15,346	6,843	7,328		-
GW Elevation (ft bg)	69.10	72.01	71.77	71.86	69.60		-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005) ND - None detected above sample-specific compound detection limit **Bold** font indicates a detected concentration. Shaded values meet or exceed VGES

MW13-17

Sample Date	1/22/2013	5/7/2015	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	
Method	8021B	8021B	8021B			8021B	8021B	
PARAMETER			*SVE/AS on		*SVE/AS on			VGES
Benzene	47.9	5,130	493			1,970	2,480	5
Toluene	87.2	33,200	3,630	No	No	12,000	13,800	1000
Ethylbenzene	6.3	3,690	587	Sample	Sample	1,940	2,520	700
Xylenes	25.9	17,100	15,800			9,890	12,900	10000
Total BTEX	167.3	59,120	20,510			25,800	31,700	-
MTBE	78.9	1,330	387			895	914	40
1,3,5-Trimethybenzene	ND<2.0	622	1,380	Gauge	Gauge	481	382	
1,2,4-Trimethylbenzene	ND<2.0	2,060	3,860	Only	Only	1,070	1,330	350
Naphthalene	ND<4.0	ND<400	428			260	ND(400)	20
Total Targeted VOCs	246.2	63,132	26,565			28,506	34,326	-
GW Elevation (ft bg)	80.91	80.60	81.76	81.11	78.00	78.90	82.11	-

Sample Date	7/8/2016				
Method	8021B				
PARAMETER					VGES
Benzene	1,500				5
Toluene	8,720				1000
Ethylbenzene	2,170				700
Xylenes	10,200				10000
Total BTEX	22,590				-
MTBE	756				40
1,3,5-Trimethybenzene	406				
1,2,4-Trimethylbenzene	1,220				350
Naphthalene	241				20
Total Targeted VOCs	25,213				-
GW Elevation (ft bg)	81.11				-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW13-18

Sample Date	1/22/2013	5/7/2015	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	
Method	8021B	8021B	8021B			8021B	8021B	
PARAMETER			*SVE/AS on		*SVE/AS on			VGES
Benzene	3,840	6,420	149			512	3,700	5
Toluene	18,600	27,000	179	No	No	258	20,700	1000
Ethylbenzene	3,770	2,990	140	Sample	Sample	566	2,080	700
Xylenes	14,000	16,800	933			2,470	11,900	10000
Total BTEX	40,210	53,210	1,401			3,806	38,380	-
MTBE	592	ND<400	33.1			138	64.0	40
1,3,5-Trimethybenzene	558	681	428	Gauge	Gauge	416	500	
1,2,4-Trimethylbenzene	2,080	2,030	601	Only	Only	1,060	1,230	350
Naphthalene	441	ND<400	141			147	239	20
Total Targeted VOCs	43,440	55,921	2,604			5,567	40,413	-
GW Elevation (ft bg)	84.29	84.36	86.72	85.16	85.72	84.77	85.46	-

Sample Date	7/8/2016				
Method	8021B				
PARAMETER					VGES
Benzene	401				5
Toluene	132				1000
Ethylbenzene	359				700
Xylenes	519				10000
Total BTEX	1,411				-
MTBE	24.1				40
1,3,5-Trimethybenzene	89.0				
1,2,4-Trimethylbenzene	324				350
Naphthalene	32.5				20
Total Targeted VOCs	1,881				-
GW Elevation (ft bg)	83.78				-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

ND - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

MW13-19

Sample Date	1/22/2013	5/7/2015	10/21/2015	12/8/2015	1/6/2016	1/7/2016	3/30/2016	
Method		8021B	8021B			8021B		
PARAMETER			*SVE/AS on		*SVE/AS on			VGES
Benzene		1,720	960			795		5
Toluene	No	212	118	No	No	59.2	No	1000
Ethylbenzene	Sample	1,170	927	Sample	Sample	983	Sample	700
Xylenes	Collected	3,660	2,390			2,510		10000
Total BTEX		6,762	4,395			4,347		-
MTBE	Well	2,660	1,680			1,570		40
1,3,5-Trimethybenzene	Dry	256	185	Gauge	Gauge	194	Gauge	
1,2,4-Trimethylbenzene		899	931	Only	Only	989	Only	350
Naphthalene		ND<400	149			163		20
Total Targeted VOCs		10,577	7,340			7,263		-
GW Elevation (ft bg)	NM	81.28	82.41	85.16	81.72	81.73	82.30	-

All Values Reported in ug/L (ppb)

VGES - Vermont Groundwater Enforcement Standard (February 14, 2005)

 $\ensuremath{\mathsf{ND}}$ - None detected above sample-specific compound detection limit

Bold font indicates a detected concentration.

Shaded values meet or exceed VGES

Quality Assurance/Control Samples

		3/30	/2016	
PARAMETER	Trip Blank	MW10-6	Duplicate	RPD %
МТВЕ	ND(2.0)	362	347	4.2
Benzene	ND(1.0)	5,690	5,430	4.7
Toluene	ND(1.0)	7,320	6,940	5.3
Ethylbenzene	ND(1.0)	2,830	2,730	3.6
Xylenes	ND(2.0)	10,700	10,600	0.9
1,3,5-TMB*	ND(1.0)	312	311	0.3
1,2,4-TMB*	ND(1.0)	1,280	1,300	1.6
Naphthalene	ND(2.0)	257	265	3.1
Total Reported VOCs	ND	28,751	27,923	2.9

		7/8,	/2016	
PARAMETER	Trip Blank	MW13-7	Duplicate	RPD %
МТВЕ	ND(2.0)	756	680	10.6
Benzene	ND(1.0)	1,500	1,600	6.5
Toluene	ND(1.0)	8,720	8,240	5.7
Ethylbenzene	ND(1.0)	2,170	2,050	5.7
Xylenes	ND(2.0)	10,200	9,710	4.9
1,3,5-TMB*	ND(1.0)	406	409	0.7
1,2,4-TMB*	ND(1.0)	1,220	1,220	0.0
Naphthalene	ND(2.0)	241	234	2.9
Total Reported VOCs	ND	25,213	24,143	4.3

The results of the laboratory analysis of the duplicate sample were analyzed using a relative percent difference (RPD) analysis. The RPD is defined as 100 times the difference in reported concentration between sample and duplicate, divided by the mean of the two samples. A small RPD indicates good correlation between sample and duplicate.

NOTES

Results reported above detection limits are indicated in bold * TMB = Trimethyl Benzene EPA Method 8021B used for laboratory analysis

All values reported in ug/l (ppb) unless otherwise noted

ND<X - Not Detected (Detection Limit)

n/a = not applicable

Appendix E

Analytical Laboratory Reports

Laboratory Report

100306

KAS, Inc. PO Box 787

Williston, VT 05495

Atten: Rebecca Treat

PROJECT: 410090357 Shelbure Rd Variety
WORK ORDER: 1604-06241
DATE RECEIVED: April 01, 2016
DATE REPORTED: April 06, 2016
SAMPLER: Rebecca

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

www.endynelabs.com

CLIENT: KAS, Inc. PROJECT: 410090357 Shelbure Rd Variety REPORT DATE: 4/6/2016

 WORK ORDER:
 1604-06241

 DATE RECEIVED:
 04/01/2016

				TEST	METHOD:	EPA 82	60C					
001	Site: MW10-2				Date Sa	ampled:	3/30/16	12:55	Analysis Date:	4/5/1	6 W	MHM
Parameter		Result	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	er		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t-but	yl ether (MTBE)	314	ug/L	А		Benzene			341	ug/L	А	
Toluene		512	ug/L	А		Ethylbenze	ne		281	ug/L	А	
Xylenes, Tot	tal	1,800	ug/L	А		1,3,5-Trime	ethylbenzene		119	ug/L	А	
1,2,4-Trimet	hylbenzene	405	ug/L	А		Naphthalen	e		< 100	ug/L	Α	
Surr. 1 (Dibr	romofluoromethane)	103	%	А		Surr. 3 (4-E	Bromofluorober	nzene)	97	%	Α	
Surr. 2 (Tolu	uene d8)	105	%	А		Unidentifie	d Peaks		> 10		U	
_				TEST	METHOD:	EPA 82	60C					
002	Site: MW10-3				Date Sa	ampled:	3/30/16	12:50	Analysis Date:	4/5/1	6 W	MHM
Parameter		Result	<u>Unit</u>	Nelac	<u>Qual</u>	Paramete	er		Result	<u>Unit</u>	Nelac	Qual
Methyl-t-but	yl ether (MTBE)	< 200	ug/L	А		Benzene			1,550	ug/L	А	
Toluene		8,100	ug/L	А		Ethylbenze	ne		1,490	ug/L	А	
Xylenes, Tot	tal	7,500	ug/L	А		1,3,5-Trime	ethylbenzene		173	ug/L	А	
1,2,4-Trimet	hylbenzene	686	ug/L	А		Naphthalen	e		130	ug/L	А	
Surr. 1 (Dibr	romofluoromethane)	104	%	А		Surr. 2 (To	luene d8)		104	%	А	
Surr. 3 (4-Br	romofluorobenzene)	99	%	А		Unidentifie	d Peaks		> 10		U	
				TEST	METHOD:	EPA 82	60C					
003	Site: MW10-4				Date Sa	ampled:	3/30/16	12:40	Analysis Date:	4/5/1	6 W	MHM
Parameter		Result	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	er		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t-but	yl ether (MTBE)	< 2.0	ug/L	А		Benzene			1.1	ug/L	А	
Toluene		< 1.0	ug/L	А		Ethylbenze	ne		< 1.0	ug/L	А	
Xylenes, Tot	tal	< 2.0	ug/L	А		1,3,5-Trime	ethylbenzene		< 1.0	ug/L	А	
1,2,4-Trimet	hylbenzene	< 1.0	ug/L	А		Naphthalen	e		< 2.0	ug/L	А	
Surr. 1 (Dibr	romofluoromethane)	96	%	А		Surr. 2 (To	luene d8)		109	%	А	
Surr. 3 (4-Br	romofluorobenzene)	102	%	А		Unidentifie	d Peaks		> 10		U	
_				TEST	METHOD:	EPA 82	60C					
004	Site: MW10-5				Date Sa	ampled:	3/30/16	12:35	Analysis Date:	4/4/1	6 W	MHM
Parameter		<u>Result</u>	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	er		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t-but	yl ether (MTBE)	283	ug/L	А		Benzene			81.0	ug/L	А	
Toluene		175	ug/L	А		Ethylbenze	ne		53.5	ug/L	А	
Xylenes, Tot	tal	438	ug/L	А		1,3,5-Trime	ethylbenzene		< 50.0	ug/L	А	
1,2,4-Trimet	hylbenzene	77.5	ug/L	А		Naphthalen	e		< 100	ug/L	А	
Surr. 1 (Dibr	romofluoromethane)	97	%	А		Surr. 2 (To	luene d8)		99	%	А	
Surr. 3 (4-Br	romofluorobenzene)	92	%	А		Unidentifie	d Peaks		7		U	
г				TEST	METHOD:	EPA 82	60C					
005	Site: MW10-6				Date Sa	ampled:	3/30/16	12:30	Analysis Date:	4/4/1	6 W	MHM
Parameter		Result	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	er		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t-but	yl ether (MTBE)	362	ug/L	А		Benzene			5,690	ug/L	А	
Toluene		7,320	ug/L	А		Ethylbenze	ne		2,830	ug/L	А	
Xylenes, Tot	tal	10,700	ug/L	А		1,3,5-Trime	ethylbenzene		312	ug/L	А	
1,2,4-Trimet	hylbenzene	1,280	ug/L	А		Naphthalen	e		257	ug/L	А	
_	comofluoromethane)	95	%	А		Surr. 2 (To	luene d8)		105	%	А	
Surr. 1 (Dibr	,											

 WORK ORDER:
 1604-06241

 DATE RECEIVED:
 04/01/2016

				TEST	METHOD:	EPA 82	260C					
006	Site: MW12-14				Date S	ampled:	3/30/16	13:05	Analysis Date:	4/5/1	5 W	MHM
Paramet	er	Result	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	<u>er</u>		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t-	butyl ether (MTBE)	618	ug/L	А		Benzene			4,940	ug/L	А	
Foluene		15,600	ug/L	Α		Ethylbenze	ene		1,090	ug/L	Α	
Xylenes,	Total	5,680	ug/L	Α		1,3,5-Trim	ethylbenzene		127	ug/L	А	
1,2,4-Trii	nethylbenzene	450	ug/L	А		Naphthaler	ne		92.4	ug/L	А	
Surr. 1 (E	Dibromofluoromethane)	99	%	Α		Surr. 2 (To	luene d8)		98	%	А	
Surr. 3 (4	-Bromofluorobenzene)	90	%	А		Unidentifie	ed Peaks		> 10		U	
				TEST	METHOD:	EPA 82	260C					
007	Site: MW13-17				Date S	ampled:	3/30/16	12:45	Analysis Date:	4/4/1	5 W	MHM
Paramet	er	Result	<u>Unit</u>	Nelac	Qual	Paramete	er		Result	Unit	<u>Nelac</u>	Qual
Methyl-t-	butyl ether (MTBE)	914	ug/L	Α		Benzene			2,480	ug/L	Α	
Foluene		13,800	ug/L	Α		Ethylbenze	ene		2,520	ug/L	Α	
Xylenes,	Total	12,900	ug/L	Α		1,3,5-Trim	ethylbenzene		382	ug/L	А	
1,2,4-Trii	nethylbenzene	1,330	ug/L	Α		Naphthaler	ne		< 400	ug/L	Α	
Surr. 1 (E	Dibromofluoromethane)	98	%	Α		Surr. 2 (To	luene d8)		98	%	А	
Surr. 3 (4	-Bromofluorobenzene)	94	%	Α		Unidentifie	ed Peaks		> 10		U	
				TEST	METHOD:	EPA 82	260C					
008	Site: MW13-18				Date S	ampled:	3/30/16	13:00	Analysis Date:	4/4/1	5 W	MHM
Paramet	er	Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>	Paramete	<u>er</u>		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t-	butyl ether (MTBE)	64.0	ug/L	А		Benzene			3,700	ug/L	А	
Toluene		20,700	ug/L	А		Ethylbenze	ene		2,080	ug/L	А	
Xylenes,	Total	11,900	ug/L	Α		1,3,5-Trim	ethylbenzene		500	ug/L	А	
1,2,4-Trii	nethylbenzene	1,230	ug/L	Α		Naphthaler	ne		239	ug/L	Α	
Surr. 1 (E	Dibromofluoromethane)	98	%	А		Surr. 2 (To	luene d8)		105	%	А	
Surr. 3 (4	-Bromofluorobenzene)	96	%	А		Unidentifie	ed Peaks		> 10		U	
				TEST	METHOD:	EPA 82	260C					
009	Site: Duplicate				Date S	ampled:	3/30/16	12:30	Analysis Date:	4/4/1	5 W	MHM
Paramet	er	Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>	Paramete	er		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t-	butyl ether (MTBE)	347	ug/L	А		Benzene			5,430	ug/L	А	
Toluene		6,940	ug/L	Α		Ethylbenze	ene		2,730	ug/L	Α	
Xylenes,	Total	10,600	ug/L	Α		1,3,5-Trim	ethylbenzene		311	ug/L	А	
1,2,4-Trii	nethylbenzene	1,300	ug/L	А		Naphthaler	ne		265	ug/L	А	
Surr. 1 (E	Dibromofluoromethane)	94	%	Α		Surr. 2 (To	luene d8)		97	%	А	
Surr. 3 (4	-Bromofluorobenzene)	92	%	A		Unidentifie	ed Peaks		> 10		U	
	Г			TEST	METHOD:	EPA 82	260C					
010	Site: Trip Blank				Date Sa	ampled:	3/29/16	15:30	Analysis Date:	4/4/1	5 W	MHM
Paramet	er	Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>	Paramete	<u>er</u>		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t-	butyl ether (MTBE)	< 2.0	ug/L	А		Benzene			< 1.0	ug/L	А	
Foluene		< 1.0	ug/L	А		Ethylbenze	ene		< 1.0	ug/L	А	
Xylenes,	Total	< 2.0	ug/L	А		1,3,5-Trim	ethylbenzene		< 1.0	ug/L	А	
1,2,4-Trii	nethylbenzene	< 1.0	ug/L	А		Naphthaler	ne		< 2.0	ug/L	А	
	Dibromofluoromethane)	102	%	А		Surr. 2 (To	luene d8)		101	%	А	
Surr. 1 (E												

	75377					FieldResults/Remarks Due Date					06241		-06241	7 Shelbure Rd Variety			Date/Time	Bruer #1/1/10 @ 9:55	LAB USE ONLY	Delivery: C/Unt	Temp: 0.5	Comment.					
		Sampler Name: PC	Phone #: SAME	Billing Address:	SAME	de Analysis ation Required	61 1				1604-		1604-	KR5, Inc 41809835			Received by:	Clear To	26 8270 PAH Only	27 8081 Pest	28 8082 PCB	29 PP13 Metals	30 Total RCRA8	Zn			
ODY-RECORD	10090357	REBERA TREAT			2495	Sample Containers Samp No. Type/Size Preserva	2 Man Vial HCI									*	Al Date/Time	11/2	ZT 1664 TPH/FOG	22 8015 GRO	23 8015 DRO	24 8260B	25 8270 B/N or Acid	li, Pb, Sb, Se, Sn, Tl, U, V, J			
HAIN-OF-CUST	g Instructions/PO#: 4	Contact Name: KAS	4: 802: 583. 04 86	Address:	VILLISION VT OS	Date/Time Sampled	1255/ m/szz	1 1 1220	1240	1235	1530	1305	1245	1300	05.C Y	5/29/14/1530	l by:		16 Sulfate) +	17 Coliform (Specify)	18 COD	19 VT PCF	20 VOC Halocarbons	Hg, K, Mg, Mn, Mo, Na, N	33 Other	37 Other	
CI	Special Reportin	VAN STY Client/C	Phone #	Mailing		Matrix , B>RC	Haw X				*****					 	Date/Tinje Received	>/24/10/1050 (C)	11 Total Solids	12 TSS	13 TDS	14 Turbidity	15 Conductivity	, Ca, Cd, Co, Cr, Cu, Fe,	ticides, herbicides)	36 Reactivity	
NE, INC.	wn Drive ont 05495	SUENE READ		NYNHOther	1-060241	cation					0	+	L	8	E	, î.K.		0	6 TKN	7 Total P	8 Total Diss. P	9 BOD	10 Alkalinity) Ag, Al, As, B, Ba, Be,	ni-volatiles, metals, pes	5 Ignitability	
Juli = ENDY	160 James Bro Williston, Verm (802) 879-4333	Project Name: SHELE	•	state of Origin: VT X		Sample Lo	mw10-2	MU010-3	mw 10-4	MW 10-5	1-01 MM	11-71 MUN	MW 13-1	MW 13-1	DURICAT	TER BLA	elinquished by:	-H-	Hd	Chloride	Ammonia N	Nitrite N	Nitrate N	Metals (Total, Diss.	2 TCLP (volatiles, sei	L Corrosivity 3	Other
5				<u></u>	ш												<u> </u>	\square	-	~	~	4	5	3	32	34	38

(White - Laboratory / Yellow - Client)

Page / of /

Laboratory Report

100306

KAS, Inc. PO Box 787

Williston, VT 05495

Atten: Rebecca Treat

PROJECT: 410090357 Shelburne Rd Variety
WORK ORDER: 1607-14739
DATE RECEIVED: July 12, 2016
DATE REPORTED: July 25, 2016
SAMPLER: Rebecca Treat

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

www.endynelabs.com

 WORK ORDER:
 1607-14739

 DATE RECEIVED:
 07/12/2016

				TEST	METHOD:	EPA 8021B					
001	Site: MW10-1				Date S	ampled: 7/8/16	11:18	Analysis Date:	7/20/	16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	Nelac	Qual	Parameter		Result	Unit	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	11.1	ug/L	Ν		Benzene		< 1.0	ug/L	Ν	
Toluene		< 1.0	ug/L	Ν		Ethylbenzene		< 1.0	ug/L	Ν	
Xylenes,	Total	< 2.0	ug/L	Ν		1,3,5-Trimethylbenzene		< 1.0	ug/L	Ν	
1,2,4-Tri	methylbenzene	< 1.0	ug/L	Ν		Naphthalene		< 2.0	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	101	%	Ν		Unidentified Peaks		0		Ν	
				TEST	METHOD:	EPA 8021B					
002	Site: MW10-2				Date S	ampled: 7/8/16	11:40	Analysis Date:	7/20/	16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	<u>Nelac</u>	Qual	Parameter		Result	<u>Unit</u>	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	243	ug/L	Ν		Benzene		372	ug/L	Ν	
Toluene		562	ug/L	Ν		Ethylbenzene		781	ug/L	Ν	
Xylenes,	Total	3,100	ug/L	Ν		1,3,5-Trimethylbenzene		305	ug/L	Ν	
1,2,4-Tri	methylbenzene	881	ug/L	Ν		Naphthalene		< 200	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	95	%	Ν		Unidentified Peaks		> 10		Ν	
				TEST	METHOD:	EPA 8021B					
003	Site: MW10-3				Date S	ampled: 7/8/16	12:28	Analysis Date:	7/20/	16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	<u>Nelac</u>	Qual	Parameter		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t	-butyl ether (MTBE)	< 40.0	ug/L	Ν		Benzene		109	ug/L	Ν	
Toluene		1,080	ug/L	Ν		Ethylbenzene		247	ug/L	Ν	
Xylenes,	Total	1,390	ug/L	Ν		1,3,5-Trimethylbenzene		47.0	ug/L	Ν	
1,2,4-Tri	methylbenzene	141	ug/L	Ν		Naphthalene		< 40.0	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	100	%	Ν		Unidentified Peaks		> 10		Ν	
				TEST	METHOD:	EPA 8021B					
004	Site: MW10-4				Date S	ampled: 7/8/16	12:35	Analysis Date:	7/20/	16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	Nelac	Qual	Parameter		Result	Unit	<u>Nelac</u>	Qual
Methyl-t	-butyl ether (MTBE)	2.1	ug/L	Ν		Benzene		2.1	ug/L	Ν	
Toluene		< 1.0	ug/L	Ν		Ethylbenzene		< 1.0	ug/L	Ν	
Xylenes,	Total	< 2.0	ug/L	Ν		1,3,5-Trimethylbenzene		< 1.0	ug/L	Ν	
1,2,4-Tri	methylbenzene	< 1.0	ug/L	Ν		Naphthalene		< 2.0	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	102	%	Ν		Unidentified Peaks		6		Ν	
				TEST	METHOD:	EPA 8021B					
005	Site: MW10-5				Date S	ampled: 7/8/16	12:40	Analysis Date:	7/21/	16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	Nelac	<u>Qual</u>	Parameter		Result	<u>Unit</u>	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	95.3	ug/L	Ν		Benzene		44.4	ug/L	Ν	
Toluene		17.2	ug/L	Ν		Ethylbenzene		15.6	ug/L	Ν	
Xylenes,	Total	89.0	ug/L	Ν		1,3,5-Trimethylbenzene		29.9	ug/L	Ν	
1,2,4-Tri	methylbenzene	67.5	ug/L	Ν		Naphthalene		6.2	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	84	%	Ν		Unidentified Peaks		> 10		Ν	

WORK ORDER: 1607-14739 DATE RECEIVED: 07/12/2016

				TEST	METHOD:	EPA 80	21B					
006	Site: MW10-6				Date S	ampled:	7/8/16	12:55	Analysis Date:	7/20	/16 W	/ MHM
Parame	ter	Result	Unit	Nelac	Qual	Paramete	<u>r</u>		Result	Unit	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	< 200	ug/L	Ν		Benzene			4,560	ug/L	Ν	
Toluene		8,400	ug/L	Ν		Ethylbenzer	ne		2,670	ug/L	Ν	
Xylenes,	Total	10,100	ug/L	Ν		1,3,5-Trime	thylbenzene		377	ug/L	Ν	
1,2,4-Tri	methylbenzene	1,400	ug/L	Ν		Naphthalen	e		259	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	97	%	Ν		Unidentified	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
007	Site: MW11-9				Date S	ampled:	7/8/16	14:45	Analysis Date:	7/20	/16 W	/ MHM
Parame	ter	Result	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	<u>r</u>		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t	-butyl ether (MTBE)	359	ug/L	Ν		Benzene			730	ug/L	Ν	
Toluene		62.3	ug/L	Ν		Ethylbenzer	ne		600	ug/L	Ν	
Xylenes,	Total	1,730	ug/L	Ν		1,3,5-Trime	thylbenzene		136	ug/L	Ν	
1,2,4-Tri	methylbenzene	554	ug/L	Ν		Naphthalen	e		126	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	90	%	Ν		Unidentified	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
008	Site: MW12-13				Date S	ampled:	7/8/16	14:10	Analysis Date:	7/21	/16 W	/ MHM
Parame	ter	<u>Result</u>	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>	Paramete	r		Result	<u>Unit</u>	Nelac	<u>Qual</u>
Methyl-t	-butyl ether (MTBE)	289	ug/L	Ν		Benzene			1,930	ug/L	Ν	
Toluene		43.5	ug/L	Ν		Ethylbenzer	ne		497	ug/L	Ν	
Xylenes,	Total	121	ug/L	Ν		1,3,5-Trime	thylbenzene		< 20.0	ug/L	Ν	
1,2,4-Tri	methylbenzene	87.8	ug/L	Ν		Naphthalen	e		23.2	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	94	%	Ν		Unidentified	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
009	Site: MW12-15				Date S	ampled:	7/8/16	13:55	Analysis Date:	7/21	/16 W	/ MHM
Parame	ter	Result	Unit	Nelac	Qual	Paramete	<u>r</u>		Result	<u>Unit</u>	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	465	ug/L	Ν		Benzene			2,540	ug/L	Ν	
Toluene		918	ug/L	Ν		Ethylbenzer	ne		859	ug/L	Ν	
Xylenes,	Total	1,890	ug/L	Ν		1,3,5-Trime	thylbenzene		78.6	ug/L	Ν	
1,2,4-Tri	methylbenzene	499	ug/L	Ν		Naphthalen	e		78.0	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	93	%	Ν		Unidentified	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
010	Site: MW13-17				Date S	ampled:	7/8/16	12:45	Analysis Date:	7/21	/16 W	/ MHM
Parame	ter	Result	Unit	Nelac	Qual	Paramete	<u>r</u>		Result	Unit	Nelac	Qual
Methyl-t	-butyl ether (MTBE)	756	ug/L	N		Benzene			1,500	ug/L	Ν	
Toluene		8,720	ug/L	Ν		Ethylbenzer	ne		2,170	ug/L	Ν	
Xylenes,	Total	10,200	ug/L	Ν		1,3,5-Trime	thylbenzene		406	ug/L	Ν	
1,2,4-Tri	methylbenzene	1,220	ug/L	Ν		Naphthalen	e		241	ug/L	Ν	
Surr. 1 (I	Bromobenzene)	91	%	Ν		Unidentified	d Peaks		> 10		Ν	

CLIENT: KAS, Inc. PROJECT: 410090357 Shelburne Rd Variety REPORT DATE: 7/25/2016

 WORK ORDER:
 1607-14739

 DATE RECEIVED:
 07/12/2016

				TEST	METHOD:	EPA 80	21B					
011	Site: MW13-18				Date Sa	ampled:	7/8/16	11:05	Analysis Date:	7/20/	'16 W	MHM
Paramete	er	Result	<u>Unit</u>	Nelac	Qual	Paramete	<u>er</u>		Result	<u>Unit</u>	<u>Nelac</u>	Qual
Methyl-t-l	butyl ether (MTBE)	24.1	ug/L	Ν		Benzene			401	ug/L	Ν	
Toluene		132	ug/L	Ν		Ethylbenze	ne		359	ug/L	Ν	
Xylenes,	Total	519	ug/L	Ν		1,3,5-Trim	ethylbenzene		89.0	ug/L	Ν	
1,2,4-Trin	nethylbenzene	324	ug/L	Ν		Naphthaler	e		32.5	ug/L	Ν	
Surr. 1 (B	romobenzene)	93	%	Ν		Unidentifie	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
012	Site: Duplicate				Date Sa	ampled:	7/8/16	12:50	Analysis Date:	7/20/	'16 W	/ MHM
Paramete	<u>er</u>	Result	<u>Unit</u>	Nelac	<u>Qual</u>	Paramete	<u>er</u>		Result	Unit	Nelac	<u>Qual</u>
Methyl-t-l	butyl ether (MTBE)	680	ug/L	Ν		Benzene			1,600	ug/L	Ν	
Toluene		8,240	ug/L	Ν		Ethylbenze	ne		2,050	ug/L	Ν	
Xylenes,	Total	9,710	ug/L	Ν		1,3,5-Trim	ethylbenzene		409	ug/L	Ν	
1,2,4-Trin	nethylbenzene	1,220	ug/L	Ν		Naphthaler	e		234	ug/L	Ν	
Surr. 1 (B	romobenzene)	93	%	Ν		Unidentifie	d Peaks		> 10		Ν	
				TEST	METHOD:	EPA 80	21B					
013	Site: Trip Blank				Date Sa	ampled:	7/8/16	10:15	Analysis Date:	7/20/	'16 W	MHM
Paramete	<u>er</u>	<u>Result</u>	<u>Unit</u>	<u>Nelac</u>	Qual	Paramete	<u>er</u>		Result	<u>Unit</u>	<u>Nelac</u>	<u>Qual</u>
Methyl-t-l	butyl ether (MTBE)	< 2.0	ug/L	Ν		Benzene			< 1.0	ug/L	Ν	
Toluene		< 1.0	ug/L	Ν		Ethylbenze	ne		< 1.0	ug/L	Ν	
Xylenes,	Total	< 2.0	ug/L	Ν		1,3,5-Trim	ethylbenzene		< 1.0	ug/L	Ν	
1,2,4-Trin	nethylbenzene	< 1.0	ug/L	Ν		Naphthaler	e		< 2.0	ug/L	Ν	
Surr. 1 (B	romobenzene)	101	%	Ν		Unidentifie	d Peaks		0		Ν	

Page 4 of 4

		Special Reporting Instructions/POrt:	38 Other	34 Corrosivity	32 TCLP (volatiles, se	31 Metals (Total, Diss	5 Nitrate N	4 Nitrite N	3 Ammonia N	2 Chloride	Hd I		Relinquished by:	MW 13-1	MW 12-1	MW 12-1	MW 11-9	D-OI MM	MW310-5	mw 10-4	MW 10-2	MW 10-2	MW10-	Sample Lo	Endyne WO #	State of Origin: VTV	Project Name: SHELE	(802) 879-4333
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Special Reporting Instructions/POF		35 Ignit	mi-volati	.) Ag, Al,	10 All	9 BC	8 Tot	7 Tot	6 TK				N.	0				,			-	cation		NY Z	,URNE	ont 05495
Special Reporting Instructions/PO#: $41ccc9c35$.7 Client/Contact Name: KAS INC / $FEBECCA TEEAT$ Sampler Name: F Matrix F Source Phone #: EO_2 -33.5-C+HSC Phone #: $Sampler Name: F Matrix F Source Phone #: EO_2-33.5-C+HSC Phone #: Sampler Sampler Name: F Matrix F Source Phone #: Sampler Sampler Name: F Phone #: Sampler Matrix F Source Phone #: Sampler Sampler Analysis Matrix F Date Time Sampler Consumers Poore #: Sampler Sampler Matrix F Date Time Sampler Consumers Poore #: Sampler Sampler Matrix K 0.70/6/8/16 11/8 2 Hold N/2 Analysis Date Time Received by: 12/9 14/9 14/9 14/9 14/9 14/9 12/15 16 Suifac 21 Kod-THHOG 26 87.70 PAH Only 13 TDS 18 COD 23 8015 BRO 28 88.70 PA 14 $	Special Reporting Instructions/POI: 410 -C9 2 S-T Client/Contact Name: KA3 WC / REGECCA TGEAT Sampler Name: K-7 Phone #: EC2_33_CH86 Billing Address: Warks Sampler Name: K-7 Marins 8 90 Date Time Sampler Sampler Sampler Contantes: M-7 Sampler Name: K-7 Marins 8 90 Date Time Sampler Sa	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ability	les, metals, pe	As, B, Ba, B	calinity	D	al Diss. P	al P	N	0														JH Other	RUAD VA	
Special Reporting Instructions/PO#: $4+c_{OC} 0.35$ T Sampler Name: KAS INC / $FEGECCA TEEAT$ Sampler Name: F Phone #: $EO_2 - 33 - C+B_C$ Phone #: $SAmpler Name: F Mailing Address: P_0 S_{CX} T3 T Billing Address: P_0 S_{CX} T3 T Mailing Address: P_0 S_{CX} T3 T Billing Address: P_0 S_{CX} T3 T Mailing Address: P_0 S_{CX} T3 T Sample Containers P_0 Sample Conta$	Special Reporting Instructions/PO#:	Special Reporting Instructions/PO#: 4tocs10.557 Sampler Name: FT Name: Name: Name: Name:		36	sticide	e, Ca,	15	14	13	12	=-	1/08/ne	Dat			<u> </u>				ļ	ļ						irier	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	orting Instructions/PO#: $410 - 90357$ Sampler Name: R^{-} Point Reservation None #: $802 - 38 - 0486$ Billing Address: With $23 - 0486$ None #: $52 - 38 - 0486$ Billing Address: With $23 - 0486$ None #: $52 - 38 - 0486$ Billing Address: With $23 - 0486$ None #: $52 - 38 - 0486$ Billing Address: With $23 - 0486$ None #: $52 - 38 - 0486$ None #: $52 - 38 - 0486$ None #: $52 - 38 - 0486$ None #: $52 - 0486$ Date Time Received by: Uth $32 - 0164$ Uth $32 - 0164$ Uth $32 - 0164$ Colspan= 2 - 8015 GRO 2 - 8015 GRO 2 - 1739 Uther	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Reactivity	s, herbicides)	Cd, Co, Cr, C	Conductivity	Turbidity	TDS	TSS √	Fotal Solds	-/1600 J	e/Tjme Re	*									GW	Matrix		Ph		Special Rep
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				u, Fe, F		0				d d	fdived										\times	<u>∿∞≺∞</u>	, Sum	one #:	ent/Co	orting
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		37 0	33 0	-1g, К,	20 V	19) V	18 C	17 C	16 SI	6-	by: /						 				107/	Dat			ontact	Instru
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{440c903577}{S} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{1000}{1000} = \frac{1000}$		ther	ther	Mg, Mn, Mo, Na	OC Halocarbons	T PCF	OD	oliform (Specify)	ılfate	IN TAM	S A	1245	1355	1410	5hhl	1255	1240	1235	1228	0411	8/16 / 1118	e/Time Sampled	S: Po Box 7 Nillisian	2-383-048	Name: KAS W	ctions/PO#:
G0 35 7 Sampler Name: N Phone #: SAME Billing Address: Type/Size Preservation Analysis Type/Size Preservation Required Home #: SAME Sampler Name: N Analysis Type/Size Preservation Required HCL II II II Date/Time Received by: II III Date/Time Received by: III III B015 DRO 26 8270 PAH Only 8082 PCB 8260B 29 PP IEO7 8270 BN or Acid 30 To IEO7 28 8082 PCB Sample 29 PF IEO7 Story 20 Preservation IEO7 Story 29 PF IEO7 Story 29 PF IEO7 Story 30 To IEO7 IEO7 28 30 To IEO7 20 PF IEO7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 3 3 ampler Name: IT Phone $H: SAME$ Billing Address: Sample Analysis FieldResults/Remarks 1 $IspeSize$ Preservation Required 1 $IspeSize$ Required $IspeSize$ FieldResults/Remarks $IspeSize$ Required $IspeSize$ Required $IspeSize$ Required $IspeSize$, Ni, Pl	25	24	23	22	21			∢_	r sezense en setes								2	Samp No.	- 187 - 17	6	NC /	4100
Sampler Name: f Phone #: SAME Billing Address: SAME Phone #: SAME SAME Cadress: SAME Phone #: SAME SAME SAME SAME SAME SAME SAME SAME	Sampler Name: PT Phone #: SAME Billing Address: SAME SAME HCL 19 HCL 19 HCL 19 HCL 19 Column HCL 19 Column HCL 19 Column HCL 19 Column HCL 19 Column HCL 19 Column HCL 19 Column	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				o, Sb, Se, Sn, Tl	8270 B/N or A	8260B	8015 DRO	8015 GRO	664 ⁴ TPH/FOC	Flight	Date/7	-									HomL Vial	le Containers Type/Size			LEBECCA TO	90357
Sampler Name: Phone #: Sampler Name: Phone #: SAME Billing Address: SAME Billing Address: SAME Required Indicate Indicate Indicate	Sampler Name: PT Phone #: SAME Billing Address: SAME SAME Analysis Field Received by: Caller 20 PP 20 PP 20 PP 20 Rost Pest 1607-14739 She Iburne She Iburne	Sampler Name: RT Phone #: SAME Billing Address: SAME SAM				, U, V,	cid					1114	lime	\$									HC	Samp Preserva			GAT	
npler Name: f ng Address: SAME SAME SAME SAME SAME SAME SAME IGO7- PP LGO7- IGO7- States Same IGO7- States Same IGO7- Same Same Same Same Same Same Same Same	npler Name: PT ne #: SAME Analysis Required I Analysis SAME SAME I Poly 1607-14739 I B07-14739 I B07-14739 I B07-14739	npler Name: PT ne #: $SAME$ Analysis Required 19 19 19 19 19 19 19 19 19 19				Zn	30 7	29]	28 8	27	26 8		Rece			<u> </u>								le	<u> </u>	Phe	San	
	She Iburne	FieldResults/Remarks			KAS, Inc. 410090357			PP 1607-	3082 PCB	8081 Pest	3270 PAH Only	aller	ived by:	4									19	Analysis Required	ing Address: SAME	ine #: SAME	npler Name: 19	
uariet	APPENDED AND A APPENDED AND APPENDED AND A APPENDED AND A APPENDED AND A APPENDED AND A APPENDED AND APPENDED AND APPENDED AND APPENDED AND APPENDED AND APPENDED APPENDE	11:22 / 11:22		4	Ē					1	USE ONLY	halite	Da											marks				
variety	Dan Dan Se ONLY											11:2	te/Time) ე ს ს

(White - Laboratory / Yellow - Client)

Page 1 of 2

38	34	32	31	s	4	ω	2	-	Kei										Enc	Sta	Pro		
Other	Corrosivity	TCLP (volatiles,	Metals (Total, D	Nitrate N	Nitrite N	Ammonia N	Chloride	pH-	inquished by:						TEPR	Duplics	MW13-1	Sample	dyne WO #	te of Origin: VT	oject Name: SHe	160 James t Williston, Ve (802) 879-43	
	35	semi-	iss.) A	10	6	~	7	6								AIR A	8	Loca		X V	ELBU	Brown rmont 333	ž
	Ignitability	volatiles, metals, pe	vg, Al, As, B, Ba, B	Alkalinity	BOD	Total Diss. P	Total P	TKN						7	ĸ	•		tion		Y NH Other	eve Road V	D rive 05495	TI NO
	36	sticid	e, Ca,	15	14	13	12	=	07/03												ARIC		
	Reactivity	es, herbicides)	Cd, Co, Cr, C	Conductivity	Turbidity	TDS	TSS	Total Solids	11 / 160 Re	-				ýv.	7 E	Ł	GW	Matrix		<u>इ</u>	TY CI	Special Rej	
			u, Fe,						Leive	 		 ļ			(\times	ಹ>∞ಲ		ailing	lient/(portin	2
	37	33	Hg, K	20	Ð	18	17	16	d by: ،		_						~	P <u>⊀</u> OC		r Add	Conta	ig Ins	
	Other	Other	ζ, Mg, Mn, Mo, Na	VOC Halocarbons	VT PCF	COD	Coliform (Specify)	Sulfate	M HAN	<i></i>				<u> </u>		11 1250	17/08/w / 1105	Date/Time Sampled	Willing	02-383-0486	ct Name: KAS	tructions/PO#:	N-DE-CIIC
			, Ni, I	25	24	23	22	21			1						a	Z	N 27		INC.	4100	5
			ъ, Sb,	827	826	801	801	1662	4			 	 	\square	·		N	0. Inple C	T		/RE	9039	
			, Se, Sn, Tl	0 B/N or A	0В	5 DRO	5 GRO	4 TPH/FOC	12/16					4			Oml Vial	ontainers Type/Size			Bécca T	57	ロゴンフ
			, U, V,	cid					Time					4			Ŧ	San			2647		ワフ
			Zn	30	29	28	27	26	/ Re								\mathbb{P}	ple		g g	s.		
				Total RCRA8	PP13 Metals	8082 PCB	8081 Pest	8270 PAH Only	ceived by:					¢			19	Analysis Required	SAME	hone #: SAME	ampler Name: K		
					Commen	Temp:	Delivery:		Domey									FieldR			2T		
					·	Ģ	210		14									esults/Re					
						4	04	JSE ONI	dir									emarks				7	
								X	Date/T								0					ភ្វ ភ្វ	
									ime :20		1	-						Dat				80	
																		ep ep	L	<u> </u>]		

(White - Laboratory / Yellow - Client)

Page <u>2</u> of <u>2</u>