

GROUNDWATER SAMPLING AND INVENTORY

DEPOT AVENUE WINDSOR, VERMONT

VT HAZARDOUS SITE #20093977

Prepared for: Kristi Herzer State of Vermont DEC, WMD Brownfields Response Program 1 National Life Drive - Davis 1 Montpelier VT 05620-1294

Project No. 04-224488 April, 2016

Prepared by: ECS 70 Landmark Hill Brattleboro, VT 05301 tel 802.257.1195 fax 802.257.1603 www.ecsconsult.com

Table of Contents

EXEC	UTIVE SUM	MARY	i
1.0 IN	TRODUCTIO	ON	1
1.1	SCOPE OF	WORK	1
1.2	SITE BAC	KGROUND	1
1.3	PURPOSE.	AND OBJECTIVES	2
1.4	UPDATED	CONCEPTUAL SITE MODEL	2
2.0 IN	VESTIGATI	VE PROCEDURES	4
2.1	MONITOR	ING WELL INVENTORY AND ASSESSMENT EVENT	4
2.2	NAPL, Gi	ROUNDWATER GAUGING AND TOV SCREENING	4
2.3	GROUNDY	WATER SAMPLING	4
2.4	WASTE M	IANAGEMENT	5
3.0	INVESTIG	ATIVE RESULTS	6
3.1	GROUNDY	WATER FLOW DIRECTION AND GRADIENTS	6
3.2	DISSOLVE	ED-PHASE GROUNDWATER ANALYTICAL	6
3.3	QUALITY	ASSURANCE/QUALITY CONTROL (QA/QC)	7
4.0	FINDINGS	AND RECOMMENDATIONS	9
FIGUI	RES:		
	Figure 1	Site Location Map	
	Figure 2	Site Map	
	Figure 3	Groundwater Contour Map	
	Figure 4 Figure 5	Groundwater Isoconcentration Map - PCE Groundwater Isoconcentration Map - TCE	
	Figure 6	Groundwater Isoconcentration Map – 1CE Groundwater Isoconcentration Map – cis-1,2,-DCE	
	rigure o	Oroundwater isoconcentration wap – cis-1,2,-DCE	
TABL			
	Table 1	Groundwater Log	
	Table 2	Groundwater VOC Analytical Results	

APPENDICES:

Appendix A Low Flow Field Forms/Notes Appendix B Laboratory Analytical Report

EXECUTIVE SUMMARY

On behalf of the Vermont Department of Environmental Conservation (DEC), Environmental Compliance Services, Inc. (ECS) has completed monitoring well inventory and assessment activities and site groundwater monitoring activities at the Depot Avenue site (VT Hazardous Site #20093977) in Windsor, Vermont. The work was performed on behalf of the VT DEC in accordance with the Work Plan and Cost Estimate prepared by ECS and dated December 17, 2015. The site consists of multiple properties in downtown Windsor, Vermont primarily in the area of Depot Avenue. A detailed site locus and site plan are included as **Figure 1** and **Figure 2**, respectively.

The State of Vermont requested that ECS complete additional investigation activities to further characterize the chlorinated volatile organic compound (CVOC) contamination and conduct long term monitoring. It is ECS' understanding that groundwater sampling has not occurred at the site since 2007.

The source of the CVOC-impacted groundwater plume appears to be from the vicinity of the Carter & Carter building (former Windsor Dry Cleaner) located at 9 Depot Avenue. In 2007, Golder Associates Inc. (Golder) detected the highest CVOC concentrations in the groundwater sample collected from monitoring well GAI-1S (located approximately 40 feet east and downgradient of the Carter & Carter building). In 2016, the highest CVOC groundwater concentrations were detected in GAI-3S which is approximately 100 feet east of GAI-1S. In addition, increases in CVOC concentrations were observed during the 2016 monitoring event in wells J-GW-DEP9 and J-GW-DEP8, both located along Depot Avenue, northeast of the Windsor Station Restaurant. It appears as though the main plume of CVOC-impacted groundwater has migrated east, as CVOC concentrations within GAI-1S dramatically decreased by an order of magnitude. The CVOC-impacted groundwater is primarily confined to the upper portion (approximately top ten feet) of the surficial aquifer on Depot Avenue. The CVOC concentrations observed in the shallow interval are two to three orders of magnitude higher than the CVOC concentrations observed in the deeper portion of the surficial aquifer.

The scope of work included the assessment and inventory of previously installed site monitoring wells; gauging of site wells for depth to light and dense non-aqueous phase liquid (LNAPL and DNAPL) and for depth to water; screening the PVC well heads for Total Organic Vapors (TOVs) with a photoionization detector (PID); determining groundwater elevations, flow directions and gradients; and, the collection of groundwater samples via low flow purging techniques. In addition, one drum of impacted purge water was disposed of as hazardous waste.

In total, 15 monitoring wells (GAI-1S, GAI-1D, GAI-2S, GAI-3S, GAI-3D, J-GW-APT2, J-GW-APT3, KAS-1, J-GW-DEP8, J-GW-DEP9, CBM-1, CBM-2, CBM-3, CBM-4 and CBM-5) were located and deemed viable for sampling. Samples were collected via low flow techniques and were submitted for laboratory analysis for Volatile Organic Compounds (VOCs) via Environmental Protection Agency (EPA) method 8260C.

Our findings based on this work are as follows:

O LNAPL or DNAPL was not identified in any of the wells gauged. Maximum TOVs were detected at 5.9 parts per million by volume (ppmv) within monitoring well GAI-1S. With the exception of GAI-3S (0.1 ppmv) and J-GW-DEP9 (0.8 ppmv), TOVs were not detected within the headspace of any other wells.

- Groundwater was generally encountered at depths ranging from 1.00 foot below grade surface (ft bgs) at KAS-1, located on the former Hunter Oil Co. property, to 8.28 ft bgs at GAI-2S, located south of the Carter and Carter property within shallow site wells. Groundwater was encountered at depths ranging from 13.61 ft bgs at GAI-1D to 29.10 ft bgs at CBM-1; both of these wells were installed to monitor the deep surficial aquifer (greater than 10 feet). Groundwater generally flows west to east across the Carter and Carter property and then appears to flow east/northeasterly along Depot Street and southeast towards the Windsor Station Restaurant.
- The groundwater sample collected from monitoring well GAI-3S contained the highest concentrations of total CVOCs. Tetrachloroethene was detected at 9,240 μg/L, trichloroethene was detected at 1,460 μg/L and cis-1,2-Dichloroethene was detected at 3,050 μg/L. In the associated deeper aquifer monitoring well GAI-3D, only tetrachloroethene was detected above laboratory detection limits and the Vermont Groundwater Quality Preventative Action Level (VGPA); however, below the Vermont Groundwater Enforcement Standards (VGES).
- Groundwater collected from monitoring well GAI-1S, exhibited the second highest concentrations of CVOCs across the site. This well previously contained the highest concentrations of CVOCs during the 2007 sampling event completed by Golder. All concentrations exceeded the VGES for each compound. In the associated deeper aquifer monitoring well GAI-1D, only tetrachloroethene was detected above LDL and VGPA, however below VGES.
- O Additional VGES exceedances of tetrachloroethene were detected in groundwater samples collected from J-GW-APT3 (8.8 μg/L), J-GW-DEP8 (9.2 μg/L) and J-GW-DEP9 (76. 0 μg/L). Concentrations of trichloroethene were detected above VGES in J-GW-DEP9 (7.0 μg/L). Concentrations of cis-1,2-Dichlorethene were detected above LDLs in all three wells, however concentrations were below VGES and VGPA.
- The main plume of CVOC-impacted groundwater appears to have migrated approximately 100 feet east of GAI-1S towards GAI-3S in the Depot Avenue area. CVOC concentrations also increased in wells J-GW-DEP9 and J-GW-DEP8, east of the source area which suggests further migration of the groundwater plume east.
- O The CVOC-impacted groundwater appears primarily contained to the top ten feet of the surficial Depot Avenue aquifer, as CVOCs detected in deeper wells (GAI-1D and GAI-3D) were not detected above VGES, and only tetrachloroethene was detected above VGPA within both wells.
- Concentrations of tetrachloroethene degradation products, specifically cis-1,-2-Dichloroethene, trichloroethene and vinyl chloride did not appear to increase with the exception of concentrations detected in groundwater collected from monitoring well GAI-3S. The increased concentrations within GAI-3S, appeared more related to movement of the groundwater plume, rather than increased degradation of CVOCs across the site.

Based on these findings, ECS has the following recommendations:

- o Re-installation of monitoring wells including at least (Stacey)-MW-202, (Stacey)-MW-201, JGW-DEP5, JGW-DEP6 and JGW-DEP11.
- o Groundwater monitoring and reporting should continue on a bi-annual basis to further assess the migration of the CVOC plume across the site.

o Indoor air quality should be monitored again within the Windsor Station Restaurant due to the presence CVOC impacted groundwater migrating towards the structure.

1.0 INTRODUCTION

On behalf of the Vermont DEC, ECS has completed monitoring well inventory and assessment activities and site monitoring activities on January 29, February 1 and February 3, 2016 at the Depot Avenue site (VT Hazardous Site #20093977) in Windsor, Vermont. The work was performed on behalf of the VT DEC in accordance with the Work Plan and Cost Estimate prepared by ECS dated December 17, 2015. The Work Plan was approved by the DEC in email correspondence dated December 22, 2015.

The site consists of multiple properties in downtown Windsor, Vermont primarily in the area of Depot Avenue. A detailed site locus and site plan are included as Figure 1 and Figure 2, respectively.

1.1 SCOPE OF WORK

The scope of work included the assessment and inventory of previously installed site monitoring wells; gauging of site wells for depth to light and dense non-aqueous phase liquid (LNAPL and DNAPL) and for depth to water; screening the PVC well heads for Total Organic Vapors (TOVs) with a photoionization detector (PID); determining groundwater elevations, flow directions and gradients; and, the collection of groundwater samples via low flow purging techniques. In addition, one drum of impacted purge water was disposed of as hazardous waste.

In total 15 monitoring wells (GAI-1S, GAI-1D, GAI-2S, GAI-3S, GAI-3D, J-GW-APT2, J-GW-APT3, KAS-1, J-GW-DEP8, J-GW-DEP9, CBM-1, CBM-2, CBM-3, CBM-4 and CBM-5) were located and deemed viable for sampling. Samples were collected via low flow techniques and were submitted for laboratory analysis of Volatile Organic Compounds (VOCs) via Environmental Protection Agency (EPA) method 8260C.

1.2 SITE BACKGROUND

The site has undergone numerous environmental site investigations which has included the assessment of chlorinated solvents in soil, groundwater, sediment and vapor across the site and nearby properties. Initial investigations of the site occurred in 1997 and 1998 by Heindel and Noyes (H&N). Tetrachloroethene (PCE) and trichloroethene (TCE)-impacted groundwater was initially discovered on the CN Real Estate Property (formerly Stacey Fuels) located east of Depot Avenue. At that time the highest concentrations of chlorinated VOCs (CVOCs) were detected within monitoring well MW-202 which was located on the western edge of the Stacey Fuels property where it meets Depot Avenue. In a follow-up investigation by H&N in 2000, the former Windsor Dry Cleaning operation located at 9 Depot Avenue was identified as the most likely source of CVOC impacts to groundwater.

In 2002 AEGIS Engineering Services Inc. (AEGIS) performed a limited subsurface investigation of the 9 Depot Avenue property. The property was owned at the time by Carter and Carter Construction Inc., and therefore is referred to as the Carter & Carter property. Three soil borings were completed as monitoring wells and soil and groundwater samples were collected for VOC analysis. Concentrations of CVOCs were not detected within soil samples from the site; however, PCE was detected within groundwater monitoring well CC-MW-2 at 2 micrograms per liter (μ g/L), which was located downgradient of the Carter and Carter building. AEGIS concluded that the release was not associated with the Carter and Carter property based on low levels of CVOCs detected in groundwater and the absence of CVOCs detected in soil samples.

In 2005, The Johnson Company (TJC) performed a Targeted Brownfields Assessment of the downtown Windsor, Depot Avenue area. TJC conducted groundwater quality screening and sampling, soil vapor

ECS Project No. 04-224488 April, 2016 Page 2

screening and soil type and quality sampling. Analysis of groundwater samples concluded that the highest concentrations of PCE exist in an isolated area around MW-202, which was located in the approximate center of a large 10-inch thick concrete pad, immediately northwest of the Windsor Station Restaurant. TJC also found elevated concentrations of PCE degradation products, specifically TCE and 1,2-Dichloroethene (cis-1,2-DCE) above Vermont Standards, indicating the degradation of PCE in the area. Groundwater samples collected from cross-gradient wells to MW-202, J-GW-APT1 and J-GW-APT3, revealed concentrations of PCE above Vermont Standards. TJC concluded that this data suggests that PCE-impacted groundwater observed at monitoring well MW-202 was not the source area of the PCE-impacted groundwater plume. Additional soil vapor data collected by TJC, supported this conclusion and TJC concluded that the source was upgradient of MW-202 in the vicinity of the Carter and Carter (Former Windsor Dry Cleaning) property.

In 2006, Stone Environmental (Stone) conducted indoor air quality and soil gas monitoring at properties located in the Depot Avenue area. Stone collected 28 soil gas and 32 indoor air quality samples. PCE concentrations were detected near the Carter & Carter building and Windsor Station Restaurant at concentrations of 3.6 micrograms per cubic meter (μ g/m³) and 19 μ g/m³, respectively. Stone also assessed whether the sanitary sewer and storm sewer lines were providing a preferential pathway for CVOC impacted groundwater in the Depot Avenue area. Stone did not detect PCE in water samples collected from sanitary sewer lines or within soil in the vicinity of MW-202. However, PCE was detected within a sludge/sediment sample collected from sanitary sewer lines beneath the Windsor Station Restaurant at concentrations of 1,380 μ g/L. The source of PCE within the sludge sample was undetermined.

In 2007 Golder Associates Inc. (Golder) further assessed the site area via a Limited Phase II Site Assessment. Golder concluded that the CVOC-impacted groundwater plume appeared to migrate from the Carter and Carter building (Former Windsor Dry Cleaner). The highest CVOC concentrations were detected within groundwater samples collected from monitoring well GAI-1S which was located forty feet downgradient of the Carter and Carter building. CVOCs were detected at higher concentrations within groundwater from GAI-1S than in groundwater samples from MW-202. In addition, Golder found that CVOC-impacted groundwater was primarily contained to the upper portion (top ten feet) of the surficial Depot Avenue aquifer. CVOCs observed in the shallow aquifer were two orders of magnitude greater than those observed in the deeper portions of the surficial aquifer.

1.3 PURPOSE AND OBJECTIVES

The purpose of this work was to further characterize the degree and extent of CVOC contamination located in the Depot Avenue Area in Downtown Windsor, Vermont as part of a long-term monitoring plan. The objective was to further assess groundwater contamination in the area and to determine the extent and migration of the CVOC plume in shallow and deep surficial aquifers. The purpose was to also assess the viability of site monitoring wells as the wells had not been sampled since 2007.

1.4 UPDATED CONCEPTUAL SITE MODEL

The source of the CVOC-impacted groundwater plume appears to be from the vicinity of the Carter & Carter building (former Windsor Dry Cleaner) located at 9 Depot Avenue. In 2007, Golder detected the highest CVOC concentrations in the groundwater sample collected from monitoring well GAI-1S (located approximately 40 feet downgradient of the Carter & Carter building). In 2016, the highest CVOC groundwater concentrations were detected in GAI-3S which is approximately 100 feet east of GAI-1S. In addition increases in CVOC concentrations were observed during the 2016 monitoring event in wells J-GW-DEP9 and J-GW-DEP8, both located along Depot Avenue, northeast of the Windsor Station Restaurant. It appears as though the main plume of CVOC impacted groundwater has migrated east, as CVOC concentrations within GAI-1S also dramatically decreased by an order of magnitude. The CVOC-

Groundwater Sampling and Inventory Depot Avenue Windsor, Vermont ECS Project No. 04-224488 April, 2016 Page 3

impacted groundwater is primarily confined to the upper portion (approximately top ten feet) of the surficial aquifer on Depot Avenue. The CVOC concentrations observed in the shallow interval are two to three orders of magnitude higher than the CVOC concentrations observed in the deeper portion of the surficial aquifer.

ECS' groundwater table surface map shows a groundwater flow direction from the area around the Carter and Carter building towards GAI-3S to the east, the Windsor Station Restaurant and the Former Stacey Fuels Property. The groundwater flow direction parallels the sanitary drain line that runs from the Carter & Carter building towards The Windsor Station Restaurant and GAI-3S. In addition, according to Golder, a water line runs parallel to Depot Avenue towards the east/northeast along the southern side of Depot Avenue. Both the water line and the sanitary drain line utility trench transects the water table near GAI-1S. Given the groundwater flow direction, the sanitary drain line and the water line running parallel to groundwater flow, and the preferential pathway along the sanitary drain and water line trench, the CVOC-impacted groundwater may be flowing within the utility trench towards the east/northeast. ECS was unable to located MW-202 which is located downgradient of GAI-3S and in between GAI-3S and the Windsor Station Restaurant. Data from this monitoring well would further confirm the easterly movement of the CVOC impacted groundwater plume.

2.0 INVESTIGATIVE PROCEDURES

2.1 MONITORING WELL INVENTORY AND ASSESSMENT EVENT

On January 29, 2016 and February 1, 2016, ECS visited the site and attempted to locate previously installed monitoring wells. The wells extend across multiple properties in Downtown Windsor and had not been sampled since 2007. Utilizing a metal detector, ECS was able to locate fifteen of thirty-four previously installed monitoring wells. Once the wells were located they were gauged for depth to water, depth to NAPL and were checked for structural integrity in order to determine if they could be sampled. No issues were identified with the viability of located monitoring wells with the exception of monitoring well GAI-2S which had a broken road box cover and J-GW-APT2, which had kinked PVC at six inches below grade. Both wells were deemed viable for sampling. Former wells which were previously located east of the Former Hunter Oil Co. building (current Paradise Sports Shop) and north/northwest of the Windsor Station Restaurant were presumed paved over (GAI-6, GAI-4, J-GW-APT1, GAI-5, MW-203 and MW-202). Former wells located on the Town of Windsor Highway Department property (J-GW-STA2, J-GW-STA3 and J-GW-STA4) were covered by a large sand pile. Former wells located in the grassy field, east of the railroad tracks and northeast of the Windsor Station Restaurant (Stacey-MW-102, GAI-7 and GAI-8) were not located due to metal interference with the metal detector and frozen ground. Monitoring wells CBM-1 through CBM-5 were all stick-up wells and were located.

2.2 NAPL, GROUNDWATER GAUGING AND TOV SCREENING

On January 29, February 1 and February 3, fifteen of thirty-four previously installed wells north of River Street were located and gauged for water levels and were also checked for LNAPL and DNAPL with an electronic interface probe. LNAPL or DNAPL was not identified in any of the wells gauged.

In addition each well was screened for TOVs utilizing a Tiger Ionscience PID equipped with a 10.7 ev lamp. The PID was referenced to isobutylene and calibrated to 100 ppmv with isobutylene span gas. Weather at the time of calibration was cloudy with temperatures at approximately 35 degrees Fahrenheit. TOVs were measured by screening headspace concentrations from the top of monitoring well PVC within each well. In summary maximum TOVs were detected at 5.9 ppmv within monitoring well GAI-1S. With the exception of GAI-3S (0.1 ppmv) and J-GW-DEP9 (0.8 ppmv), TOVs were not detected within the headspace of any other wells.

Static water-table elevations were computed for each monitoring well by subtracting the measured depth-to-water readings from the surveyed top-of-casing elevations. Horizontal gradients were calculated by dividing the groundwater elevation differences between two wells by the lateral distance between the wells.

2.3 GROUNDWATER SAMPLING

On February 1 and 3, 2016, groundwater samples were collected using low-flow sampling methods from fifteen site monitoring wells. These wells included GAI-1S, GAI-1D, GAI-2S, GAI-3S, GAI-3D, J-GW-APT2, J-GW-APT3, J-GW-DEP8, J-GW-DEP9, CBM-1, CBM-2, CBM-3, CMB-4 and CBM-5. The samples were submitted for laboratory analysis of VOCs by EPA Method 8260C.

All monitoring wells were purged and sampled using low-flow techniques in accordance with EPA Region I, "Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", revised January 2010 and ECS Standard Operating Procedures. The monitoring wells were purged and sampled using low-flow sampling techniques through a peristaltic

pump. Field indicator parameters including oxidation reduction potential (ORP), dissolved oxygen (DO), temperature, specific conductance, and pH were obtained during well purging for all wells via a portable multi-parameter water quality meter and flow through cell. In accordance with EPA recommended practices, samples for turbidity evaluation were collected prior to the flow through cell and measured with a turbidity meter. After stabilization of field indicator parameters, samples were collected from all wells for laboratory analysis. Turbidity values remained elevated and did not stabilize at monitoring wells CMB-3, J-GW-DEP8 and KAS-1 throughout the purging process while all other parameters stabilized. The appearance of the water was cloudy through one hour of purging. Due to the elevated turbidity after one hour, ECS re-sampled the three affected wells on February 3, in an effort to get the turbidity values to stabilize. Turbidity values stabilized (<1.58 NTU) within monitoring wells CBM-3 and KAS-1 on February 3, and groundwater samples were collected. On February 3, after two hours of purging there was no improved clarity of the groundwater (>1,000 NTU) from monitoring well J-GW-DEP8, so in accordance with the EPA guidance and correspondence with VT DEC personnel a sample was collected. Analytical data may be biased high due to the turbidity of the sample.

Oxidation-Reduction Potential (ORP) measures available oxygen used to reduce petroleum contaminants aerobically. A negative ORP would indicate an anaerobic environment, ideal of reductive dechlorination. Monitoring wells GAI-1D, GAI-3S, GAI-3D, J-GW-APT2, J-GW-DEP9, KAS-1, CBM-1 and CBM-3 exhibited negative ORP values. Chlorinated solvents naturally attenuate in anaerobic environments via reductive dechlorination. PCE will typically degrade via anaerobic dechlorination into TCE to 1,2-DCE to Vinyl Chloride to ethene and finally ethane.

Literature indicates that anaerobic environments occur when dissolved oxygen (DO) concentrations are below 2.0 milligrams per liter (mg/L). Monitoring wells GAI-1S, GAI-2S, GAI-3S, GAI-3D, J-GW-APT2 all had DO concentrations below 2.0 mg/L.

Samples were transported under chain of custody in an ice-filled cooler to Eurofins Spectrum Analytical, Inc. (Spectrum) of Agawam, Massachusetts. All field procedures were conducted in accordance with ECS standard protocols. A summary of stabilized field parameters is presented in Table 1. Low flow field sheets are included as Appendix A.

Trip blanks, equipment blank and duplicate samples were collected to ensure that adequate quality assurance/quality control (QA/QC) standards were maintained.

2.4 WASTE MANAGEMENT

Purge water was collected from each monitoring well across the site and temporarily stored in 5-gallon buckets with secured plastic lids. After completion of sampling each well, the purge water was then emptied into a metal 55-gallon drum temporarily staged at the Windsor Fire Department.

The drum was subsequently picked-up for disposal by Environmental Products and Solutions of Williston, Vermont on February 18, 2016 and was subsequently transported to their Syracuse, New York facility for disposal. Waste manifest documents are presented in Appendix B.

3.0 INVESTIGATIVE RESULTS

3.1 GROUNDWATER FLOW DIRECTION AND GRADIENTS

Groundwater was generally encountered at depths ranging from 1.00 ft bgs at KAS-1, located on the former Hunter Oil Co. property, to 8.28 ft bgs at GAI-2S, located south of the Carter and Carter property within shallow site wells. Groundwater within the deep surficial aquifer (greater than 10 feet) was encountered at depths ranging from 13.61 at GAI-1D to 15.27 at GAI-3D. Groundwater generally flows west to east across the Carter and Carter property and then appears to flow east/northeasterly along Depot Street and southeast towards the Windsor Station Restaurant.

A hydraulic gradient of 0.026 feet per foot was calculated on March 1, 2016 between GAI-1S and CBM-3. The two wells are separated by a distance of approximately 800 feet. The hydraulic relationship between the shallow unconfined overburden aquifer and the deeper aquifer (greater than 10 ft bgs) is currently unknown.

A groundwater contour map (**Figure 3**) was prepared using these data. Measurements and groundwater elevation calculations are presented in **Table 1**. Due to the various top of casing (TOC) elevations from multiple investigations at these sites, ECS utilized the 2007 survey data from Golder to calculate groundwater elevation at all wells in the sampling plan.

3.2 DISSOLVED-PHASE GROUNDWATER ANALYTICAL

VOC laboratory analytical results are summarized in **Table 2**. Laboratory analytical reports are presented in Appendix C. Dissolved VOC contaminant distribution maps are presented as Figures 4 through 6. A total of fifteen out of thirty-four wells north of River Street were sampled. Data was compared to the Vermont Groundwater Quality Enforcement Standards (VGES).

The groundwater sample collected from monitoring well GAI-3S contained the highest concentrations of total CVOCs. Tetrachloroethene was detected at 9,240 μ g/L, trichloroethene was detected at 1,460 μ g/L and cis-1,2-Dichloroethene was detected at 3,050 μ g/L. No other VOCs were detected in groundwater samples from this well; however, due to elevated concentrations of CVOCs, the laboratory detection limit (LDL) for the sample was elevated (200 μ g/L). All three detected CVOCs were detected above the VGES. In the associated deeper aquifer monitoring well GAI-3D, only tetrachloroethene was detected above laboratory detection limits and the Vermont Groundwater Quality Preventative Action Level (VGPA). However, tetrachloroethene was detected below the VGES in this deep well.

Groundwater collected from monitoring well GAI-1S, exhibited the second highest concentrations of CVOCs across the site. This well previously contained the highest concentrations of CVOCs during the 2007 sampling event completed by Golder. Tetrachloroethene was detected at 250 μ g/L, trichloroethene was detected at 912 μ g/L, cis-1,2-Dichloroethene was detected at 6,280, and vinyl chloride was detected at 74.8 μ g/L. All concentrations exceeded the VGES for each compound. In addition, trans-1,2-Dichloroethene was detected below VGES but above the VGPA. In the associated deeper aquifer monitoring well GAI-1D, only tetrachloroethene was detected above LDL and VGPA but below VGES.

Concentrations of tetrachloroethene were detected above VGES in groundwater samples collected from J-GW-APT3 (8.8 μ g/L), J-GW-DEP8 (9.2 μ g/L) and J-GW-DEP9 (76.0 μ g/L).

Concentrations of trichloroethene were detected above VGES in J-GW-DEP9 (7.0 µg/L). Concentrations of trichloroethene were detected above VGPA in J-GW-APT3 (1.8 µg/L) but below VGES.

Concentrations of cis-1,2-Dichlorethene were detected above LDLs in all three wells mentioned above; however, concentrations were below VGES and VGPA.

Concentrations of tetrachloroethene were detected within two of five wells located on the former Perne Building property, east of Depot Avenue and the former Stacey Fuel property at concentrations above the VGPA but below VGES; monitoring wells CBM-2 (4.5 μ g/L) and CBM-3 (2.0 μ g/L). No other CVOCs were detected above LDLs within these wells.

CVOCs were not detected above LDLs within groundwater samples collected from GAI-2S, KAS-1 or J-GW-APT2. These wells are located crossgradient of the source area on Depot Avenue.

In general, site concentrations of CVOCs decreased in groundwater with the exception of monitoring wells GAI-3S, J-GW-DEP8 and J-GW-DEP9. In addition, CVOCs concentrations, specifically tetrachloroethene, increased in monitoring wells CBM-2 and CBM-3, though these concentrations were below VGES.

The plume of CVOC-impacted groundwater appears to have migrated approximately 100 feet east of GAI-1S towards GAI-3S in the Depot Avenue area. The CVOC-impacted groundwater appears primarily contained to the top ten feet of the surficial Depot Avenue aquifer, as CVOCs detected in deeper wells (GAI-1D and GAI-3D) were not detected above VGES, and only tetrachloroethene was detected above VGPA. CVOC concentrations also increased in wells east of the source area specifically in J-GW-DEP9 and J-GW-DEP8, which suggests further migration of the groundwater plume to the east.

Concentrations of tetrachloroethene degradation products, specifically cis-1,-2-Dichloroethene, trichloroethene and vinyl chloride did not appear to increase with the exception of concentrations detected in groundwater collected from monitoring well GAI-3S. The increased concentrations within GAI-3S appeared more related to movement of the groundwater plume, rather than increased degradation of CVOCs across the site.

3.3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

No VOCs were detected in the trip blank samples collected on February 1, 2016 or February 3, 2016. Additionally, VOCs were not detected within the equipment blank sample collected on February 1, 2015 (Table 2). Analytical results of VOCs in the duplicate sample collected from GAI-3D were all within the EPA's relative percent difference (RPD) guidance value of 30 percent for groundwater. The RPD values for the VOC analysis was 24.56 percent.

According to the laboratory, six VOC compounds (1,2-Dibromo-3-chloropropane, bromoform, naphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and tert-butlybenzene) were outside of individual acceptance criteria in the Laboratory Control Sample (LCS), but within overall method allowances. 1,2-Dibromo-3-chloropropane, bromoform and naphthalene could potentially have a low bias in the sample results while 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and tert-butylbenzene could potentially have a high bias within the sampling data. As none of these compounds are contaminants of concern at the site, the biases are not expected to impact sampling results. Additional qualifiers were identified in the analytical report, however none appeared to affect the integrity of the sampling data.

To assure sample representativeness, all sampling methods were in accordance with EPA sampling policies currently in effect. Upon receipt of groundwater samples to the laboratory, all temperatures were within 6 degrees Celsius range with an infrared thermometer with a tolerance of +/- 1.0 degree. All groundwater samples were stored in a cooler with ice as required at the time of collection and later stored in a sample

Groundwater Sampling and Inventory Depot Avenue Windsor, Vermont ECS Project No. 04-224488 April, 2016 Page 8

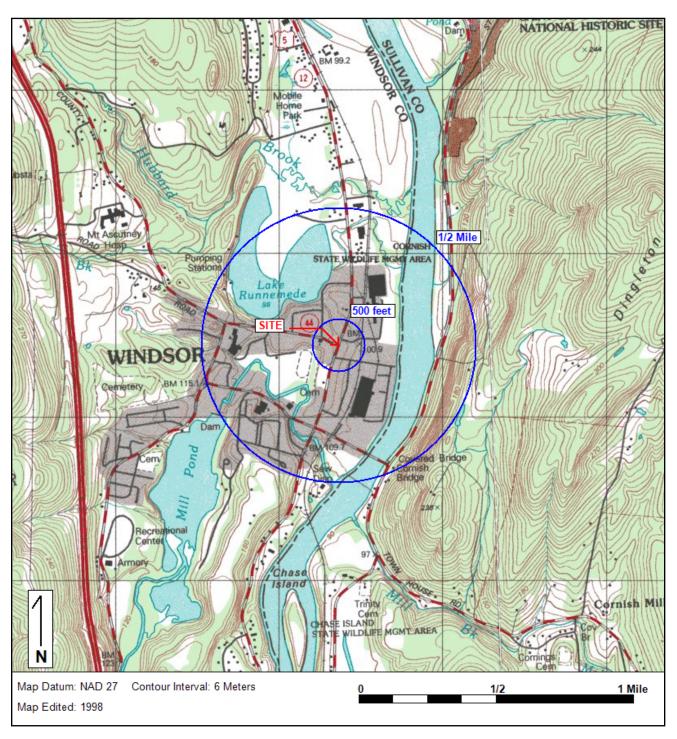
refrigerator until the samples were picked-up by a currier for Eurofins Spectrum Analytical and transported within an iced cooler to the laboratory in Agawam, Massachusetts. All sampling containers and preservation methods complied with all applicable method requirements. All groundwater samples were analyzed within recommended analytical holding times.

4.0 FINDINGS AND RECOMMENDATIONS

Our findings based on this work are as follows:

- o ECS visited the site and attempted to locate previously installed monitoring wells. Utilizing a metal detector, ECS was able to locate fifteen of thirty-four previously installed monitoring wells north of River Street. Former wells which were previously located east of the Former Hunter Oil Co. building (current Paradise Sports Shop) and west of the Windsor Station Restaurant were presumed paved over (GAI-6, GAI-4, J-GW-APT1, GAI-5, MW-203 and MW-202). Former wells located on the Town of Windsor Highway Department property (J-GW-STA2, J-GW-STA3 and J-GW-STA4) were covered by a large sand pile. Former wells located in the grassy field, east of the railroad tracks and northeast of the Windsor Station Restaurant (MW-102, GAI-7 and GAI-8) were not located due to metal interference with the metal detector and frozen ground.
- LNAPL or DNAPL was not identified in any of the wells gauged. Maximum TOVs were detected at
 5.9 ppmv within monitoring well GAI-1S. With the exception of GAI-3S (0.1 ppmv) and J-GW-DEP9 (0.8 ppmv), TOVs were not detected within the headspace of any other wells.
- O Groundwater was generally encountered at depths ranging from 1.00 ft bgs at KAS-1, located on the former Hunter Oil Co. property, to 8.28 ft bgs at GAI-2S, located south of the Carter and Carter property within shallow site wells. Groundwater was encountered at depths ranging from 13.61 ft bgs at GAI-1D to 29.10 ft bgs at CBM-1; both of these wells were installed to monitor the deep surficial aquifer (greater than 10 feet). Groundwater generally flows west to east across the Carter and Carter property and then appears to flow east/northeasterly along Depot Street and southeast towards the Windsor Station Restaurant.
- The groundwater sample collected from monitoring well GAI-3S contained the highest concentrations of total CVOCs. Tetrachloroethene was detected at 9,240 μg/L, trichloroethene was detected at 1,460 μg/L and cis-1,2-Dichloroethene was detected at 3,050 μg/L. In the associated deeper aquifer monitoring well GAI-3D, only tetrachloroethene was detected above laboratory detection limits and the Vermont Groundwater Quality Preventative Action Level (VGPA); however, below the VGES.
- O Groundwater collected from monitoring well GAI-1S, exhibited the second highest concentrations of CVOCs across the site. This well previously contained the highest concentrations of CVOCs during the 2007 sampling event completed by Golder. All concentrations exceeded the VGES for each compound. In the associated deeper aquifer monitoring well GAI-1D, only tetrachloroethene was detected above LDL and VGPA, however below VGES.
- O Additional VGES exceedances of tetrachloroethene were detected in groundwater samples collected from J-GW-APT3 (8.8 μg/L), J-GW-DEP8 (9.2 μg/L) and J-GW-DEP9 (76. 0 μg/L). Concentrations of trichloroethene were detected above VGES in J-GW-DEP9 (7.0 μg/L). Concentrations of cis-1,2-Dichlorethene were detected above LDLs in all three wells, however concentrations were below VGES and VGPA.
- The main plume of CVOC-impacted groundwater appears to have migrated approximately 100 feet east of GAI-1S towards GAI-3S in the Depot Avenue area. CVOC concentrations also increased in wells J-GW-DEP9 and J-GW-DEP8, east of the source area which suggests further migration of the groundwater plume east.

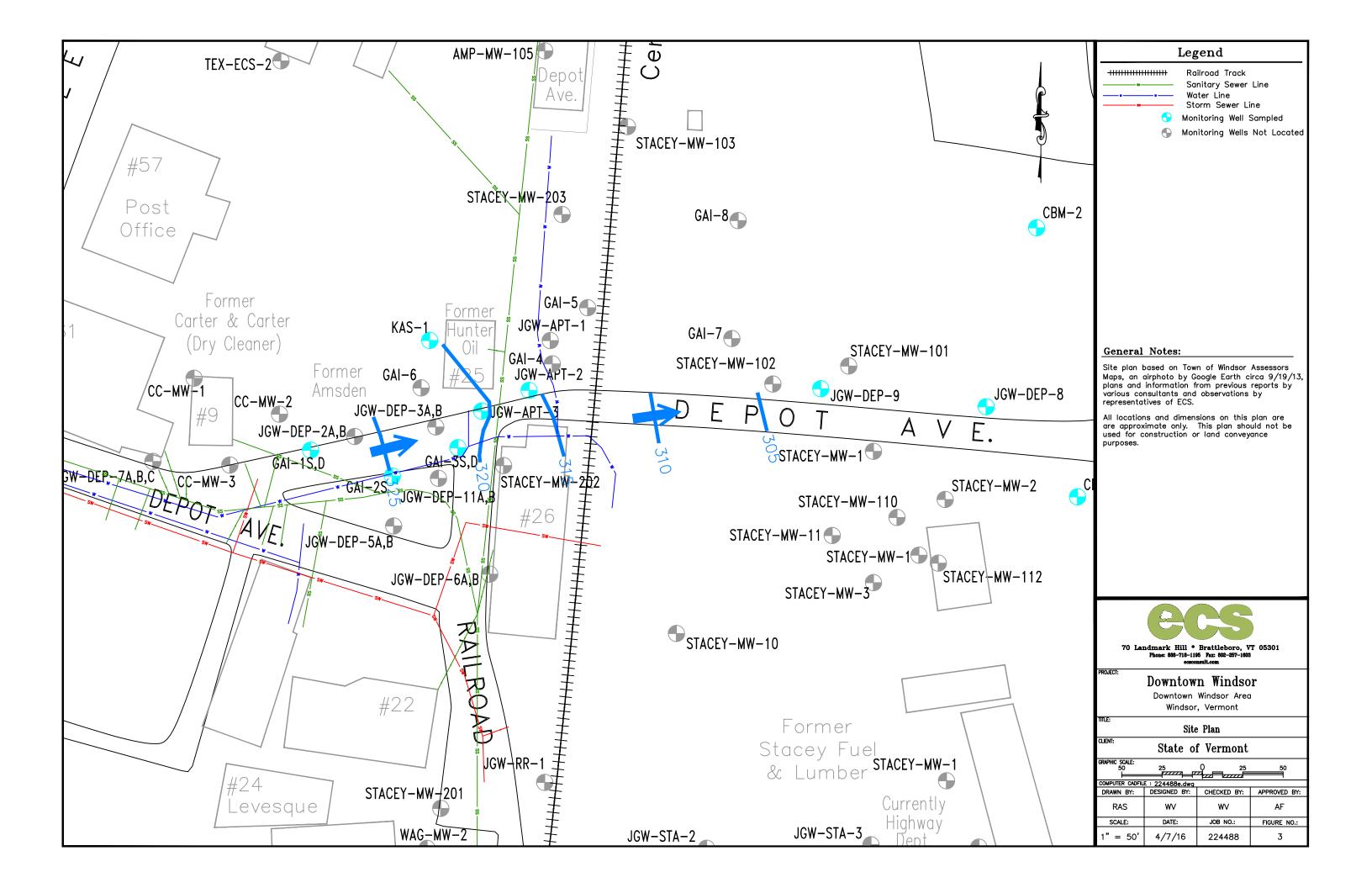
- The CVOC-impacted groundwater appears primarily contained to the top ten feet of the surficial Depot Avenue aquifer, as CVOCs detected in deeper wells (GAI-1D and GAI-3D) were not detected above VGES, and only tetrachloroethene was detected above VGPA within both wells.
- Concentrations of tetrachloroethene degradation products, specifically cis-1,-2-Dichloroethene, trichloroethene and vinyl chloride did not appear to increase with the exception of concentrations detected in groundwater collected from monitoring well GAI-3S. The increased concentrations within GAI-3S, appeared more related to movement of the groundwater plume, rather than increased degradation of CVOCs across the site.

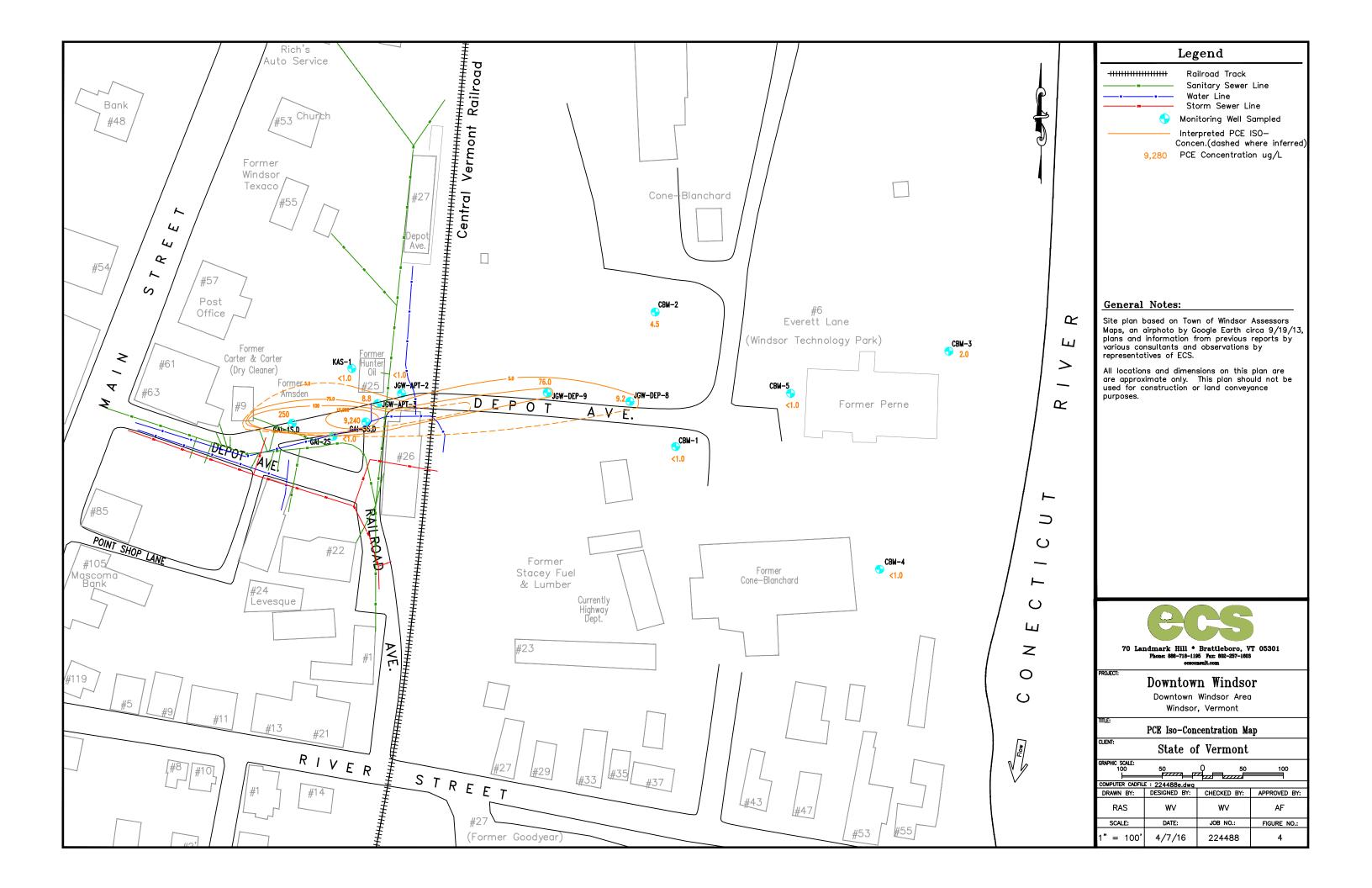

Based on these findings, ECS has the following recommendations:

- Re-installation of monitoring wells including at least (Stacey)-MW-202, (Stacey)-MW-201, JGW-DEP5, JGW-DEP6 and JGW-DEP11.
- o Groundwater monitoring and reporting should continue on a bi-annual basis to further assess the migration of the CVOC plume across the site.
- o Indoor air quality should be monitored again within the Windsor Station Restaurant due to the presence CVOC impacted groundwater migrating towards the structure.

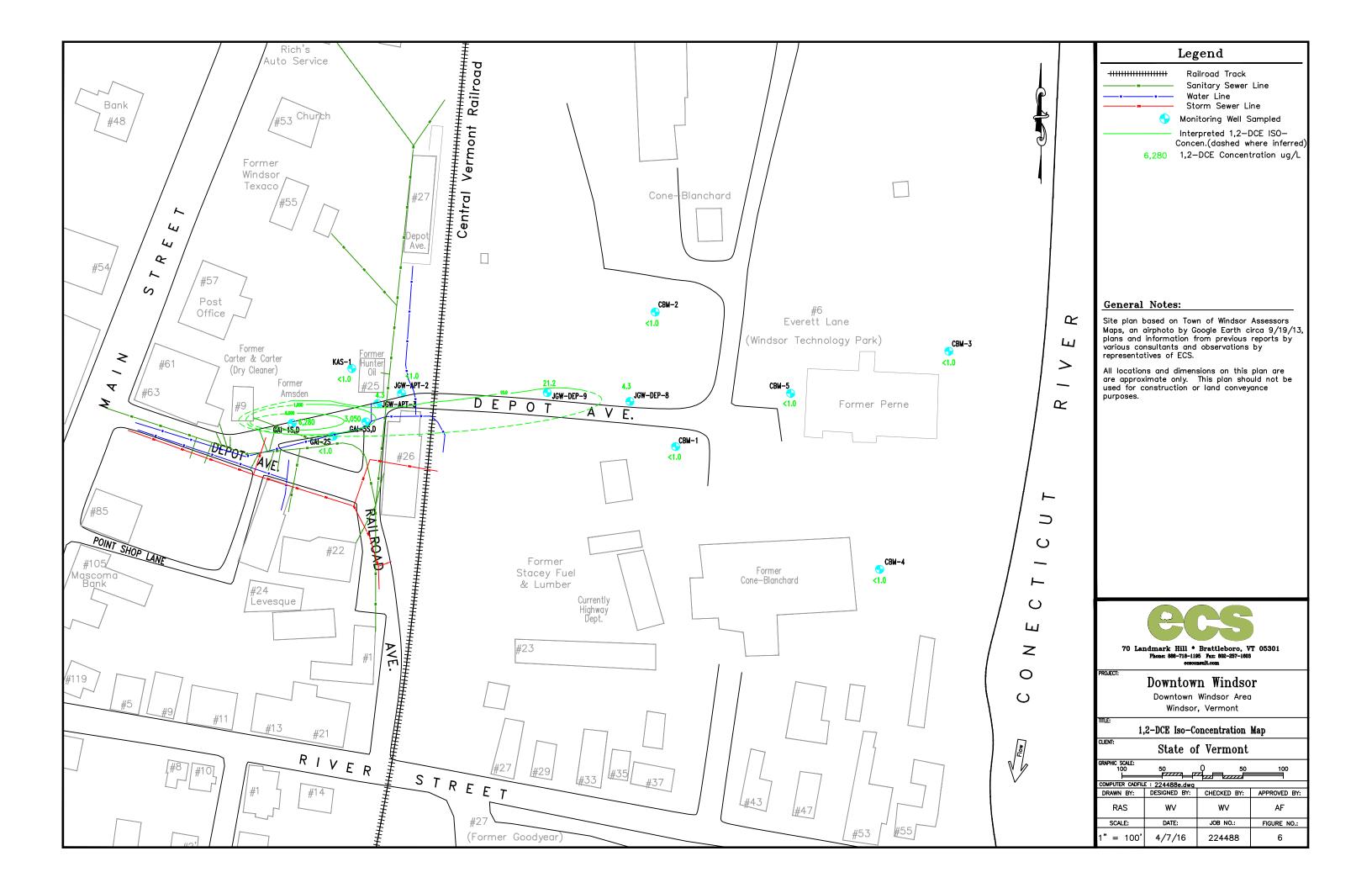
Downtown Windsor Depot Avenue Windsor, VT Environmental Compliance Services, Inc.
70 Landmark Hill Drive
Brattleboro, VT 05301
Phone 802-257-1195 Fax 802-257-1603
www.ecsconsult.com

Figure 1: SITE LOCUS




Base Map: U.S. Geological Survey; Quadrangle Location: Windsor, VT

Lat/Lon: 43 28' 48.08" NORTH, 72 23' 11.65" WEST - UTM Coordinates: 18 711354.7 EAST / 4817440.7 NORTH


Generated By: Carol Farrington

Environmental Compliance Services, Inc. 70 Landmark Hill, Brattleboro, Vermont 05301 (802) 257-1195 FAX (802) 257-1603

GROUNDWATER SAMPLING LOG

Client/Site:	Depot Avenue	Job Number:	04-224488
Location:	Windsor, VT	Date:	1/29/16
Personnel:	Jason Scholz-Karabakakis, Bradley Conway	Weather Conditions:	Cloudy 35 degrees F

Company Comp		Personnei:	Jason S	CHOIZ-Na	rabakakis	s, brauley	Conway			vveatner	Conditions:		Ciouc	iy so deg	rees r			
Compace Col. Decrete Col. Compace Col. Compace Col. Compace Col.	Well ID	Time	D								Odors	На	Temp	Sp. Cond.	ORP/Fh		TOV	
SAM-10 1827 2 PVC 2509 NA 1230 1345 2522 200 N 641 125 940 244 551 0.0 Resemble Communication of the Communication of th	WOILE											Pi:						Comments
GALIS 1957 2 PPC 2586 NA 1290 1391 229 200 N 619 125 690 246 591 0.00 Elemen Cover	GAI-1S	13:12	2	PVC	15.28	NA	7.53	7.75	1.26	2.00	N	7.18	10.2	1373	6.6	1.90	5.9	
GALSIA 2	GAI-1D		2	PVC			12.380	13.61			N	8.81					0.0	
GA-SS 1936 2 PVC 1439 MA 8.05 6.78 M1 1.10 1.50 M 8.40 1.3 1739 3298 0.052 0.1	GAI-2S	17:25	2	PVC	14.88	NA	6.60	8.28	1.35	2.00	N	6.93	9.04	1236	10.7	1.83	0.0	Broken Cover
GAL-19	GAI-2D		2	PVC	28.38													1/29/2016 Unable to find
GALI-1 2	GAI-3S	16:25	2	PVC	14.83	NA	8.05	6.78	1.11	1.50	N	8.40	11.3	1783	-329.6	0.52	0.1	
GALE 2 PVC 1938	GAI-3D	17:35	2	PVC	26.28	NA	11.01	15.27	2.49	2.5	N	8.73	11.2	1359	-295.3	1.03	0.0	
GALE 2 PC 1438					22.81													
GAS-1	GAI-5			PVC	19.53													1/29/2016 Unable to find
CAUSE 2 PVC 22.23																		
JOWAPPT				PVC	26.28													1/29/2016 Unable to find
JOWN-LET 15:05 1 PVC 15:10 NA 13:00 2:10 0.34 2.0 N 6.5 114 1452 3:49 0.00 0.0 PVC News-Proched of 5 News-group (No. 1) 1.00																		
JOWN-PATE 15.55																		
JOHNSTAD 1 PVC 28.88																		PVC Kinked/Pinched at 6" below grade
1,000-STAB 1		15:55				NA	8.45	7.63	1.24	2.5	N	6.9	10.58	1890	25.9	3.11	0.0	
JAMY-STAM 1 PVC 2673 N 2550 A66 677 125 N 6.4 10.97 1074 74.5 5.4 0.0																		
JAMP-PIPE 14.05 1 PVC 22.88 NA 25.00 4.08 0.67 1.25 N 0.4 10.97 1074 74.5 5.54 0.0													-					
John-Color 14-12 1																		1/29/2016 Unable to find
MAY-1																		
MW-3																		
MW-2		18:42	1	PVC	8.50	NA	7.50	1.00	0.16	3.6	N	8.0	3.83	405	-202.2	10.34	0.0	
MNY-4																		
MW-42																		
Stacey-WW-																		
101 1/29/2016 Unable to find Stacey-MW- 103 1/29/2016 Unable to find Stacey-MW- 104 1/29/2016 Unable to find Stacey-MW- 104 1/29/2016 Unable to find Stacey-MW- 105 1/29/2016 Unable to find																		1/29/2016 Unable to find
102 1/29/2016 Unable to find 1/29/2016 Unabl	101																	1/29/2016 Unable to find
103 1/29/2016 Unable to find 1/29/2016 Unabl	102																	1/29/2016 Unable to find
1/28/2016 Unable to find 1/28/2016 Unable to	103																	1/29/2016 Unable to find
105 1,29/2016 Unable to find 1,29/2016 Unabl	104																	1/29/2016 Unable to find
1/29/2016 Unable to find 1/29/2016 Unable to	105																	1/29/2016 Unable to find
107 1/29/2016 Unable to find 1/29/2016 Unabl	106																	1/29/2016 Unable to find
108	107																	1/29/2016 Unable to find
109 Stacey-MW- 1/29/2016 Unable to find	108																	1/29/2016 Unable to find
110 Stacey-MW- 111 Stacey-MW- 112	109																	1/29/2016 Unable to find
111 Stacey-MW-	110																	1/29/2016 Unable to find
112 1/29/2016 Unable to find 1/29/2016 Unabl	111																	1/29/2016 Unable to find
201 1/29/2016 Unable to find 1/29/2016 Unabl	112																	1/29/2016 Unable to find
MW-203	201																	
CC-MW-2 CC-MW-3 CBM-1 13:20 2 PVC 35:65 NA 29:10 6.55 1.07 1.25 N 7.5 11.14 1634 -251.4 7.01 0.0 Raised well CBM-2 13:05 2 PVC 30:20 NA 21:50 8.70 1.42 1.25 N 6.5 1.08 1.0		1	1	1	1	1				-			-	1				
CC-MW-3																		
CBM-1 13:20 2 PVC 35.65 NA 29.10 6.55 1.07 1.25 N 7.5 11.14 1634 -251.4 7.01 0.0 Raised well CBM-2 13:05 2 PVC 30.20 NA 21:50 8.70 1.42 1.25 N 6.5 10.85 1287 88.4 5.55 0.0 Raised well CBM-3 12:25 2 PVC 34.20 NA 28.50 5.70 0.93 1.5 N 7.5 9.94 569 -274.8 4.29 0.0 Raised well CBM-4 11:43 2 PVC 33.70 NA 23:20 10.50 1.71 1.25 N 5.0 10.47 533 34.3 6.22 0.0 Raised well CBM-5 11:20 2 PVC 34.53 NA 26:10 8.43 1.37 1.2 N 7.72 10.8 3.14 264.6 6.12 0.0 Raised well (FORMULA FORMULA) Field Instrumentation I.D. Number Calibration Notes											 		-				 	
CBM-2 13.05 2 PVC 30.20 NA 21.50 8.70 1.42 1.25 N 6.5 10.85 1287 88.4 5.55 0.0 Raised well CBM-3 12:25 2 PVC 34.20 NA 28.50 5.70 0.93 1.5 N 7.5 9.94 569 -274.8 4.29 0.0 Raised well CBM-4 11:43 2 PVC 33.70 NA 23.20 1.71 1.25 N 5.0 10.47 533 34.3 6.22 0.0 Raised well CBM-5 11:20 2 PVC 34.53 NA 26.10 8.43 1.37 1.2 N 7.72 10.8 3.14 264.6 6.12 0.0 Raised well (FORMULA) (FORMULA) I.D. Number Calibration Notes		40.00	_	D) (O	05.05	NA.	00.40	0.55	4.07	4.05	 	7.5	44.47	4004	054.6	7.04		
CBM-3 12:25 2 PVC 34:20 NA 28:50 5.70 0.93 1.5 N 7.5 9.94 569 -274.8 4.29 0.0 Raised well CBM-4 11:43 2 PVC 33.70 NA 23:20 10:50 1.71 1.25 N 5.0 10:47 533 34:3 6:22 0.0 Raised well CBM-5 11:20 2 PVC 34:53 NA 26:10 8:43 1.37 1.2 N 7.72 10.8 3.14 264:6 6:12 0.0 Raised well (FORMULA) Field Instrumentation I.D. Number Calibration Notes																		
CBM-4 11:43 2 PVC 33.70 NA 23.20 10.50 1.71 1.25 N 5.0 10.47 533 34.3 6.22 0.0 Raised well CBM-5 11:20 2 PVC 34.53 NA 26.10 8.43 1.37 1.2 N 7.72 10.8 3.14 264.6 6.12 0.0 Raised well (FORMULA) Field Instrumentation I.D. Number Calibration Notes																		
CBM-5 11:20 2 PVC 34.53 NA 26.10 8.43 1.37 1.2 N 7.72 10.8 3.14 264.6 6.12 0.0 Raised well (FORMULA FORMULA) Field Instrumentation I.D. Number Calibration Notes																		
(FORMULA FORMULA) Field Instrumentation I.D. Number Calibration Notes			2								N						0.0	
)								
Solinst groundwater level indicator				Field	Instrumenta	tion				I.D. N	lumber		Calib	ration				Notes
Solinst groundwater level indicator																		
	Solinst ground	lwater level i	ndicator															

NOTES:

Hanna Handheld PH and Temp Meter

CBM-4 Could not remove cover GAI-1S PVC riser below grade GAI-2S Broken cover

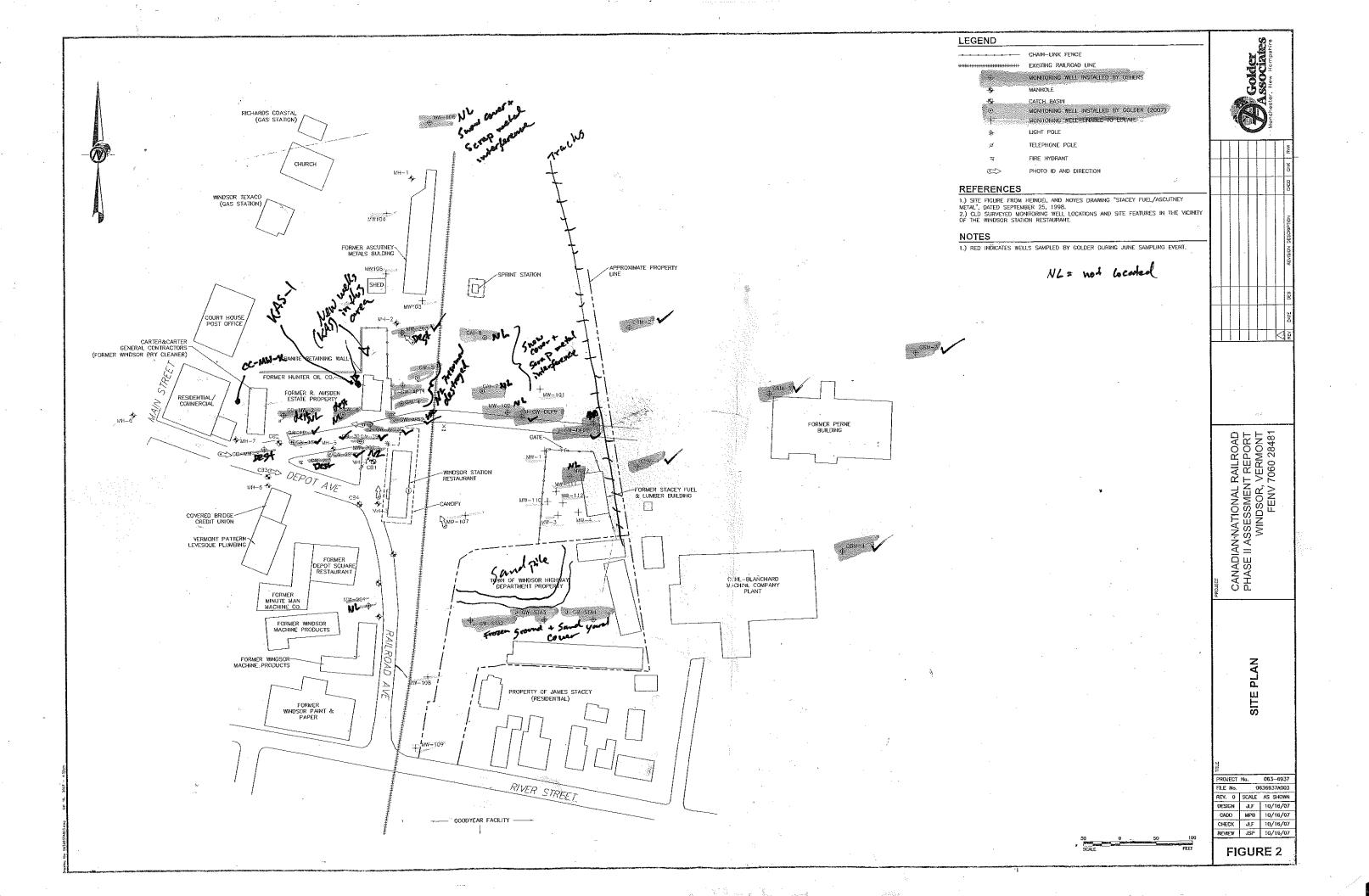
Standing Volume (liters) = πr^2 (H)(7.48/144)(3.785) = r^2 (H)(0.617) Standing Volume (gallons) = r^2 (H)(0.163) Where: r = inside radius of well (inches) H = standing height of water (feet)

Depot Avenue Windsor, Vermont 04-224488 Table 1 Summary of Volatile Organic Compound in Groundwater

Part	0.122.100										in Grou	ndwater											
Part		n-Butylbenzene	tert-Butyl Benzene	4-Chlorotoluene	Isopropylbenzene	1,2-Dibromo-3-chloropropal	ne 1,1-Dichloroethene				Ethylbenzene	4-Isopropyltoluene	Naphthalene	n-Propylbenzene				1,2,3-Trichloropropane	1,2,4-Trimethylbenzene		Vinyl Chloride (VC)	m,p-Xylene o-X	(ylene
Part		nt													ug/L								g/L
Part	Preventive	•													0.5		-	,		2	_		
14 15 15 15 15 15 15 15						0.2	- United States			0.0					0.0		0.0		2.0	-	0.0		
Part		_																					
Part																							
Column		_																					
Marie Mari		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2	NS	ND	NS	NS	NS	NS	NS	NS
Part															2.0								
Part	7/11/1996														_								
Column C		<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	1.0
Part	7/11/1996																						
Marie Mari		11.0	11.0	41.0	41.0	42.0	11.0	41.0	11.0	10.0	11.0	41.0	11.0	41.0	11.0	1110	11.0	11.0	*****	***************************************	41.0	12.0	
March Marc		_																					
		.50	.5.0	.5.0	5.0	.50	.5.0		.5.0	7.7	.50	.50	-50	.50	0.0	.5.0	40	.5.0	.5.0	.50	20	.5.0	
Care																							
March Marc		<5.0	5.3	<5.0	<5.0	<5.0	<5.0	7,800	120	<5.0	<5.0	<5.0	<5.0	<5.0	1,100	<5.0	960	<5.0	<5.0	<5.0	160	<5.0	:5.0
Maria Mari		<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	1.0
March Marc		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	5.0
State Stat		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	160	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	140	<5.0	41	<5.0	<5.0	<5.0	<2.0	<5.0	:5.0
Second Column C		<200	<200	<200	<200	<400	<200	3,050	<200	<100	<200	<200	<200	<200	9,240	<200	1,460	<200	<200	<200	<200	<400 <	200
Part	6/20/2007																						
Second S																							
Color Colo		<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	1.0
Company Comp		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	5.0
Composition		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	:5.0
Composition	GAI-6	45.0	4E O	4E 0	-5.0	-50	4E 0	44	-E O	45.0	-E O	45.0	-50	45.0	12	-E O	4E 0	45.0	-E 0	4E 0	-2.0	-E O	-E 0
CAN COUNTY COUN		43.0	<5.0	₹5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	45.0	<5.0	₹3.0	12	<5.0	₹5.0	<5.0	<5.0	<5.0	₹2.0	<5.0	5.0
Composition		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	17	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	<5.0	5.2	<5.0	<5.0	<5.0	<2.0	<5.0	5.0
GORDON C.		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	5.0
1192005		<5.0	<5.0	<5.0	<5.0	7.9	<5.0	<5.0	<5.0	7.7	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0	:5.0
\$\overline{\pmathcal{Barrier} \begin{arrier}{ c c c c c c c c c c c c c c c c c c c		NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	5	ND	ND	NS	NS	NS	NS	ND	ND
11/02/05	6/21/2007																						
2/1/2016	11/9/2005																						
119/2005 NS																							
2/1/2016	11/9/2005																						
9/2/2005 NS																							
6/21/2007	•	NS	NS NS	NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1	NS	NS	NS	NS	NS	NS NS	NS	NS
9/2/2005 NS	6/21/2007	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	<5.0
6/21/2007 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5		NIG	NS	NS	NS	Ne	Ne	NS	NIC	NC	NC	NS	NIC	NS	56	NIC	NIC	NS	NG	NIS	NS	Ne.	NS
	6/21/2007	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	8.6	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0 <	<5.0

Depot Avenue Windsor, Vermont 04-224488											Table Summary Summary Volatile Organic O in Ground	y of Compound											
WELL ID Sampling Date		n-Butylbenzene	tert-Butyl Benzene	4-Chlorotoluene	Isopropylbenzene	1,2-Dibromo-3-chloropropane	1,1-Dichloroethene	cis-1,2-Dichloroethene (DCE)	trans-1,2- Dichloroethene	trans-1,3- Dichloropropene	Ethylbenzene 4	l-Isopropyltoluene	Naphthalene	n-Propylbenzene	Tetrachloroethene (PCE)	Toluene	Trichloroethene (TCE)	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5- Trimethylbenzene	Vinyl Chloride (VC)	m,p-Xylene	o-Xylene
J-GW-STA2																						+	
9/2/2005		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	61	NS	NS	NS	NS	NS	NS	NS	NS
6/19/2007		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	19	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	64	<5.0	6.5	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
J-GW-STA3 9/2/2005		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	17	NS	NS	NS	NS	NS	NS	NS	NS
6/19/2007		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	6.5	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
0/13/2007		νο.υ	40.0	νο.σ	40.0	V0.0	VO.0	5.5	νο.σ	40.0	40.0	40.0	νο.σ	40.0	0.0	νο.υ	40.0	70.0	VO.0	VO.0	42.0	10.0	νο.σ
J-GW-STA4																							
9/2/2005		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.3	NS	NS	NS	NS	NS	NS	NS	NS
6/19/2007		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
KAS-1																						+	
2/3/2016		<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
MW-102																							
6/20/2007		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	14	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
MW-202																						+	
8/17/2005		NS	NS	NS	NS	NS	NS	2.500	50	ND	ND	NS	NS	NS	2.700	ND	470	NS	NS	NS	ND	ND	ND
9/14/2005	<u> </u>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
6/21/2007		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	810	18	<5.0	<5.0	<5.0	<5.0	<5.0	1,300	<5.0	230	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
MW-203																						+'	
6/21/2007		<5.0	<5.0	9.1	6.2	14	<5.0	<5.0	<5.0	<5.0	24	6.1	270	6.4	<5.0	<5.0	<5.0	6	190	76	<2.0	70	<5.0
0/21/2007		\3.0	~3.0	3.1	J.2	14	~5.0	\3.0	\\ \ 0.0	~5.0		V.1	270	V. 4	~3.0	₹5.0	~5.0		190	70	\2.0	 '" 	₹5.0
																						1	

NOTES:
All measurements referenced to an arbitrary datum of 100 feet.
NS = Not Sample
NA = Not Analyzed
All results recorded in micrograms per liter (ug/l).


Bold-faced yellow highlighted values indicate concentration in excess of Vermont Primary Groundwater Quality Standards - Enforcement Standards

Bold-faced green highlighted values indicate concentration in excess of Vermont Primary Groundwater Quality Standards - Preventative Action Limits

2/1/15 04-224488.00 Windson GWS Mos fruck, drive to site. 9:55 BC + 55h an-site set up @ (BM-5 Cal 451: 2-pt pH -> pH 10 Buffer, geo tech LOT # ZAK399, pH 7 Buffer, gestech LOT #5AD829, Canductivity Stop geofech, lot # 564560, ORP std geotech lot # 34 E 309, DO, DI BO. 34.53-26.1 = 8.43 8.43/2 = 4.215 The 4.215 + 8.43 - 12.64' > Set tube 26.1 = 30.315 8.43 x 0.163 = 1.37 gal 1.37 x 3 = 4/2 gal (3x well vol) A see low flow field works heets used OD FEP Nohal Land LOPE Luting for sampling.

(geotect COT # 2156472)

+ lahel

	. *.									
1. 40° - 10°					1 1			*-		·
· wife f					Î				,	
						,	1 d	N. 4		1.1
:							teet	feet	; }	$D \leftarrow A$
	Present	Absent	Destroyed	Not Located	TOVs	 	DTW	DTB 33	Comments / Condition	Raisel
CBN-4	V		da.		<u>~</u>	CONTRACTOR	OKA 232		"Opuld not remove lid	
CBM-5	V		~		ا به		M. 1	14.51	cannot Seven He Raised well	as face
0 BM-3					0.0		26.7	34.7	Kaisfd Well	m/
CBM-2			<u></u>	Y=4	0.0		26.8	30.0 95.65	Couldnot Screen T Raised Wey	V
CBM -		-		- ~	0.0		25.5	70 U	1 Well	
J-GW-DEP 8	V	10	-	-	0.8	. 200	25.5	27.4	Hong Depot rd	100
WW-308				-	- (AR 1)	<u> </u>	6-4-5	- 1/V 11 / V	Destroyed	
1-6W-17-68/	lot 2 V			- 7 7.7	0.0	<i></i>	8.45	15.62	alman / Circle III	The state of the s
J-6W-AP+2		6-m		-	0.0	J	220		along Sidewalk	Pinched DVC @ 0.5)
561 32 35	V.		. —			٠ .	7.25	14.7	Easterer Well	Pinched pvc @0.5 feet, not probed
Gai 350	V	***************************************			arus.		9,6	25,4	Mestern Wald	
17, Gai - 25	V						6.6	13.45	BUKEN CONFE	
A CALDON CALD	D -	<u> </u>	*****	V			<u>ب</u>	and the second	DINE	0 100
T Kas-1	V/	Base .				4	7.5	8.5	located I'W BY	ochy of foracing
= Gal-10 - Gal-15		ores 1		. 6==	. 02-		· 0.3 7.53	231	Stilly omit you	Mulb has a state of a state
- Gal-15	<u> </u>		GS260arun.	Garage			7,53	14.7	BACKING ANTON	grace organ omagno.
GC-MW-X			<i>g</i>			p. ett.		(1.05	pry well	grade Bright omagination sediment
	ļ						\			-
	ļ						28.4	ft	CBM-4	<u>.</u>
			Materia	1180001	endl. 1	+ ubina	30.3	71	CBM-5	
			/ VALLEY GU	usage: [Chau al	1.1011	30.45		CBM-3	
	—				- En	wen	28.5		CBM-1	1)
	 		1			6.6	28.5 32.3	1	CBM-1	
	1		Dovex i.	mately & C	t of	, , ,	27.46	,	J-GW-DEP 8	
	1	(tubi	mately 8 f	se	204.48	27,05		I DEP OIL] /
7	2016	,		I Jeach w	1e 11		L		J-GW-APt 2	
2	0			8×14	= 117	(t)	ાપ		J-GW-AP+2)
V							10.7		11 1863	
	1			4 1 th			7.75		GAI 3D	
1 lotal	1et	J NO	Ubino	1. Udt	777F	प्रथा ३ ११	10.03		GAT IS GAL-25	-)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>		J	-			 	GAT 10-1	
	<u> </u>	ļ			 		MW 8		MAT A	
	1	\uparrow					16.2	W-	GAT-1 D GAT-1 S	-
	$+ \sim$	+	 		<u> </u>	£ -> ·	292.	V.	- DAT . The	\bigvee
	 	<u> </u>	:	Total	+ect	07	<u> </u>	77		1)
			 	1	l .	d tubing	<u> </u>	 		1)
	<u> </u>		7	1	_)	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
<i>(</i>				4	ſΝ	well =	•			
			(Does	not in	clude 8	of tub	e above	each well	
				\ X	· v - · ·		a ! AA SA			

Cito	los les	r GWS			Wall ID	CMB-5		
Site: Project No.:		14488.00		-	Well ID: Sample ID:	CMB-3		
	2/11	. <u>/ 7 00 (UC</u>	<i>)</i>		Sample ID;	- CM15-1)	
Date:	7202	svercast		-	Sampler:	JSK, &		· •
Weather:	<u> </u>	7-0 -3 Ca-3 C		-				
Well Condition Obs	ervations				Well Volume Calcu	dátions		
Protective Casing:	metal_					Well Diameter:	2"	
Lock:	Broken	/ /				Depth to Water:	26.1	
Label: Surface Seal:	NA	(rel				Total Depth: Volume Purged:	3453'	
PVC Well Casing:	7077					v ommo i mgcm	2	- 41.7 gal
· · · · · · · · · · · · · · · · · · ·	1000	· •			Pump Start:	10:29	(CC)	
	ДЕРТН ТО			SPECIFIC	DISSOLVED		· · · · · · · · · · · · · · · · · · ·	
TIME	WATER	Ħq	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY	
	(feet)	(SU)	(C)	(uS/em)	(mg/l)	(mv)	(NTU)	
10:32	26.1	6.71	11.55	39 <i>5</i>	7.75	-240.3	2.1	
10:37	26.21'	6.50	11,23	370	7.79	- 225.6	2.0	
10:42	26.20	6.77	11.19	343	7.29	- 236.9	4.6	
10:47	26.16	7.00	11,14	334	6.85	-246.4	5.1	
10:52	26.14	7.74	11.07	322	6.52	-2538	4.2	
10:57	26.15	7.45	10.95	317	6.37	-259.4	3.4	
11:02	26.16	7.50	10.72	317	6.30	-254,1	2.1	
11:02	26.15	7.70	10.87	315	6.00	- 261.9	2.4	
11:12	26.15	7.69	10.87	314	6.10	-262.2	1.0	
11:17	26.16	7.72	10.80	314	6.12	-264.6	1.1	
					•		,	
			-			,		

Stabilization Criteria	Drawdown < 0.3'	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%	
		···			······································		A SAMESAN SAME	
Sampling/Purging E			, Jacobs Anna Cara Salabertan]	T -1	(C	· · · · · · · · · · · · · · · · · · ·	
Samping/A til ging i	Water Level Meter:	Gentech 1-	Probe #368	7	Laboratory Analys Container	Preservative	Analysis	
pH/S.C./Dis	solved Oxygen/ORP:	YS! 05E	2343 45		3x VOA	HCi	VCC 8260	
	Turbidity:	114CH TO	rbiolimeter Z	100 P				
	Pump:	spector for	eld gro		WINGS CO. TO SEE STATE OF	SEAGUIT.	MANUFACTOR '. CONTRACTOR	
		nonel 7	7200-52			30,00		
				•]	Sample Time:			
Comments:	Clear	Durgema	fer no	odurs, o	o sheen	~ .		
· -		1	1					

						4	
	Pump:	Spectra	field Pro	77200-52		Dagger and the control of the contro	
pH/S.C./Di	ssolved Oxygen/ORP: Turbidity:	GEDTER Huch LI		556 MPS ometer	3X VOA	HCI	VOC 8990
npling/Purging	Equipment Water Level Meter:	Heron	DIPPERT	T I	Laboratory Analyse Container	s/Containers Preservative	Analysis
			and the state of t	<u> </u>	48 (25)		
bilization Criteria	Drawdown < 0.3'	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
					· · · · · · · · · · · · · · · · · · ·		g M
					ν		
	:	····		-7			
	1	-, -,			V. V		
11:31	23.1	5.04	10.47	533	6.22	942	2.08
1:26	23.0	5.0	10 61	534	6.34	101.2	2.14
1221	23. 1	5.06	10.63	543	6.53	1037	3.45
11/6	23.2	464	1089	555	6.74	1718	1/77
1 1	23.2	(SU) 4,96	(C)	(us/cin) 569	7.12	(nrv)	7.91
TIME	WATER	рĦ	ТЕМР	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
	рертн то	ale vena		SPECIFIC	DISSOLVED		J
PVC Well Casing		y "	KLUMANIA		Pump Start:	U: 11	7
Surface Seal	CaD	l, on Cap)			Volume Purged:	
Lock: Label:	- '-	roken		-		Depth to Water: Total Depth:	0
I Condition Ob Protective Casing		Raised.	2" well		Well Volume Calcu	latious Well Diameter:	<u>ک</u> "
		J	J	- , ,			
te: eather:	50%	E Cloudy	wildu		Sampler:	Diogram)
oject No.:	04-2	7498.0	7 0		Sample ID:	Ralla	

Site:	winds	- Gws		_	Well ID:	CMB.	- 3
Project No.:	04- 20	24488.0	0	<u>. </u>	Sample ID:	CM	3-3
Date:	2/1/1	16			Sampler:	JSK	
Weather:		Overcas	}	_			
11000000				_			
Well Condition Ob:	servations	· · · · · · · · · · · · · · · · · · ·		1	Well Volume Calcu	dations	
Protective Casing:	Metal	2				Well Diameter:	2
Lock:	1010.					Depth to Water:	- D - V -
Label:		-3		_		Total Depth:	
Surface Seal:					,	Volume Purged:	~ 1.5gel
PVC Well Casing:				<u>]</u> .	Pump Start:	11:52	1
					1 temp start.	1 11.2 6	<u> </u>
	ДЕРТН ТО			SPECIFIC	DISSOLVED		
TIME	WATER	рН (SU)	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
	(feet)		(C)	(uS/ent)	(mg/l)	(mrv)	(NTO)
11:57	28.50	7.47	9.94	<i>37</i> 7	6.54	- 762.3	39.4
12:02	28.50	7.63	9.78	573	5.45	-266.8	27.8
12:07	28.46	7.64	9.76	571	4.55	-272.4	18.1
12:12	28.48	7.54	9.81	570	4.38	-272.9	14.8
12:12	28.45	7.51	9.90	568	4.26	-273.0	11.4
12:22	28.46	7.48	9.94	569	4.29	-274.8	9.6
	,		*				
	•						
				1			
					*		
••••							
Stubilization Criteria	Drawdowu < 0.3*	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
				-			
· · · · · · · · · · · · · · · · · · ·	ļ., <u>.</u>					400	
Sampling/Purging I	Equipment	Edvart/modellist	o comments	1 1	Laboratory Analyse	es/Containers	
	Water Level Meter:	Geofech 1-	Probe #36	39	Container	Preservative	Analysis
pH/S.C./Dis	ssolved Oxygen/ORP:	12.	2343 AD	-	3× VOA	1741	NOC 8260
	Turbidity: -	HACH TU	motivate	21009			
~~~~~~~~.	Pump:	spectra +	reld pro	] .		·	- Walter Carrier Carri
		Mode)#	77200.50	<u>.</u>			1
			•		Sample Time:		
C		lear ou	rato	aduse -	A CL AA		
Comments:	· <u> </u>		J\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	۱۷ ر ۱۷۰۰ می	~ > heep	·	-
	-7V	rbiolity w	of Stable	odurs, n	below	10 NTU	
•	0-	1	\ a				-
	Sa	my in of	me.				

Site:	Windsor	VI. Del	M S.F	_	Well ID:	CBM-	7
Project No.:	04-2	MALL		_	Sample ID:	CBM	- 2
Date:				_ /	Sampler:	Brud	C
Weather:	Cloudy	45°F	· · ·	-	• • •		
Well Condition Ob		22-23-2	<del></del>	]	Well Volume Calcu	lations	
Protective Casing:	1 43	<u>aised Stee</u>	1, 2"PVC			Well Diameter	84
Lock:	# 340 M as	1		e		Depth to Water	- 9
Label: Surface Seal:	- AM.	- 4 10N	CAP			Total Depth	
PVC Well Casing:	m. Pr	T W T			Ĺ	Volume Purged	1.496
					Pump Start:	D:25	]
	DEPTH TO			SPECIFIC	DISSOLVED		T
TIME	WATER (feet)	ng (US)	TEMP (C)	CONDUCTANCE (uS/em)	OXYGEN (mg/l)	OR <b>Y</b> (mv)	TURBIDITY (NTU)
12:30	720 668	/	11 &	1,27)	115		420
		6. (	(1.2	ld Jd	6.62	989	406
1235	41:5	6.6	1.03	1235	6.24	89.6	69.0
12:40	at.4	6.65	11:04	<u>(239</u>	6.28	87.9	65.1
12:45	27.y	6.61	10.97	1253	5.90	87.0	38.9
12:50	27.45	6.59	11.1	1262	5,73	87.4	27.2
12:55	27.5	6.54	78.01	1381	5.75	87.5	27.1
13:00	27.45	6.49	10.85	1287	5.55	88.4	26.0
						•	
							- 1
<b>b</b>							
							,
· · · · · · · · · · · · · · · · · · ·							
Stabilization Criteria	Drawdowa < 0.3'	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
		4164 "					
Sampling/Purging I	Equipment				Laboratory Analyse	s/Containers	
	Water Level Meter:	Heron Differ	~-		Container	Preservative	Analysis
pH/S.C./Dis	solved Oxygen/ORP:	Geotech '	YSI 556	MPS	3x VOA	- <del>  </del>	10c 259
	Turbidity: Pump:	Hach 2100	Y Turbide	witer =	,		+
	rump:	Spectra Fi	reld-pro #	77200-52			
				•		15:48	1
			- 1		Sample Time:	15.05	]

Comments:	# Market	Markensky	Turbidity	was	initially high, Setting Iprobe	ROE
	J	4 9	Disturbed	While	Setting To Dag	. ~-
	War Sarah				) Theor	•

Site:	h) mels	ior Gu	U.S		Well ID:	CMB.	1
•		24488.0		-		CMB-	
Project No.:	21	1118		-	Sample ID:	( MB-	<u> </u>
Date:	-//	116	, , , , , , , , , , , , , , , , , , , ,	-	Sampler:		
Weather:	Persty	Jums)	, 49°F			JS4_	
Well Condition Obs	tamtuti ou a	The Papart Million	Waste Association	1 ·	Well Volume Calen	1-41	
Protective Casing:	meter	€	1.	İ	Wen vonnige Calcit	Well Diameter:	2 "
Lock:	Broke	in				Depth to Water:	29.1
· Label:	under	Cap				Total Depth:	35.65
Surface Seal:	NA	cap				Volume Purged:	~ 1.25 90
PVC Well Casing:		-					
					Pump Start:	12:55	
13h 7000C	<b>ДЕРТН ТО</b>	**************************************		SPECIFIC	DISSOLVED		
TIME	WATER	Нq	ТЕМР	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
	(feet)	(SU)	(C)	(uS/em)	(mg/l)	(mv)	(UTV)
13:00	29.0'	7.59	11.18	1611	7.34	-752.5	6.8
13:05	29.14"	7.50	11.15	1626	7.21	-252.5	3.8
13:10	29.08	7.46	11.12	1629	7.00	- 752.2	3.4
13:15	29.09'	7.47	11.14	1634	7.01	-251.4	3. 8
	0.7501			, , , , , ,			
	W-1-14-0						
,							
	F						
							**
					<b>9</b>		
							4. j. i
Stabilization Criteria	Drawdown < 9.3'	-H- 0.1 units	3%	3%	10%	+/- 10 mv	10%
		_					
			<u>.                                    </u>				
Sampling/Purging E	quipment				Laboratory Analyse	s/Containers	
	Water Level Meter:	Gestech	1-probe #.	3G87 .	Container	Preservative	Analysis
pH/S.C./Dis	solved Oxygen/ORP:	431 051		_	3x 000	Hel	voc 8760
	Turbidity:	HACH T	ir biclimeter	21005	"		
	Pump:	specton fi	elect 710				. chilling bases
		medel #	7700.57		Sample Time:	13:20	
				۱			
Comments:		Clear of	enge, v	v oelors	, no sh	كخب	
-			-			-	

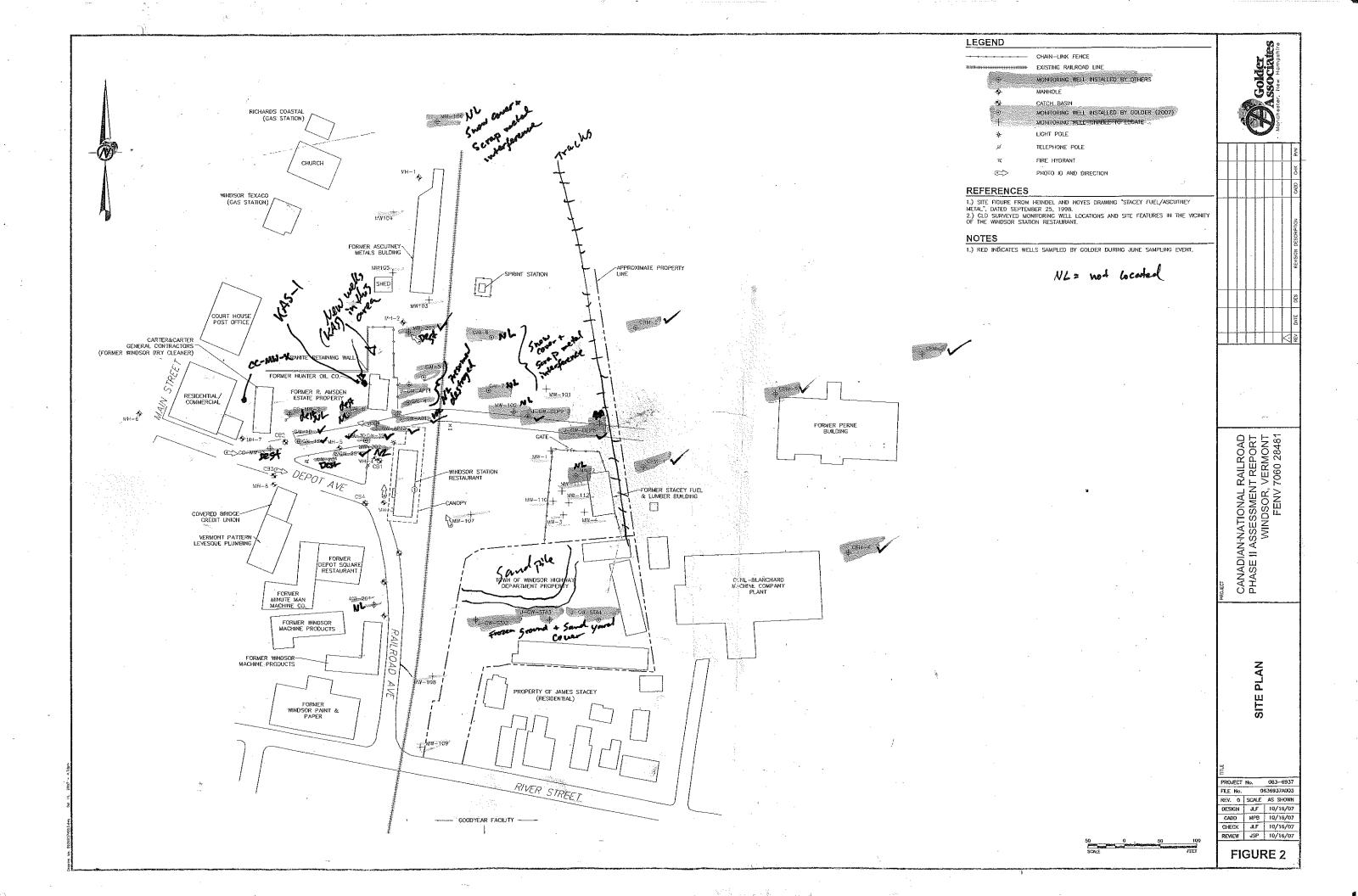
Site: Project No.: Date: Weather:	Clarg 04-7. 7/1/3	24488 216 4, Windu	Depot S	<u>.</u> t - -	Well ID: Sample ID: Sampler:	J-GW- Brad	-GW-DEP 8
Well Condition Ob Protective Casing: Lock: Label: Surface Senl: PVC Well Casing:	On Pi Well cur	in-road	,		Well Volume Calc	Well Diameter Depth to Water Total Depth Volume Purged	29,4
				<u></u>	Pump Start	Potts 13	3:35
TINE	DEPTH TO WATER (feet)	pH (SU)	TEMP (C)	SPECIFIC CONDUCTANCE (u8/em)	DISSOLVED OXYGEN (mg/l)	ORP (hav)	TURBIDITY (NTU)
13.40	25.8	6.42	11.24	1017	52.2	[[3.8]	17.2
13:45	25,5	6.44	11.22	1036	5.27	93.4	7.82
13:50	25.5	6,45	11.07	1075	5,25	81.8	3.39
13:55	25,45	6.41	W.05	1076	5.64	76.9	2.23
(५००	25,45	6.36	10.97	1074	5.54	74,5	8.1
					•		
Stabilization Criteria	Drawdown < 0.3'	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
						- another	
Sampling/Purging E	quipment Water Level Meter;	Horas Mane	70.00	,. [	Laboratory Analyse		
pH/S.C./Diss	solved Oxygen/ORP: Turbidity: Pump:	Geotech Inch 21009 Spectra fil	Turbidom	nps uter 17200-52	SX VOA	Preservative	Analysis VOL 8240
Comments:	Unable	to stal		urbidity,	Sample Time:	14:05 er, belo	w 10 NTU 6 Sample to

Site:	Winder	- Gus			Well ID:	5-64	2- DEP9	
Project No.:		24488.00			Sample ID:		DEP9	
Date:	2/1/			-	Sampler:	55 K	<u> </u>	
Weather:	- con the	Sum,	48°F		nampici .			
mendier.	700	,	7 6 7					
Well Condition Obs					Well Volume Calcu	dations		
Protective Casing:	matal					Well Diameter:	<i>j</i> "	
Lock: Label:	NA tog iv	well				Depth to Water: Total Depth:	28.5	
Surface Seal:		ober gashe	£			Volume Purged:	4 1.2 gal	
PVC Well Casing:	~			<u> </u>	t			
		•	,		Pump Start:	13:40		
	DEPTH TO			SPECIFIC	DISSOLVED	\$		
TIME	WATER	pH (SU)	TEMP (C)	CONDUCTANCE (uS/em)	OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	
13:45	(feet) 26.0°	7.63	11.7	935	7.17	-261.4		
13:50	26.0'	7.67	10.90	924	6.73		3520	
	906.U	1				-760.5		
13:33.	26.0	7.67	10.73	953	6.34	-258,7	1	
14:00	26.0'	7.74	10.74	979	6.09	-750.Z	7.1	
14:05	26.0	7.75	10.71	1002	6,00	-250.B	4.1	
14:10	26.0	1.82	10.66	1029	5.58	-525'0	2.7	
,			z +			•		
			•					
			-		,			
	,			,	,			
					<u> </u>			
-			•				· ·	
Stabilization Criteria	Drawdown < 0.31	+/- 0-1 units	3%	3%	10%	+/- 10 mv	10%	
C 12 75 T	·		MATTY W		[	<i></i>		
Sampling/Purging E	Water Level Meter:	Geefech 1	-probe #	3687	Laberatory Analys  Container	Preservative	Analysis	
pH/S.C./Dis	solved Oxygen/ORP:	YS1 05 5	2343 AD.	,	3x Ve.A.	Hei	voc 8260	
	Turbidity:	144CH TO	rhelimeter	2100p		·		
Contract Received Contract Con	Pump:	Sporter Li	elet 200					
		model #	77706.52		Sample Time:	14:12		
					Cambie THIE:	1 1 (31)	·	
Comments:	Initia	e sily	Zurge.	then ebe Eurbidût	ar voo	dors nos	w 10 NTU Sample	
	UNabl	e to sta	rpélise.	turbidut	y how	ever, belo	m 10 1110	a
-							Sample -	time
							Air	-, -,

Site:	Windson	c GWS			Well ID:	5-64	1-APTZ
Project No.:	04-2	24488.00			Sample ID:		U- APT2
Date;	2/1/	116			Sampler:		
Weather:		Suny	48°F	***		35K	
	1000	d	, ( )	<del>-</del>			
Well Condition Ob				]	Well Volume Calcu	ılations	
Protective Casing:	metal					Well Diameter:	1 84
Lock:	NA	-				Depth to Water:	1 0 - 2
Label:	#V 0-1	present					~15 es+*
Surface Seal: PVC Well Casing:	9-2	م ام د	1000			Volume Purged:	2.0
TTO Well casing.	1 / 2	i, pinches	((0,0)	1	Pump Start	14:40	
· · · · · · · · · · · · · · · · · · ·	ретн то	<u> </u>		SPECIFIC	DISSOLVED		
TIME	WATER	. PH	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
**************************************	(feet)	(SU)	(C)	(uS/em)	(mg/l)	(mv)	(NTU)
14:45	NA	8.08	11.4	1457	1.88	- 281.8	19.2
14:50	NA	8.19	11.48	1459	2.37	- 295.1	79.6
14:55	NA	8.39	11.58	1488	1.25	- 337.6	28.5
15:00	NA	8.37	11.66	1458	6.39	- 323.0	17.7
15:05	NA	8.43	11.68	1456	0.62	- 337.4	7.6
15:10	NA.	8.44	11.67	1455	0.94	- 331.0	3.9
15:15	NA	8.51	11.40	1455	0.50	-345.5	0.9
15:20	NA	8.47	11.49	1452	0.34	- 328. 8	0.5
15:25	NA	8.46	11.44	1452	0.39	- 350.7	0.9
15:30	NA	8.48	11.38	1452	0.39	-343.9	\$0.8
				:			
					,		
tabilization Criteria	Drawdown < 0.3†	+/- 0.1 nuits	3%	3%	10%	+/- 10 mv	10%
	· ************************************						
ampling/Purging I	<b>^</b>				Laboratory Analys	es/Containers	
-11/0 C /D'	Water Level Meter:	OCOPCO-1	1-probe #	3689	Container	Preservative	Analysis
prv8.C./Dis	solved Oxygen/ORP: Turbidity:		6:01meter	71060	3x Vod	He(	noc 8560
	Pump:	Sperlya A	old Pro				
		leandel	# 12700 e	] ~7		<u> </u>	<u> </u>
		44-00-CV /	rrrw.s		Sample Time:	15:35	
C	مدر بلا	ass.	الممام محد	@ 2 4 4	Ca 1		
Comments:	1- Drobe	USpal	heda -	ح اعدال	COLCIA	aonoroe	
	date 1	o set .	hobbus.	- W/	( a children		•
,	A Court was		· · · · · · · · · · · · · · · · · · ·	•			
	Der al a card	le-	<b>A</b> ( .			÷	* *
	1-7-20	" genera	sey clear	; with s	mad black	Saule to	
		Jeron		; with s	mad black	particular	tes

3 sample ) @ Sample Ruent

	LC	W FLOW (	ROUNDWA	ATER SAME	PLING FIEL	D FORM		
Site:	DoPat	St W	indsor 1	17	Well ID;	J-GW	- Apt 3	
Project No.:	\4. 2 \	4488.00	CAND SOL /	ł (	Sample ID:	J-GW-	APTS	<del>-</del>
Date:	7/1/2	2016	<u></u> .	5	Sample 10;	Rad	C	_
Weather:	Cloud		dy 45° F	- •	sampler,		<b>'</b>	
meather,		rali no rest	on to the	-				_
Well Condition Obse	ervations				Well Volume Calcu			]
Protective Casing: Lock:	in- 100	d Steel				Well Diameter: Depth to Water:	8.45	-
Label:	Ow.	WALL C	u P			Total Depth:	- V	
Surface Seal:	0/0%	- 4 4	well cap			Volume Purged:	~ 5~	1G
PVC Well Casing:		/ tr	<b>■</b>	, w		14:45	7	:
					Pump Start:	1 4:45		,
	рертн то	_		SPECIFIC	DISSOLVED			
TIME	WATER (feet)	рН (SU)	TEMP (C)	CONDUCTANCE (uS/em)	OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	
14:50	ন্ত.45	L75	11.25	21711	1.13	83.0	auu	
1 1		185	11 76	7000	617		777	
4:55	9.5	6.00	11.27	4010	3:17	45.5	121.	
(5.00	9.65	16.87	11.30	2049	6.85	37.6	91.1	1
15.05	9.4	6.85	11.38	1995	3.52	327	26.3	
15:10	9,4	6.82	(1.3	1975	3,45	32.2	2400	
1515	9.3	6.85	11.15	(960	4.01	31.2	~700	-lifted turing
12:30	9.3	6.85	10.98	1953	3,81	30.5	744	~ 1 toot
1505	93	6.84	10.dg	1945	3.45	29,3	763	
10.57	97	486	10.9	1917	3,25	27.7	454	
1935	<u> </u>	6.85	10,91				367	·
	<u> </u>	6.00	10,01	1912	3:50	27.2	301	
1540	93	6.05	10.20	1965	3,41	27.0	,	
15.45	9.3	6.03	18.0)	1901	3,24	26.8	321	
5.50	9.3	6.86	10.58	1890	3.11	25.9	123	Could not
								Stabilize Turbidiby
Stabilization Criteria	Drawdown < 0.3	+/- 0.1 anits	3%	3%	10%	+/- 10 mv	10%	Turbidiba
						I	L	1
Sampling/Purging E		li	200		Laboratory Analyse		1	
pH/S.C./Diss	Water Level Meter: olved Oxygen/ORP:	Transit Pr	152 556	Mag	Container  3X VOA	Preservative	VOCT260	
	Turbidity:	Hach 2100	P Tur bide	meter	W/\ Woft			
on the same of the	Pump:	Spectra	feld-prod	#77200-51	,7-in		A.D	
		•	•	1		- B @	·	
			•	_	Sample Time:	· · · · · · · · · · · · · · · · · · ·	\$	
Comments:	Tur	bidity	not st	abiliald	. Iprob	remidist	urbed B	oe at 15:10
-					1	y	-	-
15.62							<del>-</del>	
X u	-						,	
J 0,70	-/_ 158	3.58°	5 - 165 2	12.05				
7.1	1/2= 3	76	4 2 . x .	-• -	N.			
	/ V-	~ 2.2				•	2.0	•


Site:	wondgor	- GWS		_	Well ID:	G-41-3	5 5==	~
Project No.:	04-22	4488.00		· -	Sample ID:	GAI.	25	
Date:	2/1	/16			Sampler:	SSK		
Veather:	Partl	y Suny	, 450=	_		-	-	
ell Condition Obs					Well Volume Calcu	dations		
Protective Casing:	meter	<u> </u>				Well Diameter:	2	- 4
Lock:	NA	1.1 8.8	<b>L</b> . /	W. 76. #		Depth to Water:	14.3 11.5gol	<b>O</b>
Label: Surface Seal:		bet on Cap	Dasen en	site plane		Total Depth: Volume Purged:	74.5	
PVC Well Casing:	yes			<u>.</u>	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	v offinite F tirgen:	~01. 8 gard	
		230-20			Pump Start:	15:45		
	рертн то			SPECIFIC	DISSOLVED			
TIME	WATER	рH	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY	
	(feet)	(SU)	(C)	(uS/cm)	(mg/l)	(mv)	(NTO)	
15:50	8.08	8.25	11.11	1781	2.75	-318.7	13.7	
15:55	3×327	8.32	11.11	1792	0.86	-3073	1.3	
16:00	\$.25	Q.33	11.09	1792	0.78	-310,4	9.4	
16:05	8.30	8.34	11.10	1792	0.70	- 3 23.4	12.0	
16:10	8.31	8.35	11.13	1796	0.60	- 323.8	8.84	
16:15	8,32	8.37	lletf	1787	0.59	-331.8	6.08	
16:20	8.32	8.40	11.13	1783	0.52	-329.6	5.04	
			-					
	•							
	* * .							
			12 1 10000					
		, -			-			
ıbilization Criteria	Drawdown < 0.3	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%	
	<del></del>							
mpling/Purging E	anipment	(COS)		]	Laboratory Analyse	es/Containers		
- Franklin verbreig 13	Water Level Meter:	Geofech l-	probe # 3	685	Container	Preservative	Analysis	
pH/S.C./Dis	solved Oxygen/ORP:	YS1 058	2343 43		3× 1004	Hel	VBC 8260	
	Turbidity:	A ACH fur	bidineter.	2100P				
We was ormal	Pump:	Spectore of	iteld fro	]	THE PARTY OF THE P			
		mode 1 #7	7200.50	,			•	
					Sample Time:	16:25		•
C		lear pur		and	al. a.e.	11L/	. L chl.	i>0
Comments:	<u> </u>	car pur	ge, wo	oolers, w	sueen	Wanu Callow	e to Stabil	I IV
-		TOUS.	: 0.0		135	i land	TO DELO	W IU

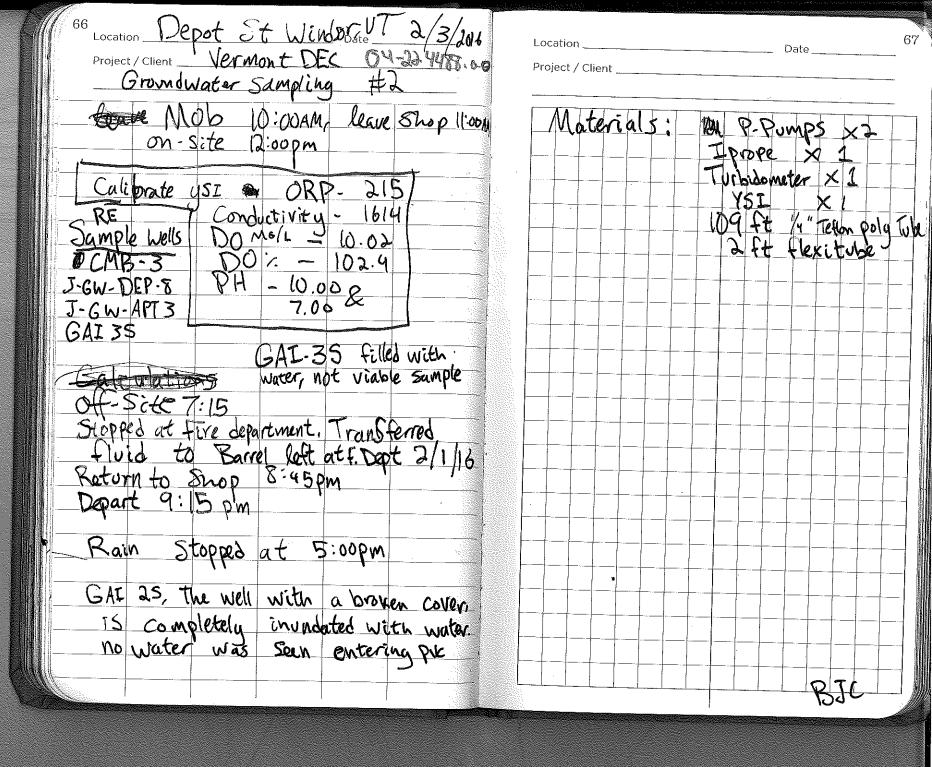
Site:	Windson	, VT. 1	Depot St	<u>,</u>	Well ID:	<u>GAI</u>	-25
Project No.:	04-23	LY488. 0			Sample ID:	GAI	25
Date:	2/1/20	016		_	Sampler:	Brad	<u> C.</u>
Weather:	Cloudy	, Windy	40°F	<u></u>			
	Λ.	J	Managara	<b>a</b> .			
Well Condition Obs Protective Casing:	ervations	, th - arev	ia Å		Well Volume Calcu	lations Well Diameter:	211
Lock:	N	1 19 39.50	71 G			Depth to Water:	6.6
Label:	N					Total Depth:	13.45
Surface Seal:	Bra	KIM				Volume Purged:	2 O
PVC Well Casing:		Yes	*	]· 	Pump Start:	16:25	] ·
****	рертн то			SPECIFIC	DISSOLVED		
TIME	WATER	pΠ	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
1	(feet)	(SU)	(C)	(uS/em)	(mg/l)	(mv)	(NTU)
(6:30	6.6	6.63	4.47	1219	.70	90.3	5.00
16:35	6.6	6.85	9,99	1750	56	56.3	6 2
6:40	6.45	6.91	9,85	1991	.67	40.7	4.3
16:45	6.4	6.92	9.79	1991	. 53	31.3	3.3 <b>8</b>
6:50	6.4	6,92	9,75	laal	,66	24.8	3:95
16.55	6.4	ab.93	9.70	1222	.93	22.7	5.24
17:00	6.4	<b>8.93</b>	9,32	1333	1.18	17.9	3,66
17:05	6.4	6.92	9,09	1232	1.58	10.6	5.13
17:10	6.35	6.92	9.05	1235	1.76	8.W	4.20
17:15	6.35	6.93	9.06	1236	1.74	11.0	4.83
17:20	6.35	6.43	9.04	1236	[:23	10.7	4.14
				· ·			86-
itabilization Criteria	Drawdown < 0.31	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
	#01039/CW709FL				and the state of t		
iampling/Purging E	Quipment				Laboratory Analys	es/Containers	
****	Water Level Meter:		pper T		Container	Preservative	Analysis
pH/S.C./Dis	solved Oxygen/ORP: Turbidity:	Geotech Y	SE SOPA	175	3X VOA	HCI	AOC 2500
**************************************	Pump:	Spectra fr	eld-Pro#7	7200-52			
			· · ·	· · · · · · · · · · · · · · · · · · ·	Con-1-T	1715	
	CI.		•A -	ا لمنه	Sample Time:	1 b d dei	D
Comments:	C\ea	r pringle	, vio	o cons,	No She	m	
-				ι.			
		/	•				
6	,6	3,45/	~	10 018			

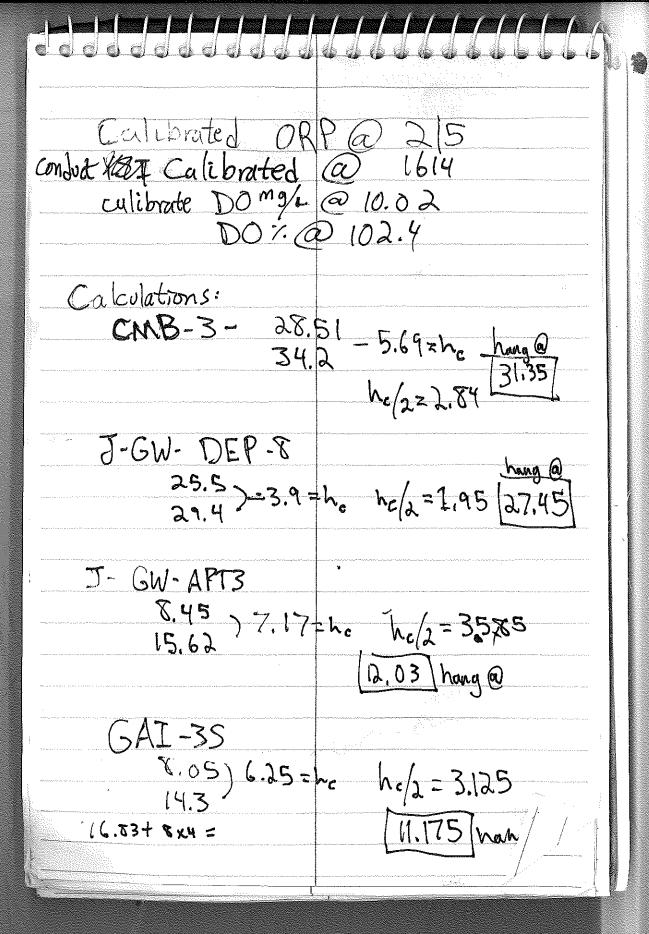
Open	Site:	windse	- GW	5		Well ID:	GA1 -	3D
Comments: Overcost 41% 55h    Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 41% 55h   Conments: Overcost 51% 55h   Conments: Overc	Project No.:	04	-224488.	00	_	Sample ID:		
## Condition Observations   Well Volume Catabalities   Well Dissolver   1   1   1   1   1   1   1   1   1	)ate:	2	11/16			Sampler:		
Protective Casing   Laster   Laster   Laster   Laster   Laster   Laster   Laster   Protective   Laster   Laster   Protective   Laster   Laster   Protective   Laster   Last	Veather:	BU	ercost,	41 of	-	-	55 K	'
Protective Casing   Laster   Laster   Laster   Laster   Laster   Laster   Laster   Protective   Laster   Laster   Protective   Laster   Laster   Protective   Laster   Last			/		_			
Depth to Water   11.6   Total Depth   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9   25.9						Well Volume Calcu		9 %
Total Depth   Total Depth   Volume Purgot	-					,		
Volume Purgot: \( \sigma \) \( \sigma \)   Volume Purgot: \( \sigma \)   Volume Purgo							•	
Promp Start: 186.30  Time Depth of Gib (C) Ground Canner (1861)  (1861) (Gib) (C) (Ground Canner (1861))  (1862) (Gib) (G) (G) (Ground Canner (1862))  (1863) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	Surface Seal:						_	
TIME DEPTH TO WATER PH TEMP CONDUCTANCE ONYGEN (1997) (1971)  (6:35   11.07   8.33   12.04   1343   3.52   -255.7   46  (6:46   11.12   8.38   11.99   1341   3.41   -256.5   39.5    16:45   11.20   8.44   11.93   133.7   3.18   -258.6   26.7    (6:50   11.03   8.5   11.65   1342   3.05   -265.6   3.6    16:55   11.02   8.56   11.55   13.38   2.63   -265.4   34.7    17:80   10.90   8.60   11.51   1344   2.34   -248.1   25.5    17:10   10.64   8.51   11.36   1342   1.68   -291.0   26.1    17:13   10.64   8.57   11.3   1352   1.30   -265.6   27.4    17:20   10.7   8.7   11.33   1357   1.22   -247.2   2.5    17:30   10.7   8.73   11.20   1357   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 3687   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 3687   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 3687   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Milliation Criteria Drumdown (2.3)   44.0.1 with 3%   3%   10%   44.10 my 10%    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   23.1    Mare Level Meteor Geoleck (-proba # 2687   1.03   -255.3   2.03   2.03   2.03   2.0	PVC Well Casing:							
THRE WATER (86) (80) (C) (C) (MSMI) (MSMI) (MP) (MP) (NTU)  (6:35]   10.07					-	Pump Start:	16:30	]
(66) (850) (C) (0850) (C) (0850) (C) (0870) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		DEPTH TO			SPECIFIC	DISSOLVED	,	
16:35   11.07   8.33   12.04   1343   3.52   -255.7   46     16:46   11.12   8.38   11.99   1341   3.41   -256.5   39.5     16:45   11.20   8.44   (1.93   1337   3.18   -258.6   26.7     16:50   11.03   8.5   11.65   1347   3.05   -266   3.6     16:55   11.02   8.56   11.55   1338   2.63   -265.9   34.7     17:00   10.90   8.60   11.51   1344   2.31   -248.1   25.5     17:05   10.82   8.63   11.44   1347   1.92   -291.3   25.2     17:10   16.69   8.51   11.36   1343   1.68   -291.0   26.1     17:13   10.69   8.57   11.3   1352   1.32   -265.6   27.4     17:20   10.7   8.7   11.33   1357   1.22   -247.2   23.1     17:25   10.7   8.73   11.20   1357   1.03   -255.3   23.1     18.60   10.7   8.73   11.20   1357   1.03   -275.3   23.1     18.60   10.77   8.73   11.20   1357   1.03   -275.3   23.1     18.60   10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77   10.77   10.77   10.77   10.77     10.77   10.77   10.77   10.77   10.77   10.77   10.77   10.77   10.77   10	TIME	WATER	pН	TEMP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
16:45 11.20 8.44 (1.93 1337 3.18 -258.6 26.7 16:45 11.20 8.44 (1.93 1337 3.18 -258.6 26.7 16:55 11.03 8.5 1).65 1347 3.05 -266 3.6 16:55 11.02 8.56 11.55 1338 2.63 -265.4 34.7 17:00 10.90 8.60 11.51 1344 2.31 -268.1 25.5 17:05 10.82 8.63 11.44 1347 1.92 -291.3 25.2 17:10 18.69 8.59 11.36 1347 1.68 -291.0 26.1 17:15 10.69 8.59 11.3 1352 1.30 -265.6 27.4 17:20 10.7 8.7 11.33 1357 1.22 -247.2 23.1 17:25 10.7 8.71 11.27 1356 1.72 -286.5 27.7 17:30 10.7 8.73 11.20 1357 1.03 -255.3 23.1 18.20 10.7 8.73 11.20 1357 1.03 -255.3 23.1 18.20 10.7 8.73 11.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.03 -255.3 23.1 18.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.20 1357 1.2	*			(C)	(uS/em)	(mg/l)	(HIV)	(UTV)
16:45 11.20 8.44 (1.93 1337 3.18 -258.6 26.7  16:50 11.03 8.5 1).65 1342 3.05 -266 3.6  16:55 11.02 8.56 11.55 1338 2.63 -265.4 34.7  17:00 10.90 8.60 11.51 1344 2.34 -268.1 25.5  17:05 10.82 8.63 11.44 1347 1.92 -291.3 25.2  17:10 18.69 8.51 11.36 1342 1.68 -291.0 26.1  17:13 10.69 8.57 11.3 1352 1.30 -265.6 27.4  17:20 10.7 8.7 11.33 1357 1.22 -247.2 23.1  17:25 10.7 8.71 11.27 1356 1.72 -286.5 22.7  17:30 10.7 8.73 11.20 1357 1.03 -255.3 23.1  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 44.10 mv 1056  Militation Criteria Drawdowa 0.3 4.0.1 units 356 356 106 1076 1076 1076 1076 1076 1076 1076	16:35	11.09	8.33	17.04	1343	3.52	-255.7	46
16:50 11.03 8.5 11.65 1347 3.05 -266 3.6 16:55 11.02 8.56 11.55 1338 2.63 -265.9 24.7 17:00 10.90 8.60 11.51 1349 2.34 -268.1 25.5 17:05 10.82 8.63 11.44 1347 1.92 -291.3 25.2 17:10 10.69 8.59 11.36 1342 1.68 -291.0 26.1 17:15 10.69 8.59 11.3 1352 1.32 -265.6 27.4 17:20 10.7 8.7 11.33 1357 1.22 -277.2 23.1 17:25 10.7 8.71 11.77 1356 1.72 -286.5 27.7 17:30 10.7 8.73 11.20 1359 1.03 -255.3 23.1  bilization Criteria Drawdows 9.3 4.0.1 with 3% 3% 10% 4.10 mv 10%  bilization Criteria Drawdows 9.3 4.0.1 with 3% 3% 10% 4.10 mv 10%  wadel the first first property of the first f	16:46	11.12	8.38	11.99	1341	3.41	-256.5	39.5
16:55   11.02   8.56   11.55   1338   2.63   -265.4   34.7     17:00   10.90   8.60   11.51   1344   2.37   -265.1   25.5     17:05   10.82   8.63   11.44   1347   1.42   -291.0   26.1     17:10   10.69   8.51   11.36   1347   1.68   -291.0   26.1     17:13   10.69   8.57   11.3   1352   1.30   -265.6   27.4     17:20   10.7   8.7   11.33   1357   1.22   -247.2   23.1     17:25   10.7   8.71   11.77   1356   1.72   -286.5   27.7     17:30   10.7   8.73   11.20   1357   1.03   -255.3   23.1     bilitation Criteria   Drawdown < 0.3'   4.0.1 units   3%   3%   10%   4.10 mv   10%     multing/Purging Equipment   Water Level Meter:   Geodeck   1-proba # 3682   4.64   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.44   4.	16:45	11.20	8.44	(1.93	133 9	3.18	- 258.6	26.7
17:00 10.90 8.60 11.51 1344 2.34 -268.1 25.5 17:05 10.82 8.63 11.44 1347 1.92 -291.3 25.2 17:10 16.69 8.59 11.36 1347 1.68 -291.0 26.1 17:13 10.69 8.59 11.3 1352 1.32 -265.6 27.4 17:20 10.7 8.7 11.33 1357 1.22 -247.2 23.1 17:25 10.7 8.71 11.27 1356 1.72 -285.8 27.7 17:30 10.7 8.73 11.20 1357 1.03 -255.3 23.1  bilization Criteria Drawdown < 0.3' +-0.1 units 3% 3% 10% +-10 unv 10%  mpliny/Furging Equipment Water Level Meter: Gralect 1-proba # 3682 pH/S.C.Dissolved Oxygen/ORP- Turbidity: HACH surfacture for 21007  World # 77200.57  Comments: Clear parge no odors, we shown	16:50	11.03	8.5	11.65	1347	3.05	-266	3.6
17:05 10.82 8.63 11.44 1347 1.92 -291.3 25.2  17:10 16.69 8.59 11.36 1342 1.68 -291.0 26.1  17:15 10.69 8.59 11.3 1352 1.32 -265.6 27.4  17:20 10.7 8.7 11.33 1357 1.22 -247.7 23.1  17:25 10.7 8.71 11.77 1356 1.72 -285.8 27.7  17:30 10.7 8.73 11.20 1359 1.03 -255.3 23.1  bilization Criteria Drawdown < 0.3	16:55	11.02	8.56	11.55	1338	2.63	-265.4	34.7
17:10   10.69   8.59   11.36   1347   1.68   -291.0   26.1     17:13   10.69   8.59   11.3   1352   1.30   -265.6   27.4     17:20   10.7   8.7   11.33   1357   1.22   -277.2   23.1     17:25   10.7   8.71   11.72   1356   1.72   -286.8   27.7     17:30   10.7   8.73   11.20   1357   1.03   -255.3   23.1     whilization Criteria   Drawdown < 0.3'   4-0.1 units   3%   3%   10%   4-10 mv   10%     unpling/Purging Equipment   Water Level Meter   Geolech (-proba # 3682   Container   Preservative   Analysis     pH/S.C./Dissolved Oxygen/ORP   55   0.5   E2343.41     Turbidity:   4ACH   4-10   4ACH   4	17:00	10.90	8.60	11.57	1344	2.34	-768.1	25.5
17:13	17:05	16.82	8.63	11,44	1347	1.42	-291.3	25.2
17:20 10.7 8.7 11.33 1377 1.22 -247.7 23.1  17:25 10.7 8.71 11.27 1356 1.12 -285.8 27.7  17:30 10.7 8.73 11.20 1357 1.03 -255.3 23.1  bilization Criteria Drawdown < 0.3' ++ 0.1 units 3% 3% 10% ++ 10 mv 10%  upling/Purging Equipment  Water Level Meter:  PH/S.C.Dissolved Oxygen/ORP: Turbidity: Pump:  Specker fresh pro  wodel # 77200.57  Comments: Clear parge no odors, we shown	17:16	10.69	8.59		1347	1.68	-291.0	26.1
17:75	17:13	10.69	8.59	11.3	1352	1.32	-265.6	27.4
17:30 10.7 8.73 11.20 1359 1.03 -255.3 73.1  bilization Criteria Drawdown < 0.3' #- 0.1 units 3% 3% 10% #- 10 mv 10%  mpling/Purging Equipment Water Level Meter: Geolech (- Proba # 3689 pH/S.C./Dissolved Oxygen/ORP: YSI 05 E234345 Turbidity: UACH probable for 21007 Pump: Specific field Pro  wodel # 77200.57  Comments: Clear parge no odors, we shown	17:20	10.7	8.7		1357	1.22	-244.2	231
bilization Criteria Drawdown < 0.3' + 0.1 units 3% 3% 10% + 10 mv 10%  mpling/Purging Equipment  Water Level Meter:  pH/S.C./Dissolved Oxygen/ORP  Turbidity: Pump: Specific field Pro  Wodel # 77200.57  Comments: Clear purge no odlors, No shoen	17:25	10.7			1356	1.12	- 288.8	27.7
Inpling/Purging Equipment  Water Level Meter: Geolech 1-Probe # 3682  PH/S.C./Dissolved Oxygen/ORP: YS1 05 E2343 AD  Turbidity: HACH turbidismeth 21007  Pump: Specific freel pro  Wodel # 77200.57  Comments: Clear purge no ocloss, we show	17:30	10.7	8.73	11.20	1359	1.03	-255.3	23.1
Inpling/Purging Equipment  Water Level Meter: Geolech 1-Probe # 3682  PH/S.C./Dissolved Oxygen/ORP: YS1 05 E2343 AD  Turbidity: HACH turbidismeth 21007  Pump: Specific freel pro  Wodel # 77200.57  Comments: Clear purge no ocloss, we show								
Water Level Meter: Gebleck 1-Proba # 3682  pH/S.C./Dissolved Oxygen/ORP: YSI 05 E234345  Turbidity: HACH turbidimetr 21007  Pump: Specific field pro  Woodel # 77200.57  Comments: Clear pange no odors, we show	bilization Criteria	Drawdown < 0.3	+/- 0.1 units	. 3%	3%	10%	+/- 10 mv	10%
Water Level Meter: Gebleck 1-Proba # 3682  pH/S.C./Dissolved Oxygen/ORP: YSI 05 E234345  Turbidity: HACH turbidimetr 21007  Pump: Specific field pro  Woodel # 77200.57  Comments: Clear pange no odors, we show	unling/Purging K	'anipment				Taharatowy Analyse	ne/Containers	
Turbidity: UACH furbidimeter 21007  Pump: Spectra freld pro  wodel # 77200.57  Sample Time: 17:35  Comments: Clear purge no oclars, no shaen	·		Geolech 1	-probe #	3689		1	Analysis
Pump: Spectre field pro  wodel # 77200.52  Sample Time: 17:35  Comments: Clear purge no oclass, no shaen	pH/S.C./Dis		YSI OF	E2343A)	21007	34 VOA	Hei	UBC 8268
Comments: Clear purge no odors, no shoen		* 1	Spectra.	fred pr	9		***	
		ı	model tt	77200.	57	Sample Time:	17:35	
TOUS: 0.0 0.1	Comments:	Cle	or pur	Je 200 0	dors, u	o shoen		
2	-	700	15: 00	. 0.1	•			
		1	<i>?</i> ¬	- V 4				-

Site:	Door	t St	Windson	211		CAT	. 10
Project No.;	0,4	- 37nd&	S WV	4 V (	Well ID:	- 2/1	
Date:	2/1	12016	0.00	<del>-</del>	Sample ID:	<u>DAI</u>	
Weather:	- 41	enta-		_	Sampler:	-Ju20	N 2K
				<del>.</del>			
Well Condition O	)bservations	<del></del>		7	W/ n 5- 3		
Protective Casin	s: met	ı.			Well Volume Ca	leulations Well Diamet	er" 7 9
Loc	1800-0				1	Depth to Wate	- 64
Labe Surface Sea						Total Dep	
PVC Well Casing	742)					Volume Parge	
170 Well Cashing	š-1			J			
		· · · · · · · · · · · · · · · · · · ·			Pump Star	t: 17:55	
TYAJE	рерти то			SPECIFIC	DISSOLVED		
TIME	WATER	Щq	TEMIP	CONDUCTANCE	OXYGEN	ORP	TURBIDITY
10. 50	(feet)	(SU)	(C)	(nS/em)	(mg/l)	(шу)	(NTU)
18:00	12.40	8.86	11.25	741	7.05	-235.8	27.7
18:05	12.71	8.84	16.31	937	6-82	-737.9	
18:10	17.84	8.87	11.24	939	6.65		71.6
18:15	12.92	8.87	11.18	9210	6.84	-238.0	19.5
18:20	13.10	8.86	11.27	938	6.42	-2406	
18:25	13.23	8.86	11.25	938	6.26	-240.9	
18:30	13.46	8.85	11.34	938	5.99	-241.3	
18:35	13.51	8.81	11:40	940	5.91	- 246.0	2.4
					7.71	216.0	2.0
					•		
		<u></u>		ł			
	]						
tabilization Criteria	Drawdown < 0.3'	+/- 0.1 units	3%	3%			
			370	3%	10%	+/- 10 mv	10%
		<u> </u>	·		·		
ampling/Purging E	quipment	t" JAMTr		ſ.	ahanat : :		
	Water Level Meter:	Geotech	I-Prove #	3689	aboratory Analyse Container	s/Containers  Preservative	Anol
pH/S.C./Diss	olved Oxygen/ORP:	YSI 05	E 2343	AD	3x VOA	HCI	Analysis
	Turbidity:	HACH LOW	pidimeter !	7100-b		112	ALA ABD
	Pump	Spectra fie	4 Yro M	ode1			
		# 7	4700.27			. 400 38	<del></del>
	<u>.</u> 1	_	4		Sample Time:	18:37	
Comments:	Turked	1/1 not	Waldo L-	+ below 1	'n /m-)		
		<del>- / - '</del>	Mary Jak	your 1	UNIU		
							•

Site: Project No.: Date: Weather:	Depot 8	t., Wing -22442 50dy, 4	150, VT 18.00 5°F		Well ID: _ Sample ID: _ Sampler: _	GAI-15 GAI-15 Brudle	y C		
Well Condition Of Protective Casing Lock Label Surface Seal	\ \frac{\chi'\chi}{\chi}	yc, 36	eal Rd C	ap	Well Volume Calcul Pump Start:	Well Diameter: Depth to Water: Total Depth: Volume Purged:	753 14,7 2 Gal		
18:00 18:05 18:10 18:15 18:25 18:35 18:40 18:40 18:50	DEPTH TO WATER (Geet)  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5  ~7.5	7.2 7.17 7.16 7.15 7.14 7.14 7.15 7.16 7.17	10.36 10.09 10.09 10.09 10.04 9.58 9.65 10.01 10.24 10.29	SPECIFIC CONDUCTANCE (US/cun)  1410  1411  1411  1411  1411  1407  1407  1408  1381  1376  1373	DISSOLVED OXYGEN (mg/f)  1.29  1.15  1.04  1.02  1.01  1.62  1.79  1.90	18.9 7.6 -3.0 -1.2 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -	TURBIDITY (NTU)  22.9  14.8  14.8  19.9  59.5  42.1  20.7  10.4  10.4		
Stabilization Crites	ria Drawdown < 0.3'	+/- 0,1 units	3%	3%	10%	+/- 10 mv	10%		
Sampling/Purgin pH/S.C.f	g Equipment Water Level Meter: Dissolved Oxygen/ORP Turbidity: Pump:	Hach 210	ioper T Y8I 556 A 10 P Turbid ield-pro#	195 Someter 17200-52	Container  3X VOA	Preservative	Analysis Voc 8260	The state of the s	
Commer OV 5	TOV'S	Riser and Sta detect Ispace ye water	below abilized sed at	grade Jat 5.9 1	Sample Time  Turb  18:40  h heads;	idity di for Sai		at inf	and no




Date


64 Location <b>De</b>	pot St Windsor Date 2/1/2016	Section of the sectio
Project / Client _	pot St Windsor Date 2/1/2016 VT DEC 04-224488.00	Construction of the Constr
		in the second second
Mobilize	8:00 Am, leave 9:00 Am, 600 BM	4
	26" teton poly, 6" flexi	
CBM- 2 -	3.4 ÷ 2 = 1.7 + 26.8= 3.8.5	
J-GW- DEI	27.45 = 1.95	, <b>S</b>
-	227.45 = 1.95	
I probe t	that was used by Brad	100
A was	worn and most perth	۱ 4
readings v	that was used by Brad Norn and most Depth vere time-consuming to see	
TOV De	etected in Well GAT-15	
Tou 5.0	7 in Head Space	
0.1	etected in Well GAT-15 7 in Head Space in purge-water.	
Stopped	for food in Windsor. 7:151	)m
left 5	5 Gal drum 1/2 fall at	
Windsor	5 Gal drum /2 fall at Fire Dept 7:45 pm. labele Hazardous waste	<b>\</b>
Return to	Shop 8:45pm, leave Shop 9	:15

Iprol	يد	Feet	, # :	3	We	re	V	Jo	rn	off
and	الما	eachl	e :	<b>N</b> 1	Mav	u	Ca	CR 5		
		ال			٧×٢	J				
JSK in t	Cali	brute	2d \	(5)	Ĺ	ŀ	i	ኃ <i>፡- ሮ</i>	5	am
in t	. فما	Cela					V	·		
1 1			i	1						-
* 5	00	)	110	J		١١.	١,	loy	ks l	ruts
× >		<b>DW</b>	110		<u> </u>	- 6				
1	76 K	leld in	93							
					ARTICLE AND CHARGE					
Mate	rials	US	ed.							
~	8 fea	t o	utsid	e o	f v	Je 11	X.	14	We	Ms
~	~ 29 ~ 29 & f	lexit	Jbe	Der		10 1	X	14	الما	Ils
	· 29	2.2	t+	TUO	TX to	al ·	ī (A	al	1 10	101/5
	calcul	Sheite	See	dep	th	Sh	eet	70	, t	والم
			note	25,	38	七/			•	
	6-6'									
	IPr									
	field								***************************************	
street.	Jur	b32	met	er :	$\times$	_		**************************************		
	YSI	$\times$								
	1 5	5 G	al P	ru	M					
100							1	2	۲/	
				<b> </b>	·			0	ノし	

Location _

Project / Client _____





LOW FLOW GROUNDWATER SAMPLING FIELD FORM depot St. Windson, UT CBM-3 Site: Well ID; Sample ID: CBM-3 Project No .: Date: Sampler: 40 t Weather: Well Condition Observations Well Volume Calculations Metal Protective Casing: Well Diameter: Lock <u>snoken</u> Depth to Water: MB-3 Total Depth: Label Surface Seal: o Gallons Volume Purged: PVC Well Casing @ 12:45 Pump Start: SPECIFIC DISSOLVED DEPTH TO рĦ TEMP CONDUCTANCE TURBIDITY TIME ORP WATER OXYGEN (SU) (nS/em) (mg/l) (niv) (NTU) 5.95 499 13:00 13:05 13:10 495 6.98 13:15 497 7.03 496 7.06 Stabilization Criteria Drawdown < 0.3 +/- 10 mv 10% +/- 0.1 units 3% 3% 10% aboratory Analyses/Containers Sampling/Purging Equipment GEOTECH IROBE # 3689 YSI OS 2343 AD Hack Turbidameter 21008 Water Level Meter: Container Preservative VX 8260 3× YOL pH/S.C./Dissolved Oxygen/ORP: HCI Turbidity: field pro Model # Sample Time: et purge for 15 min before testing parameters. Clear purge, no odors/shean Comments:

ite:	Depot	St. W	indson V	T	Well ID:	J-GW	- DEP
roject No.:	04-93	4470.0	00		Sample ID:	J-GW	- DEA
ate:		1/2018	*		Sampler:	Br	rd C
eather:	Rair	14 45	o _F				
	,	J		-			
ell Condition Obs		1 1 0			Well Volume Calcul		· · · ·
Protective Casing: Lock:	Stee	IN CH K	oao			Well Diameter: Depth to Water:	755
Label:	ON	Suc /.	<u>,, Δ</u>			Total Depth:	20.0
Surface Seal:	\\\	ell cap	2.5			Volume Purged;	4 Galle
PVC Well Casing:		I'm Carp					1 24 11
<u></u>			,		Pump Start:	12:50	) .
7	рертн то			SPECIFIC	DISSOLVED		3 <u> </u>
TIME	WATER	pН	TEMP	CONDUCTANCE	OXYGEN	ORP .	TURBIDITY
	(feet)	(SU)	(C)	(nS/em)	(nug/I)	(mv)	(NTU)
3:40	25,55	7.04	2.3.6	437	8.85	745.6	1.29
1345		7.51	. 8.19	953	6.97	-251.3	3,5
13.50		7.76	8.28	959	6.33	-250.6	· .
13:55	25.54	7.86	8.40	MES 16	5 6.15	-250.1	1.08
PBG 14:0	0	7.89	8.46	967	6.05	-2485	1.12
14:05		7.90	8.70	966	5.98	2477	.90
14:10	25.5	795	8.40	968	5.95	-2465	1.07
• • • •		77,5	5	\	J. (J		
` .	٠.			, ,			
					*	_	
	•					·	
	,						
1							
bilization Criteria	Drawdown < 0.3'	+/- 0.1 units	3%	3%	10%	+/- 10 mv	10%
							· · · · · · · · · · · · · · · · · · ·
	**************************************			1			###
mpling/Purging E	Equipment Water Level Meter:	Genterh I	emba the	<b>8</b> 9	Laboratory Analyse		A 1. · · ·
pH/S.C./Dis	water Level Meter: ssolved Oxygen/ORP:	And MCC.	YSI 556M	0<	ZX VOA	Preservative	Analysis
•	Turbidity:	Hach 2000	1 7 1.	ometer		1,94	10- 000
1524	Рипр:	spectra.		77200-52	4	-5000	
							i
			/		Sample Time:	1 M. 12	
Comment	M.	a dam	rc / 5/10.	en Clo	ar Div	Ta 0	
Comments:	Ne	odor	rs/She	en, cle	ar pur	ge	

LOW FLOW GROUNDWATER SAMPLING FIELD FORM Depot St, Windsor VT 04-224408.00 2/3/2016 J-GW-APT 3 Well ID: J-GW-APT#3 Brod C Project No.: Sample ID: Date: Sampler: Weather: Well Condition Observations Well Volume Calculations In-Road, Steel Protective Casing: Well Diameter: Lock Depth to Water: 8.45 on well cap Total Depth: 15.62 Surface Seal: Observation Well Ca Volume Purged: ~7 Gal PVC Well Casing: 1300 Pump Start: SPECIFIC DEPTH TO DISSOLVED TIME pН TEMP CONDUCTANCE OXYGEN WATER ORP TURBIDITY (SU) (C) (feet) (uS/cm) (mā\J) (NTU) 1600 -269.7 71000 1605 71006 1610 >1000 -2660 >1000 68.0 > 1000 428 697 590

Sampling/Purging Equipment	· ·	Laboratory Analyses/Containers		
Water Level Meter:	Geotech Lorde & 3689	Container	Preservative	Analysis
pH/S.C./Dissolved Oxygen/ORP:		3X VOA	प्तटा	10CB360
Turbidity:	HACH Turbidometer 2100P			
Ришр:		0e-51		

3%

Stabilization Criteria

Drawdowu < 0.31

+/- 0.1 units

				Sample Time	: [DUU		
Comments:	Turbiditi	y Spike	s intern	nitantly.	Sedim	entering:	ŀ
	Oct out	J V	, ,	ا ل			
AS.	landor NOT	me a sure	Delth to	Water		concer	
<b>ELLOP</b>	PART TO	STANCE	disturbing	Sediment	3		

3%

10%

+/- 10 mv

·Ouren

10%

Page 2/2 LOW FLOW GROUNDWATER SAMPLING FIELD FORM St, Windsor Depot Well ID: Project No.: Sample ID: 2016 Date: Brad Sampler: Weather: Well Condition Observations Well Volume Calculations Protective Casing: 1h-road, Stee Well Diameter: Depth to Water: 8.43 Label: CaD Total Depth: Surface Seal: observation Volume Purged: PVC Well Casing: 1500 Pump Start: DEPTH TO SPECIFIC DISSOLVED TIME pΗ TEMP CONDUCTANCE WATER OXYGEN ORP TURBIDITY (SU) (C) (feet) (uS/cm) (NTU) (mg/l) 000 000 >1000 **>\000** 71000 12:00 > 1000 Stabilization Criteria Drawdowu < 0.3' ₩- 0.1 ymits 3% 3% +/- 10 mv 10% 10%

Sampling/Purging Equipment			Laboratory Analyse	s/Containers	
Water Level Meter:	Geotech I probe #	3689	Container	Preservative	Analysis
pH/S.C./Dissolved Oxygen/ORP:	Geotech YST 556	MPS	3x VoA	HCI	VOA 8260
Turbidity:	MACH 2000 P Turbidom	ter		1	
Pump:	Spectra field Pro	#77)00-5	للا		

		Sample Time:	
Comments:_	Did not	monitor Depth to water in effor	rt to
	not stir	up sediment from well-Screen.	
_	Turbidity	spikes intermitantly	-

147- M

LOW FLOW GROUNDWATER SAMPLING FIELD FORM Site: Well ID; Project No.: Sample ID: Date: Sampler: Weather: Well Volume Calculations Well Condition Observations Meta Protective Casing: Well Diameter: None Depth to Water: Label: & Nove Total Depth: Metal cover, concrete Volume Purged: PVC Well Casing: 16:30 Pump Start: SPECIFIC DISSOLVED DEPTH TO TIME pН TEMP WATER CONDUCTANCE OXYGEN ORP TURBIDITY (SU) (C) (uS/em) (NTO) (feet) 7.18 10.34

Sampling/Purging Equipment	100
Water Level Meter:	Geotech IPrope #3689
pH/S,C./Dissolved Oxygen/ORP:	YSI 05 2343 AD
Turbidity:	HACH Turbidomoter 2100P
Pump:	# Spectra Field Pro
	Make # 77200 52

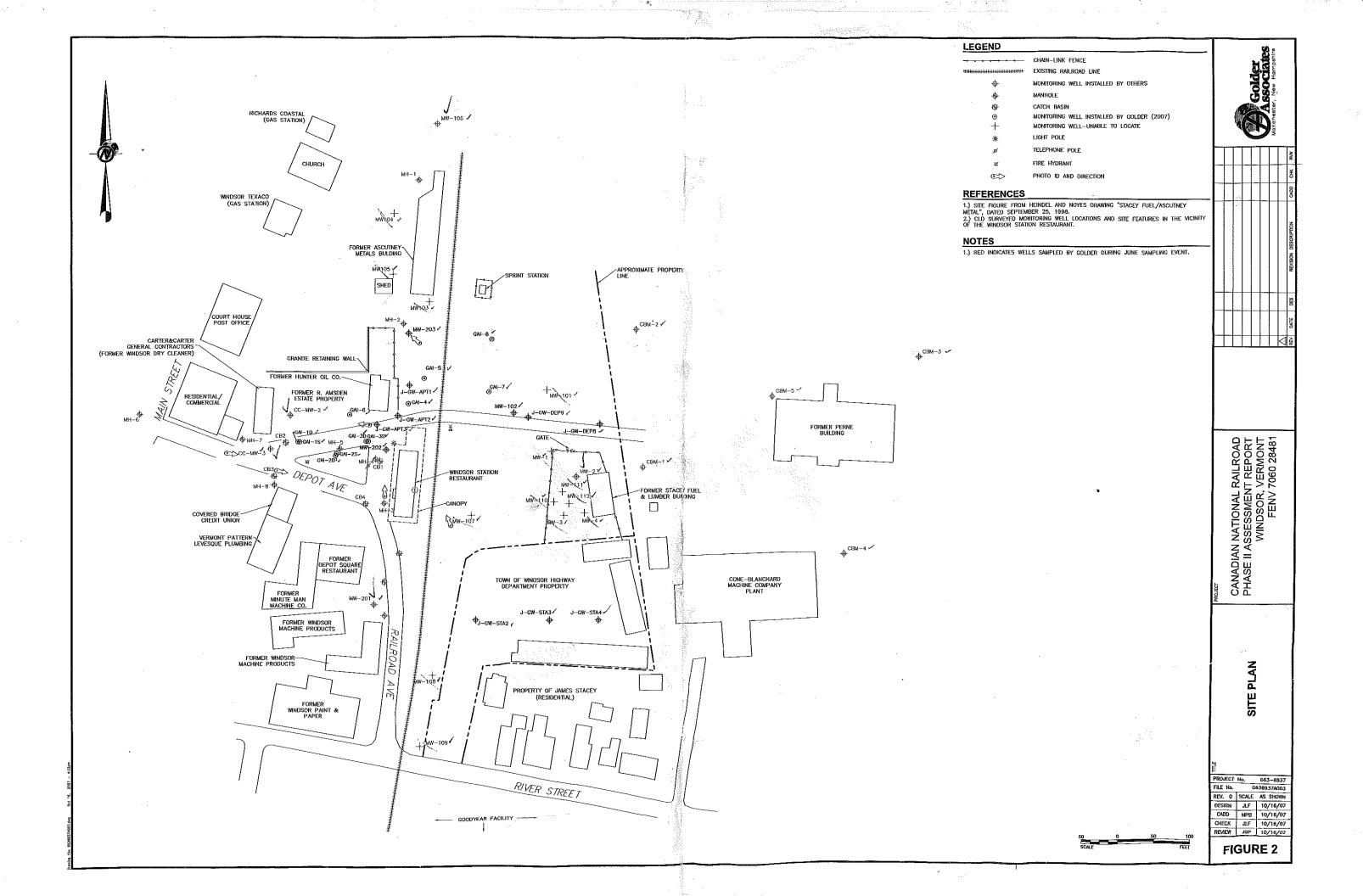
+/- 0-1 units

3%

Stabilization Criteria

Drawdowa < 0.3*

Laboratory Analyses/Containers								
Container	Preservative	Analysis						
3× VOA	HCI	VOC 8240						
<b>y</b> . <b></b>								
,	<u> </u>							


+/- 10 my

10%

	4	Sample Time: 10.4
C	Alarel to proce Stall	C- 2) hrs Pin
Comments	Though to purge or one	O tor a MS Tro
	10 (NON CTORMA O FIELD)	Yarameters to

3%

10%





# Spectrum Analytical

$\mathbf{A}$	Final Report
	Re-Issued Report
	Revised Report
	port Date: -Feb-16 15:16

### Laboratory Report

Environmental Compliance Services 70 Landmark Hill Brattleboro, VT 05301

Attn: Alicia Flammia

Project: Windsor GWS-Depot St-Windsor, VT

Project #: 04-224488.00

SC17886-01       CBM-5       Ground Water       01-Feb-16 11:20       04-Feb-16 1         SC17886-02       CBM-4       Ground Water       01-Feb-16 11:43       04-Feb-16 1         SC17886-03       CBM-2       Ground Water       01-Feb-16 13:05       04-Feb-16 1         SC17886-04       CBM-1       Ground Water       01-Feb-16 13:20       04-Feb-16 1	5:33 5:33 5:33 5:33
SC17886-03 CBM-2 Ground Water 01-Feb-16 13:05 04-Feb-16 1	5:33 5:33 5:33
	5:33 5:33
SC17096 04 CDM 1 Crowd Water 01 Feb 16 12:20 04 Feb 16 1	5:33
SC17886-04 CBM-1 Ground Water 01-Feb-16 13:20 04-Feb-16 1	
SC17886-05 J-GW-DEP9 Ground Water 01-Feb-16 14:12 04-Feb-16 1	:33
SC17886-06 J-GW-APT2 Ground Water 01-Feb-16 15:35 04-Feb-16 1	
SC17886-07 J-GW-APT3 Ground Water 01-Feb-16 15:55 04-Feb-16 1	:33
SC17886-08 GAI-3S Ground Water 01-Feb-16 16:25 04-Feb-16 1	:33
SC17886-09 GAI-2S Ground Water 01-Feb-16 17:25 04-Feb-16 1	:33
SC17886-10 GAI-3D Ground Water 01-Feb-16 17:35 04-Feb-16 1	:33
SC17886-11 GAI-1D Ground Water 01-Feb-16 18:37 04-Feb-16 1	:33
SC17886-12 GAI-1S Ground Water 01-Feb-16 18:55 04-Feb-16 1	:33
SC17886-13 Trip Blank Deionized Water 01-Feb-16 08:00 04-Feb-16 1	:33
SC17886-14 Duplicate Ground Water 01-Feb-16 00:00 04-Feb-16 1	:33
SC17886-15 Equipment Blank Deionized Water 01-Feb-16 08:05 04-Feb-16 1	:33
SC17886-16 Trip Blank Deionized Water 03-Feb-16 09:00 04-Feb-16 1	:33
SC17886-17 CMB-3 Ground Water 03-Feb-16 13:25 04-Feb-16 1	:33
SC17886-18 J-GW-DEP8 Ground Water 03-Feb-16 14:15 04-Feb-16 1	:33
SC17886-20 KAS-1 Ground Water 03-Feb-16 18:47 04-Feb-16 1	:33

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435



Authorized by:

June O'Connor Laboratory Director

Eurofins Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 75 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

#### **CASE NARRATIVE:**

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

#### SW846 8260C

#### Calibration:

#### 1601034

Analyte quantified by quadratic equation type calibration.

1,1,2-Trichlorotrifluoroethane (Freon 113)

1,2,4-Trichlorobenzene

Carbon tetrachloride

Naphthalene

trans-1,3-Dichloropropene

Trichlorofluoromethane (Freon 11)

#### This affected the following samples:

1602314-BLK1

1602314-BS1

1602314-BSD1

1602363-BLK1

1602363-BS1

1602363-BSD1

1602363-MS1

1602363-MSD1

CBM-1

CBM-2

CBM-4

CBM-5

Duplicate

Equipment Blank

GAI-1D

GAI-1S

GAI-2S

GAI-3D

GAI-3S

J-GW-APT2

J-GW-APT3

S600574-ICV1

S601007-CCV1

S601047-CCV1

Trip Blank

1602007

Analyte quantified by quadratic equation type calibration.

Naphthalene

sec-Butylbenzene

#### Calibration:

#### 1602007

This affected the following samples:

1602364-BLK1 1602364-BS1

1602364-BSD1

CMB-3

J-GW-DEP8

KAS-1

S600831-ICV1

S601048-CCV1

Trip Blank

#### 1602027

Analyte quantified by quadratic equation type calibration.

- 1,1,2-Trichlorotrifluoroethane (Freon 113)
- 1,1-Dichloropropene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- 1,3,5-Trimethylbenzene
- 4-Chlorotoluene
- 4-Isopropyltoluene

Bromoform

Carbon tetrachloride

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane (Freon12)

m,p-Xylene

Naphthalene

n-Butylbenzene

n-Propylbenzene

o-Xylene

sec-Butylbenzene

Styrene

tert-Butylbenzene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Trichlorofluoromethane (Freon 11)

#### This affected the following samples:

1602521-BLK1

1602521-BS1

1602521-BSD1

J-GW-DEP9

S601125-CCV1

S601145-ICV1

#### S600574-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

1,1-Dichloroethene (122%)

Carbon disulfide (124%)

#### Calibration:

```
S600574-ICV1
```

```
This affected the following samples:
  1602314-BLK1
  1602314-BS1
  1602314-BSD1
  1602363-BLK1
  1602363-BS1
  1602363-BSD1
  1602363-MS1
  1602363-MSD1
  CBM-1
  CBM-2
  CBM-4
  CBM-5
  Duplicate
  Equipment Blank
  GAI-1D
  GAI-1S
  GAI-2S
  GAI-3D
  GAI-3S
  J-GW-APT2
  J-GW-APT3
  S601007-CCV1
  S601047-CCV1
  Trip Blank
S600831-ICV1
Analyte percent recovery is outside individual acceptance criteria (80-120).
  n-Butylbenzene (122%)
  trans-1,4-Dichloro-2-butene (124%)
This affected the following samples:
  1602364-BLK1
  1602364-BS1
  1602364-BSD1
  CMB-3
  J-GW-DEP8
  KAS-1
  S601048-CCV1
  Trip Blank
S601145-ICV1
Analyte percent recovery is outside individual acceptance criteria (80-120).
  1,1-Dichloroethene (130%)
This affected the following samples:
  1602521-BLK1
  1602521-BS1
  1602521-BSD1
  J-GW-DEP9
  S601125-CCV1
```

Blanks:

#### Blanks:

#### 1602314-BLK1

The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.

1,4-Dioxane

Carbon disulfide

#### **Laboratory Control Samples:**

#### 1602314 BS/BSD

1,2-Dibromo-3-chloropropane percent recoveries (138/126) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CBM-1

CBM-2

CBM-4

CBM-5

Bromoform percent recoveries (133/122) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CBM-1

CBM-2

CBM-4

CBM-5

#### 1602314-BS1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,4-Dioxane

Carbon disulfide

#### 1602314-BSD1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,4-Dioxane

Carbon disulfide

#### 1602363 BS/BSD

Naphthalene percent recoveries (65/64) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

Duplicate

Equipment Blank

GAI-1D

GAI-1S

GAI-2S

GAI-3D

GAI-3S

J-GW-APT2

J-GW-APT3

Trip Blank

#### 1602364 BS/BSD

#### **Laboratory Control Samples:**

#### 1602364 BS/BSD

1,2,4-Trimethylbenzene percent recoveries (131/125) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CMB-3 J-GW-DEP8 KAS-1 Trip Blank

1,3,5-Trimethylbenzene percent recoveries (134/128) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CMB-3 J-GW-DEP8 KAS-1 Trip Blank

tert-Butylbenzene percent recoveries (132/124) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

CMB-3 J-GW-DEP8 KAS-1 Trip Blank

#### Spikes:

1602363-MS1 Source: SC17886-05

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,2-Dichloropropane

Bromomethane

Carbon disulfide

Chloroethane

Chloromethane

Dichlorodifluoromethane (Freon12)

1602363-MSD1 Source: SC17886-05

RPD out of acceptance range.

Vinyl chloride

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,2-Dichloropropane

Bromomethane

Chloroethane

Chloromethane

Dichlorodifluoromethane (Freon12)

Vinyl chloride

#### Samples:

S601007-CCV1

Page 7 of 75

#### Samples:

#### S601007-CCV1

```
Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.
```

```
1,1,2,2-Tetrachloroethane (20.1%)
1,2-Dibromo-3-chloropropane (24.6%)
```

Bromoform (22.3%)

Bromomethane (-30.8%)

Carbon disulfide (20.2%)

Ethyl ether (-20.9%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Trichlorofluoromethane (Freon 11) (-20.1%)

#### This affected the following samples:

1602314-BLK1

1602314-BS1

1602314-BSD1

CBM-1

CBM-2

CBM-4

CBM-5

#### S601047-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2,2-Tetrachloroethane (20.5%)

Bromoform (23.2%)

Bromomethane (-25.5%)

Carbon disulfide (26.9%)

Ethyl ether (-20.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Naphthalene (-34.6%)

#### This affected the following samples:

1602363-BLK1

1602363-BS1

1602363-BSD1

1602363-MS1

1602363-MSD1

Duplicate

Equipment Blank

GAI-1D

GAI-1S

GAI-2S

GAI-3D

GAI-3S

J-GW-APT2

J-GW-APT3

Trip Blank

#### S601048-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2,4-Trimethylbenzene (24.8%)

1,3,5-Trimethylbenzene (27.7%)

tert-Butylbenzene (23.7%)

#### Samples:

#### S601048-CCV1

This affected the following samples:

1602364-BLK1 1602364-BS1

1602364-BSD1

CMB-3

J-GW-DEP8

KAS-1

Trip Blank

#### S601125-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1-Dichloroethene (21.6%)

This affected the following samples:

1602521-BLK1

1602521-BS1

1602521-BSD1

J-GW-DEP9

SC17886-08

GAI-3S

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC17886-12

GAI-1S

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC17886-12RE1

GAI-1S

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

#### **Sample Acceptance Check Form**

Client: Environmental Compliance Services -Brattleboro, VT
Project: Windsor GWS-Depot St-Windsor, VT / 04-224488.00

Work Order: SC17886 Sample(s) received on: 2/4/2016

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<b>Yes</b>	No	N/A
Were custody seals present?		$\checkmark$	
Were custody seals intact?			$\checkmark$
Were samples received at a temperature of $\leq 6^{\circ}$ C?	$\checkmark$		
Were samples refrigerated upon transfer to laboratory representative?	$\checkmark$		
Were sample containers received intact?	$\checkmark$		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	<b>✓</b>		
Were samples accompanied by a Chain of Custody document?	$\checkmark$		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	<b>√</b>		
Did sample container labels agree with Chain of Custody document?	$\checkmark$		
Were samples received within method-specific holding times?	$\checkmark$		

### **Summary of Hits**

<b>Lab ID:</b> SC17886-03			Client ID: CBM-2			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Tetrachloroethene	4.5		1.0	μg/l	SW846 8260C	
<b>Lab ID:</b> SC17886-05RE1			Client ID: J-GW-DEP9			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
cis-1,2-Dichloroethene	21.2		1.0	μg/l	SW846 8260C	
Tetrachloroethene	76.0		1.0	μg/l	SW846 8260C	
Trichloroethene	7.0		1.0	$\mu g/l$	SW846 8260C	
<b>Lab ID:</b> SC17886-07			Client ID: J-GW-AP	PT3		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
cis-1,2-Dichloroethene	4.3		1.0	$\mu g/l$	SW846 8260C	
Tetrachloroethene	8.8		1.0	$\mu g/l$	SW846 8260C	
Trichloroethene	1.8		1.0	$\mu g/l$	SW846 8260C	
<b>Lab ID:</b> SC17886-08			Client ID: GAI-3S			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
cis-1,2-Dichloroethene	3050	D	200	$\mu g/l$	SW846 8260C	
Tetrachloroethene	9240	D	200	$\mu g/l$	SW846 8260C	
Trichloroethene	1460	D	200	$\mu g/l$	SW846 8260C	
<b>Lab ID:</b> SC17886-10			Client ID: GAI-3D			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Tetrachloroethene	3.2		1.0	$\mu g/l$	SW846 8260C	
<b>Lab ID:</b> SC17886-11			Client ID: GAI-1D			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
Tetrachloroethene	1.1		1.0	μg/l	SW846 8260C	
<b>Lab ID:</b> SC17886-12			Client ID: GAI-1S			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
cis-1,2-Dichloroethene	5240	D, E	25.0	μg/l	SW846 8260C	
Tetrachloroethene	250	D	25.0	$\mu g/l$	SW846 8260C	
trans-1,2-Dichloroethene	56.5	D	25.0	$\mu g/l$	SW846 8260C	
Trichloroethene	912	D	25.0	$\mu g/l$	SW846 8260C	
Vinyl chloride	74.8	D	25.0	$\mu g/l$	SW846 8260C	
<b>Lab ID:</b> SC17886-12RE1			Client ID: GAI-1S			
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	
cis-1,2-Dichloroethene	6280	D	100	μg/l	SW846 8260C	
<b>Lab ID:</b> SC17886-14			Client ID: Duplicate	;		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method	

**Lab ID:** SC17886-17 **Client ID:** CMB-3

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method		
Tetrachloroethene	2.0		1.0	$\mu g/l$	SW846 8260C		
<b>Lab ID:</b> SC17886-18			Client ID: J-GW-DEP8				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method		
Tetrachloroethene	9.2		1.0	μg/l	SW846 8260C		

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Identification CBM-5 SC17886-01					Project #	<del></del>		·	Collection Date/Time		Received		
				04-224488.00			Ground Wa	ater 01	01-Feb-16 11:20			04-Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	08-Feb-16	08-Feb-16	GMA	1602314	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1				"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"		"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	n n	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	n	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1		"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	ıı .	n	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1		"	"		"	Х

Sample Identification CBM-4 SC17886-02				Client Project # 04-224488.00		<u>Matrix</u> Ground Water			ection Date 1-Feb-16 11	Received 04-Feb-16			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
<u>Prepared</u> 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	<u>Vater MS</u> < 1.0		μg/l	1.0	0.5	1	SW846 8260C	08-Feb-16	08-Feb-16	GMA	1602314	×
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"		"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1		"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"		Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	n	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	n	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	ıı .	п	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	ıı .	п	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	ıı .	п	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"		"		Х

CBM-2 SC17886-	-03				Project # 488.00		<u>Matrix</u> Ground Wa	·	ection Date 1-Feb-16 13			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds	846 8260											
	by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	08-Feb-16	08-Feb-16	GMA	1602314	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	u	"	ıı	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	u	"	ıı	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	n	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"		"		Х

CBM-2	<u>lentification</u>			Client F	Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SC17886	-03			04-224	488.00		Ground Wa	ater 01	l-Feb-16 13	:05	04-	Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	08-Feb-16	08-Feb-16	GMA	1602314	ı X
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	×
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	"	"	"	"	"	X
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
00-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	>
27-18-4	Tetrachloroethene	4.5		μg/l	1.0	0.6	1	"	"	"	"	"	>
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	W .	"	"	>
6-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	>
5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	•	"	"	"	"	>
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	)
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	)
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	)
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	)
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	W	W	"	"	>
4-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	X
Surrogate	recoveries:												
60-00-4	4-Bromofluorobenzene	98			70-13	0 %		"	"	"	"	"	
037-26-5	Toluene-d8	100			70-13	0 %		u	"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	99			70-13	0 %		"	"	n n	"	"	
868-53-7	Dibromofluoromethane	101			70-13	0 %		"	"	"	"		

CBM-1	dentification 04				Project # 1488.00		<u>Matrix</u> Ground Wa	·	ection Date -Feb-16 13			ceived Feb-16	
SC17886- CAS No.	-04 ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prenared	Analyzed	Analyst	Ratch	Cort
	• ,,	Resuit	1 1115	Cittis	- RDL	INDE	Dunton	memou Rej.	Trepureu	21muryceu	2 mary st	Duich	
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	08-Feb-16	08-Feb-16	GMA	1602314	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	u	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	u u	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	u u	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	u	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	X
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	u	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	u	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	II .	"	"	"	Х

CBM-1	lentification				Project #		Matrix		ection Date			ceived	
SC17886-	-04			04-224	488.00		Ground Wa	ater 01	l-Feb-16 13	:20	04-	Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	08-Feb-16		GMA	1602314	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	II .	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Χ
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	Χ
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	n .	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	u u	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1		"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	II .	n n	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	II .	n n	"	"	Χ
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1		"	"	"	"	Χ
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1		"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1		"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	II	"	"	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		m .	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		m .	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99			70-13	0 %		"	"	n n	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		·	"	"	"	"	

J-GW-DE SC17886-					<u>Project #</u> 488.00		<u>Matrix</u> Ground Wa	· · · · · · · · · · · · · · · · · · ·	ection Date -Feb-16 14			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Re-analys by SW846		<del></del>											
<u>Prepared</u> 76-13-1	by method SW846 5030 W 1,1,2-Trichlorotrifluoroetha	<u>/ater MS</u> < 1.0		μg/l	1.0	0.5	1	SW846 8260C	11-Feb-16	12-Feb-16	GMA	1602521	Х
67-64-1	ne (Freon 113) Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"		"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1		"	"	"	"	X
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	X
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"		"	"	"	X
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"					X
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"		,,	"	"	X
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"		,,	"	"	X
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"		"	"	"	X
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	,,	"	X
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"		,,	"	"	X
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"		,,	"	"	X
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"		,,	"	"	X
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	,,	"	X
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	,,	"	X
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"		,,	"	"	X
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1			,,	"	"	X
96-12-8	1,2-Dibromo-3-chloroprop	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	n .	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	21.2		μg/l	1.0	0.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	X
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"		"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"		"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1		"	"	"		Х

J-GW-DF SC17886-				Client F 04-224	<u>Project #</u> 488.00		<u>Matrix</u> Ground Wa		ection Date -Feb-16 14			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	sis of Volatile Organic Com	pounds_											
by SW846	<u>8 8260</u> by method SW846 5030 V	Jator MS											
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	SW846 8260C	11-Feb-16	12-Feb-16	GMA	1602521	ı X
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"			"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	u u	H	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	· ·	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	76.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	u u	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	n n	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	n n	"	"	"	Χ
79-01-6	Trichloroethene	7.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	X
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	•		"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	91			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	104			70-13	0 %		"	"	"	"		

Sample Id	dentification PT2				Project #		Matrix	·	ection Date			ceived	
SC17886				04-224	488.00		Ground Wa	ater 01	-Feb-16 15	:35	04-	Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	3 X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	n	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	n	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1		"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	n	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	u	"	ıı	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	n	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	n	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	u	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	m .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	II .	n	n	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	u	n	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	u	n	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1		"	"			Х

J-GW-AI	dentification PT2				Project #		<u>Matrix</u>		ection Date	/Time	Rec	<u>ceived</u>	
SC17886				04-224	488.00		Ground Wa	nter 01	l-Feb-16 15	:35	04-	Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SWiby method SW846 5030 V												
8-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	Х
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	0.7	1	"	"	"	"	"	Х
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
1-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
03-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
00-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
27-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	·	"	"	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	X
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	X
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	n .	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	II .	"	"	"	X
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	Х
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	X
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	ıı	u	"	"	X
4-17-5	Ethanol	< 400		μg/l	400	22.7	1	· ·	"	"	"	"	Х
Surrogate i	recoveries:												
60-00-4	4-Bromofluorobenzene	97			70-13	0 %		· ·	"	"	"	"	
037-26-5	Toluene-d8	100			70-13	0 %		"	II .	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	96			70-13	0 %		"	"	"	"	"	
868-53-7	Dibromofluoromethane	102			70-13	0 %			"	"	"	"	

J-GW-AI SC17886-					Project # 488.00		<u>Matrix</u> Ground Wa	·	ection Date 1-Feb-16 15			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds	0.40.0000											
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	•	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	•	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	•	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	•	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H	n .	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	4.3		μg/l	1.0	0.2	1	"	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	II .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	X
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	X
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

J-GW-AF	lentification PT3				Project #		<u>Matrix</u>	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SC17886-				04-224	488.00		Ground Wa	nter 01	-Feb-16 15	:55	04-	Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ce
Volatile O	rganic Compounds												
	rganic Compounds by SW	<u>846 8260</u>											
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	3 >
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	"	"	"	"	"	)
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	)
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	2
27-18-4	Tetrachloroethene	8.8		μg/l	1.0	0.6	1	"	"	"	"	"	)
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	2
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	2
9-01-6	Trichloroethene	1.8		μg/l	1.0	0.4	1	"	"	"	"	"	2
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	u u	"	II	"	"	)
06-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	)
′5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	2
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	2
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	)
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	)
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	2
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	2
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	)
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	n .	"	u	"	"	)
4-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	2
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	98			70-13	0 %		u u	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		II .	"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	98			70-13	0 %		"	"	"	"	"	
868-53-7	Dibromofluoromethane	100			70-13	0%			"	"	"	"	

Received

04-Feb-16

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	rganic Compounds by SW		GS1										
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 200	D -	μg/l	200	46.8	200	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	
99-87-6	4-Isopropyltoluene	< 200	D	μg/l 	200	75.0	200			"	"		X
1634-04-4	Methyl tert-butyl ether	< 200	D	μg/l 	200	34.4	200			"	"		X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2000	D	μg/l	2000	147	200	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 400	D	μg/l	400	57.6	200	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 200	D	μg/l	200	80.0	200	"	"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 200	D	μg/l	200	43.2	200	"	"	"	"	"	Χ
100-42-5	Styrene	< 200	D	μg/l	200	36.0	200	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 200	D	μg/l	200	47.6	200	"	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 100	D	μg/l	100	63.8	200	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	9,240	D	μg/l	200	114	200	"	"	"	"	"	Χ
108-88-3	Toluene	< 200	D	μg/l	200	65.2	200	"	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	< 200	D	μg/l	200	50.4	200	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 200	D	μg/l	200	75.6	200	"	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 200	D	μg/l	200	40.4	200	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 200	D	μg/l	200	41.2	200	"	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 200	D	μg/l	200	38.6	200	"	"	"	"	"	Χ
79-01-6	Trichloroethene	1,460	D	μg/l	200	76.0	200	"	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 200	D	μg/l	200	97.4	200	u	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 200	D	μg/l	200	40.8	200	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 200	D	μg/l	200	79.8	200	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 200	D	μg/l	200	178	200	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 200	D	μg/l	200	67.8	200	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 400	D	μg/l	400	76.0	200	"	"	"	"	"	Х
95-47-6	o-Xylene	< 200	D	μg/l	200	94.2	200	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 400	D	μg/l	400	145	200	"	"	"	"	"	
60-29-7	Ethyl ether	< 200	D	μg/l	200	39.2	200	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 200	D	μg/l	200	69.2	200	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 200	D	μg/l	200	29.2	200	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 200	D	μg/l	200	43.2	200	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 2000	D	μg/l	2000	1500	200	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 4000	D	μg/l	4000	2480	200		"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 1000	D	μg/l	1000	223	200	u u	"	п	"	"	Χ
64-17-5	Ethanol	< 80000	D	μg/l	80000	4550	200	n .	"	"	"	"	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	97			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	101			70-13	0 %		"	"	"	"	"	

<del>SAI-2S</del> SC17886-	dentification				Project # 488.00		<u>Matrix</u> Ground Wa	·	ection Date 1-Feb-16 17			reb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Prepared 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	<u>Vater MS</u> < 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	зх
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"		Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	X
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"			"		X
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"			"		X
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"				X
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"			"		X
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"			"		X
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"					X
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"			"		X
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1				"		X
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1				"		X
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1				"		X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"		"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"		"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	II .	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	•	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

GAI-3D SC17886	dentification				Project # 488.00		<u>Matrix</u> Ground Wa	·	ection Date -Feb-16 17			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	з х
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1		"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	•	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	u	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"		Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	II .	п	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	п	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"	"		Х

<b>GAI-1D</b> SC17886-	dentification				<u>Project #</u> 488.00		<u>Matrix</u> Ground Wa		ection Date -Feb-16 18			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds	846 8260											
	by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	3 X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	W	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"		Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"		Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	n	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	II .	п	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	ıı .	п	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	ıı .	п	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	ıı .	п	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

Sample Identification

GAI-1S SC17886	dentification				Project # 488.00		Matrix Ground Wa	-	ection Date -Feb-16 18			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW		GS1										
<u>Prepared</u>	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 25.0	D	μg/l	25.0	13.3	25	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	X
67-64-1	Acetone	< 250	D	μg/l	250	61.9	25	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 12.5	D	μg/l	12.5	11.8	25	"	"	"	"	"	Χ
71-43-2	Benzene	< 25.0	D	μg/l	25.0	4.4	25	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 25.0	D	μg/l	25.0	2.8	25	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 25.0	D	μg/l	25.0	6.7	25	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 12.5	D	μg/l	12.5	4.4	25	"	"	"	"	"	Χ
75-25-2	Bromoform	< 25.0	D	μg/l	25.0	7.3	25	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 50.0	D	μg/l	50.0	12.5	25	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 250	D	μg/l	250	31.1	25	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 25.0	D	μg/l	25.0	6.6	25	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 25.0	D	μg/l	25.0	4.1	25	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 25.0	D	μg/l	25.0	5.3	25	"	"	"	"		Х
75-15-0	Carbon disulfide	< 50.0	D	μg/l	50.0	6.3	25	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 25.0	D	μg/l	25.0	5.6	25	"	"	"	"		Х
108-90-7	Chlorobenzene	< 25.0	D	μg/l	25.0	4.9	25	"	"	"	"		Х
75-00-3	Chloroethane	< 50.0	D	μg/l	50.0	9.6	25	"	"	"	"		Х
67-66-3	Chloroform	< 25.0	D	μg/l	25.0	10.2	25	"	"	"	"		Х
74-87-3	Chloromethane	< 50.0	D	μg/l	50.0	8.6	25	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 25.0	D	μg/l	25.0	7.6	25	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 25.0	D	μg/l	25.0	5.1	25	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 50.0	D	μg/l	50.0	21.6	25	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 12.5	D	μg/l	12.5	6.1	25	"	"	"	•		Х
106-93-4	1,2-Dibromoethane (EDB)	< 12.5	D	μg/l	12.5	6.5	25	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 25.0	D	μg/l	25.0	6.4	25	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 25.0	D	μg/l	25.0	4.0	25	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 25.0	D	μg/l	25.0	5.5	25	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 25.0	D	μg/l	25.0	6.2	25	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 50.0	D	μg/l	50.0	14.6	25	"	W.	н	"	"	Х
75-34-3	1,1-Dichloroethane	< 25.0	D	μg/l	25.0	4.2	25	"	"	"	"		Х
107-06-2	1,2-Dichloroethane	< 25.0	D	μg/l	25.0	4.0	25	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 25.0	D	μg/l	25.0	7.0	25	"	"	"	"		Х
156-59-2	cis-1,2-Dichloroethene	5,240	D, E	μg/l	25.0	5.8	25	"	"	"	"		Х
156-60-5	trans-1,2-Dichloroethene	56.5	D	μg/l	25.0	5.2	25	ıı .	п	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 25.0	D	μg/l	25.0	3.7	25	ıı .	п	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 25.0	D	μg/l	25.0	5.4	25	ıı .	п	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 25.0	D	μg/l	25.0	16.8	25	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 25.0	D	μg/l	25.0	7.0	25	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 12.5	D	μg/l	12.5	5.0	25	"		"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 12.5	D	μg/l	12.5	6.7	25	II .	11	"	"	"	Х
100-41-4	Ethylbenzene	< 25.0	D	μg/l	25.0	4.3	25	ıı .	п	"		"	X
87-68-3	Hexachlorobutadiene	< 12.5	D	μg/l	12.5	10.0	25	ıı .	п	"		"	X
591-78-6	2-Hexanone (MBK)	< 250	D	μg/l	250	13.4	25 25	"	"		,,		X

Sample Ide GAI-1S SC17886-	entification 12				Project # 1488.00		<u>Matrix</u> Ground Wa		ection Date -Feb-16 18			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
by SW846	is of Volatile Organic Col 8260 by method SW846 5030		GS1										
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	91			70-13	0 %		SW846 8260C	11-Feb-16	12-Feb-16	GMA	1602521	
2037-26-5	Toluene-d8	99			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-13	0 %		u	"	u	"	"	

<del>Trip Blan</del> SC17886-				<u>Client F</u> 04-224	<u>roject #</u> 488.00	Ι	<u>Matrix</u> Deionized V	· ·	ection Date 1-Feb-16 08			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	3 X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"		Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	n .	"	u	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	n .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	•	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	n .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	n .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	n .	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	п		"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

Trip Blan					<u>Project #</u> 488.00	Ε	<u>Matrix</u> Deionized V		ection Date -Feb-16 08			<u>ceived</u> Feb-16	
SC17886- CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Valatila Os	rganic Compounds												
/olatile O	rganic Compounds by SW by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	8 X
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	п	n	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	II .	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	X
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	Х
′5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	II .	"	"	"	X
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	II .	"	"	"	X
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	II .	"	"	"	X
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1		"	"	"	"	Х
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	X
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	X
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	X
Surrogate r	recoveries:												
160-00-4	4-Bromofluorobenzene	96			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	98			70-13	0 %		"	"	"	"	"	
868-53-7	Dibromofluoromethane	102			70-13	0 %		"	"	"	"	"	

Sample Id Duplicate SC17886-					Project # 488.00		<u>Matrix</u> Ground Wa	·	ection Date -Feb-16 00			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	з х
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	u u	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	u	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

Duplicate SC17886				Project # 4488.00		Matrix Ground Wa		ection Date 1-Feb-16 00			ceived Feb-16	
CAS No.	Analyte(s)	Result Fl	ag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds											
Volatile O	organic Compounds by SW											
<u> Prepared</u> 98-82-8	by method SW846 5030 W Isopropylbenzene	<u>/ater MS</u> < 1.0	ug/l	1.0	0.2	1	SW846 8260C	00 Ech 16	09-Feb-16	GMA	1602363	3 X
99-87-6	4-Isopropyltoluene	< 1.0	μg/l μg/l	1.0	0.4	1	"	" "	"	UIVIA "	"	, ,
1634-04-4	Methyl tert-butyl ether	< 1.0	μg/l	1.0	0.4	1	ıı	"	"	,,	"	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	μg/l	10.0	0.7	1	"	u	"	"	"	X
75-09-2	Methylene chloride	< 2.0	μg/l	2.0	0.3	1	II .	"		"	"	Х
91-20-3	Naphthalene	< 1.0	μg/l	1.0	0.4	1	II .	"		"	"	Х
103-65-1	n-Propylbenzene	< 1.0	μg/l	1.0	0.2	1	"	"	u	"	"	Х
100-42-5	Styrene	< 1.0	μg/l	1.0	0.2	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0	μg/l	1.0	0.2	1	II .	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5	μg/l	0.5	0.3	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	2.5	μg/l	1.0	0.6	1	ıı .	"	"	"	"	Х
108-88-3	Toluene	< 1.0	μg/l	1.0	0.3	1	"	"	u	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0	μg/l	1.0	0.3	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0	μg/l	1.0	0.2	1	ıı .	"	u	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0	μg/l	1.0	0.2	1	"	"	u	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0	μg/l	1.0	0.2	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0	μg/l	1.0	0.5	1		"	"	II	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0	μg/l	1.0	0.2	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0	μg/l	1.0	0.4	1	II .	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 1.0	μg/l	1.0	0.9	1	"	"	"	"	"	Χ
75-01-4	Vinyl chloride	< 1.0	μg/l	1.0	0.3	1	"	"	"	"	"	Χ
179601-23-1	1 m,p-Xylene	< 2.0	μg/l	2.0	0.4	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.0	μg/l	1.0	0.5	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0	μg/l	2.0	0.7	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0	μg/l	1.0	0.2	1	II .	"	"	"	"	Χ
994-05-8	Tert-amyl methyl ether	< 1.0	μg/l	1.0	0.3	1	II .	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	< 1.0	μg/l	1.0	0.1	1	ıı	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0	μg/l	1.0	0.2	1	"	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	μg/l	10.0	7.5	1	"	"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0	μg/l	20.0	12.4	1	II .	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0	μg/l	5.0	1.1	1	"	·	"	"	"	Х
64-17-5	Ethanol	< 400	μg/l	400	22.7	1	"	"	u	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	97		70-13	80 %		n n	"	"	"	"	
2037-26-5	Toluene-d8	101		70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99		70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	102		70-13	80 %		"	"	"	"	"	

Equipme SC17886-					Project # 488.00	Ε	<u>Matrix</u> eionized V		ection Date -Feb-16 08			<u>ceived</u> Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	3 X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"		Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1		n n	n	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1		"	"	"		Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1		"	"	"		Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"		Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"		Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1		n n	n	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		n n	n	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1		n n	n	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		n n	n	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	"	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	· ·	"	n	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	n	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	"	"	n	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1		"	"	"		Х

Volatile Organi Volatile Organi Prepared by m 88-82-8 Iso 89-87-6 4-18 1634-04-4 Me 108-10-1 4-18 175-09-2 Me 101-20-3 Na 103-65-1 n-F 100-42-5 Sty 103-65-1 1,1 127-18-4 Tet 108-88-3 Toli 137-61-6 1,2 120-82-1 1,2 120-82-1 1,2 120-82-1 1,3 171-55-6 1,1 179-00-5 1,1 179-01-6 Tric				04-224	488.00	Г	eionized V	Vater 01	-Feb-16 08	.05	04-1	Feb-16	
Volatile Organi Volatile Organi Prepared by m 88-82-8 Iso 89-87-6 4-18 1634-04-4 Me 108-10-1 4-18 175-09-2 Me 101-20-3 Nai 103-65-1 n-F 100-42-5 Sty 1030-20-6 1,1 127-18-4 Tet 108-88-3 Toli 137-61-6 1,2 120-82-1 1,2 120-82-1 1,2 120-82-1 1,3 171-55-6 1,1 179-00-5 1,1 179-01-6 Tric				04-22-			CIOIIIZCU V	vater 01	1-1-0-10-00	.03	04-1	10-10	
Volatile Organ           Prepared by m           18-82-8         Iso           19-87-6         4-Is           634-04-4         Me           08-10-1         4-Is           15-09-2         Me           11-20-3         Nal           03-65-1         n-F           00-42-5         Sty           30-20-6         1,1           27-18-4         Tet           08-88-3         Toli           17-61-6         1,2           20-82-1         1,2           08-70-3         1,3           1-55-6         1,1           19-00-5         1,1           19-01-6         Trice	nalyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Prepared by m 8-82-8   so 9-87-6   4-ls 634-04-4   Me 08-10-1   4-N (Mi 5-09-2   Me 1-20-3   Na 03-65-1   n-F 00-42-5   Sty 30-20-6   1,1 9-34-5   1,1 27-18-4   Tet 08-88-3   Toli 7-61-6   1,2 20-82-1   1,2 08-70-3   1,3 1-55-6   1,1 9-01-6   Tric	nic Compounds												
9-87-6 4-ls 634-04-4 Me 08-10-1 4-h (MI) 5-09-2 Me 1-20-3 Na 03-65-1 n-F 00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	nic Compounds by SW8 method SW846 5030 W												
1634-04-4 Me 108-10-1 4-N (MI 75-09-2 Me 21-20-3 Na  103-65-1 n-F 100-42-5 Sty 330-20-6 1,1 127-18-4 Tet 108-88-3 Toli 37-61-6 1,2 120-82-1 1,2 108-70-3 1,3 71-55-6 1,1 79-00-5 1,1	opropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602363	X
08-10-1 4-N (MI 5-09-2 Me 1-20-3 Na  03-65-1 n-F 00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
(Mi) 5-09-2 Me 1-20-3 Na 03-65-1 n-F 00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
1-20-3 Na 03-65-1 n-F 00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	Methyl-2-pentanone	< 10.0		μg/l	10.0	0.7	1	"	"	W	"	"	>
03-65-1 n-F 00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	ethylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	X
00-42-5 Sty 30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	aphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
30-20-6 1,1 9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1 9-01-6 Tric	Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
9-34-5 1,1 27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	tyrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
27-18-4 Tet 08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-01-6 Tric	1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	>
08-88-3 Toli 7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	>
7-61-6 1,2 20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1	etrachloroethene	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	>
20-82-1 1,2 08-70-3 1,3 1-55-6 1,1 9-00-5 1,1 9-01-6 Tric	oluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	>
08-70-3 1,3 1-55-6 1,1 9-00-5 1,1 9-01-6 Tric	2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	II .	"	"	"	)
1-55-6 1,1 9-00-5 1,1 9-01-6 Tric	2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	)
9-00-5 1,1 9-01-6 Tric	3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	
9-01-6 Tric	1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	)
	1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	)
5-69-4 Tric	richloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	>
	richlorofluoromethane Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	>
6-18-4 1,2	2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	II .	"	"	"	>
5-63-6 1,2	2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
08-67-8 1,3	3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	>
5-01-4 Vin	inyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
79601-23-1 m,p	,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	>
5-47-6 o-X	-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	>
09-99-9 Tet	etrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
0-29-7 Eth	thyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
94-05-8 Ter	ert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
37-92-3 Eth	thyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	>
08-20-3 Di-	i-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
5-65-0 Ter	ert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	>
23-91-1 1,4	4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	)
10-57-6 trar e	ans-1,4-Dichloro-2-buten	< 5.0		μg/l	5.0	1.1	1	"	ıı	u	"	"	>
4-17-5 Eth	thanol	< 400		μg/l	400	22.7	1	· ·	"	"	"	"	>
Surrogate recov	overies:												
60-00-4 <b>4-</b> E	Bromofluorobenzene	96			70-13	0 %		"	"	"	"	"	
037-26-5 Tol	oluene-d8	100			70-13	0 %		· ·	"	"	"	"	
7060-07-0 1,2	2-Dichloroethane-d4	98			70-13	0 %		"	"	"	"	"	

<del>Sample IC</del> <b>Trip Blan</b> SC17886-					<u>Project #</u> 488.00	Ι	<u>Matrix</u> Deionized V	· ·	ection Date 3-Feb-16 09			ceived Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602364	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"		Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"		Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"		Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"		Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	n	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	п	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	п	"	n	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	n	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	n	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	n	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	п	"	n	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	n .	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	n .	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	•	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"	"		Х

Trip Blan					<u>Project #</u> 488.00	Ε	<u>Matrix</u> Deionized W		ection Date 3-Feb-16 09			<u>ceived</u> Feb-16	
SC17886- CAS No.	-10 	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Valatila O	rganic Compounds									<u> </u>			
Volatile O	rganic Compounds by SW by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602364	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	п	"	n .	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	·	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	n n	"	"	"	X
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	n n	"	"	X
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	n n	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	Х
′5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	X
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	II	"	"	Х
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	II	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	II	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	X
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	X
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	92			70-13	0 %		"	u u	n n	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		"	u u	n n	"	"	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		"	u u	n n	"	"	
868-53-7	Dibromofluoromethane	104			70-13	0 %		"	"	"	"	"	

<b>CMB-3</b> SC17886-	dentification -17				<u>Project #</u> 488.00		<u>Matrix</u> Ground Wa	·	ection Date 3-Feb-16 13			Feb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Prepared 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	<u>Vater MS</u> < 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	09-Feb-16	GMA	1602364	×
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	u	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	m .	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	m .	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	m .	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	п	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	II .	п	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	II .	п	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	n .	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	n .	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	n .	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"		"			Х

J-GW-DI					<u>Project #</u> 488.00		<u>Matrix</u> Ground Wa		ection Date Feb-16 14			<u>ceived</u> Feb-16	
SC17886-	-18												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	10-Feb-16	GMA	1602364	X
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1		"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1		"	"	"		Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"		"		Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1		"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"		"		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"		"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"		"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	· ·	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"		"		Х

Sample Identification  J-GW-DEP8  SC17886-18  CAS No. Analyte(s) Result Flag				Client Project #			<u>Matrix</u>	Coll	Collection Date/Time			Received		
			04-224	488.00		Ground Wa	ater 03	03-Feb-16 14:15			04-Feb-16			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert	
Volatile O	rganic Compounds													
	organic Compounds by SW by method SW846 5030 V													
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	10-Feb-16	GMA	1602364	X	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	"	"	"	"	"	Х	
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Χ	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1		"	"	"	"	Χ	
127-18-4	Tetrachloroethene	9.2		μg/l	1.0	0.6	1		"	"	"	"	Χ	
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х	
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	n n	"	"	"	Χ	
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ	
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х	
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	Х	
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х	
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х	
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	u u	"	"	"	Х	
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х	
179601-23-1	1 m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	u u	"	"	"	Х	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х	
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"		
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	u u	"	"	"	Х	
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	Χ	
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	Χ	
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	"	"	Х	
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	Χ	
Surrogate	recoveries:													
460-00-4	4-Bromofluorobenzene	90			70-13	0 %		"	"	"	"	"		
2037-26-5	Toluene-d8	96			70-13	0 %		u u	"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0 %		"	"	"	"	"		
1868-53-7	Dibromofluoromethane	106			70-13	0 %		"	"	"	"			

KAS-1 SC17886-	dentification -20				Project # 488.00		<u>Matrix</u> Ground Wa		ection Date 3-Feb-16 18			reb-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
<u>Prepared</u> 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	<u>&lt; 1.0</u>		µg/l	1.0	0.5	1	SW846 8260C	09-Feb-16	10-Feb-16	GMA	1602364	×
67-64-1	Acetone	< 10.0		μg/l	10.0	2.5	1	II .	"		"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.3	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"		"		Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.4	1	"	"	"		"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop	< 2.0		µg/l	2.0	0.9	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	n	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.7	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.3	1	II .	n n	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.2	1	II .	n n	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.3	1	ıı .	"		"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.2	1	ıı .	"		"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	ıı .	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.5	1	"	"	"			Х

KAS-1	lentification				roject #		Matrix	·	ection Date			ceived	
SC17886-	-20			04-224	488.00		Ground Wa	ater 03	8-Feb-16 18	3:47	04-	Feb-16	
CAS No.	Analyte(s)	Result 1	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW	846 8260											
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.2	1	SW846 8260C	09-Feb-16	10-Feb-16	GMA	1602364	×
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	0.7	1	"	"	"	"	"	>
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.3	1	"	"	u	"	"	>
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	X
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.2	1	"	u u	"	"	"	X
100-42-5	Styrene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	×
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.3	1	"	u u	"	"	"	>
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	>
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
37-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	)
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	>
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.2	1		"	"	"	"	>
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	>
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.9	1	"	"	"	"	"	>
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	)
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	)
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	>
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	>
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.1	1	"	"	"	"	"	>
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	)
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	7.5	1	"	"	"	"	"	)
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	12.4	1	"	"	"	"	"	)
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.1	1	"	"	"	H	"	>
64-17-5	Ethanol	< 400		μg/l	400	22.7	1	"	"	"	"	"	>
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	92			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	97			70-13	0 %		"	"	•	"	"	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0 %		"		"	"	"	
1868-53-7	Dibromofluoromethane	106			70-13			"	"	"	"		

## **Volatile Organic Compounds - Quality Control**

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602314 - SW846 5030 Water MS										
Blank (1602314-BLK1)					Pre	epared & Ar	nalyzed: 08-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.0		μg/l	1.0						
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	2.6	QB2	μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1602314 - SW846 5030 Water MS										
Blank (1602314-BLK1)					Pre	epared & Ai	nalyzed: 08-	Feb-16		
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	30.0	QB2	μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0	QDZ		5.0						
Ethanol	< 400		μg/l μg/l	400						
				400						
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.5		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	50.6		μg/l		50.0		101	70-130		
LCS (1602314-BS1)					Pre	epared & A	nalyzed: 08-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.2		μg/l		20.0		101	70-130		
Acetone	18.4		μg/l		20.0		92	70-130		
Acrylonitrile	18.8		μg/l		20.0		94	70-130		
Benzene	19.8		μg/l		20.0		99	70-130		
Bromobenzene	21.2		μg/l		20.0		106	70-130		
Bromochloromethane	20.6		μg/l		20.0		103	70-130		
Bromodichloromethane	21.2		μg/l		20.0		106	70-130		
Bromoform	26.7	QM9	μg/l		20.0		133	70-130		
Bromomethane	15.4		μg/l		20.0		77	70-130		
2-Butanone (MEK)	19.2		μg/l		20.0		96	70-130		
n-Butylbenzene	22.0		μg/l		20.0		110	70-130		
sec-Butylbenzene	22.0		μg/l		20.0		110	70-130		
tert-Butylbenzene	22.0		μg/l		20.0		110	70-130		
Carbon disulfide	25.7	В	μg/l		20.0		128	70-130		
Carbon tetrachloride	21.0		μg/l		20.0		105	70-130		
Chlorobenzene	20.4		μg/l		20.0		102	70-130		
Chloroethane	17.2		μg/l		20.0		86	70-130		
Chloroform	19.1		μg/l		20.0		95	70-130		
Chloromethane	17.7		μg/l		20.0		88	70-130		
			. 3							
2-Chlorotoluene	21.6		μg/l		20.0		108	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602314 - SW846 5030 Water MS										
LCS (1602314-BS1)					Pre	epared & Ar	nalyzed: 08-	Feb-16		
1,2-Dibromo-3-chloropropane	27.6	QM9	μg/l		20.0		138	70-130		
Dibromochloromethane	23.6		μg/l		20.0		118	70-130		
1,2-Dibromoethane (EDB)	20.5		μg/l		20.0		103	70-130		
Dibromomethane	20.0		μg/l		20.0		100	70-130		
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130		
1,3-Dichlorobenzene	21.9		μg/l		20.0		110	70-130		
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	22.6		μg/l		20.0		113	70-130		
1,1-Dichloroethane	20.0		μg/l		20.0		100	70-130		
1,2-Dichloroethane	18.8		μg/l		20.0		94	70-130		
1,1-Dichloroethene	17.8		μg/l		20.0		89	70-130		
cis-1,2-Dichloroethene	19.8		μg/l		20.0		99	70-130		
trans-1,2-Dichloroethene	20.6		μg/l		20.0		103	70-130		
1,2-Dichloropropane	20.0		μg/l		20.0		100	70-130		
1,3-Dichloropropane	19.6		μg/l		20.0		98	70-130		
2,2-Dichloropropane	19.9		μg/l		20.0		100	70-130		
1,1-Dichloropropene	20.2		μg/l		20.0		101	70-130		
cis-1,3-Dichloropropene	22.7		μg/l		20.0		114	70-130		
trans-1,3-Dichloropropene	22.0		μg/l		20.0		110	70-130		
Ethylbenzene	21.1		μg/l		20.0		105	70-130		
Hexachlorobutadiene	21.2		μg/l		20.0		106	70-130		
2-Hexanone (MBK)	20.9		μg/l		20.0		105	70-130		
Isopropylbenzene	21.4		μg/l		20.0		107	70-130		
4-Isopropyltoluene	21.1		μg/l		20.0		105	70-130		
Methyl tert-butyl ether	20.1		μg/l		20.0		100	70-130		
4-Methyl-2-pentanone (MIBK)	20.8		μg/l		20.0		104	70-130		
Methylene chloride	22.4		μg/l		20.0		112	70-130		
Naphthalene	22.9		μg/l		20.0		114	70-130		
n-Propylbenzene	21.8		μg/l		20.0		109	70-130		
Styrene	21.9		μg/l		20.0		110	70-130		
1,1,1,2-Tetrachloroethane	24.1		μg/l		20.0		120	70-130		
1,1,2,2-Tetrachloroethane	25.6		μg/l		20.0		128	70-130		
Tetrachloroethene	20.3		μg/l		20.0		102	70-130		
Toluene	19.9		μg/l		20.0		100	70-130		
1,2,3-Trichlorobenzene	24.4		μg/l		20.0		122	70-130		
1,2,4-Trichlorobenzene	23.1		μg/l		20.0		116	70-130		
1,3,5-Trichlorobenzene	22.2		μg/l		20.0		111	70-130		
1,1,1-Trichloroethane	21.4		μg/l		20.0		107	70-130		
1,1,2-Trichloroethane	20.4		μg/l		20.0		102	70-130		
Trichloroethene	18.6		μg/l		20.0		93	70-130		
Trichlorofluoromethane (Freon 11)	16.9		μg/l		20.0		84	70-130		
1,2,3-Trichloropropane	21.4		μg/l		20.0		107	70-130		
1,2,4-Trimethylbenzene	22.6		μg/l		20.0		113	70-130		
1,3,5-Trimethylbenzene	22.0		μg/l		20.0		110	70-130		
Vinyl chloride	17.7		μg/l		20.0		89	70-130		
m,p-Xylene	21.5		μg/l		20.0		107	70-130		
o-Xylene	21.6		μg/l		20.0		108	70-130		
Tetrahydrofuran	19.8		μg/l		20.0		99	70-130		
Ethyl ether	16.9		μg/l		20.0		85	70-130		
Tert-amyl methyl ether	19.5		μg/l		20.0		98	70-130		
Ethyl tert-butyl ether	19.9		μg/l		20.0		100	70-130		
Di-isopropyl ether	19.8		μg/l		20.0		99	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602314 - SW846 5030 Water MS										
LCS (1602314-BS1)					Pre	epared & Ar	nalyzed: 08-	Feb-16		
Tert-Butanol / butyl alcohol	180		μg/l		200		90	70-130		
1,4-Dioxane	226	В	μg/l		200		113	70-130		
trans-1,4-Dichloro-2-butene	24.3		μg/l		20.0		122	70-130		
Ethanol	358		μg/l		400		90	70-130		
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.4		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.6		μg/l		50.0		95	70-130		
Surrogate: Dibromofluoromethane	51.0		μg/l		50.0		102	70-130		
LCS Dup (1602314-BSD1)					Pre	epared & Ar	nalyzed: 08-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.8		μg/l		20.0		94	70-130	7	20
Acetone	18.2		μg/l		20.0		91	70-130	1	20
Acrylonitrile	17.0		μg/l		20.0		85	70-130	10	20
Benzene	19.1		μg/l		20.0		96	70-130	4	20
Bromobenzene	20.4		μg/l		20.0		102	70-130	4	20
Bromochloromethane	20.4		μg/l		20.0		102	70-130	8.0	20
Bromodichloromethane	20.4		μg/l		20.0		102	70-130	4	20
Bromoform	24.4		μg/l		20.0		122	70-130	9	20
Bromomethane	15.2		μg/l		20.0		76	70-130	1	20
2-Butanone (MEK)	18.7		μg/l		20.0		94	70-130	2	20
n-Butylbenzene	20.6		μg/l		20.0		103	70-130	6	20
sec-Butylbenzene	20.5		μg/l		20.0		103	70-130	7	20
tert-Butylbenzene	20.4		μg/l		20.0		102	70-130	8	20
Carbon disulfide	24.1	В	μg/l		20.0		121	70-130	6	20
Carbon tetrachloride	19.4		μg/l		20.0		97	70-130	8	20
Chlorobenzene	19.7		μg/l		20.0		98	70-130	4	20
Chloroethane	16.6		μg/l		20.0		83	70-130	4	20
Chloroform	18.4		μg/l		20.0		92	70-130	4	20
Chloromethane	17.1		μg/l		20.0		85	70-130	4	20
2-Chlorotoluene	20.3		μg/l		20.0		101	70-130	6	20
4-Chlorotoluene	20.3		μg/l		20.0		101	70-130	5	20
1,2-Dibromo-3-chloropropane	25.2		μg/l		20.0		126	70-130	9	20
Dibromochloromethane	22.5		μg/l		20.0		113	70-130	4	20
1,2-Dibromoethane (EDB)	20.2		μg/l		20.0		101	70-130	2	20
Dibromomethane	19.0		μg/l		20.0		95	70-130	5	20
1,2-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	3	20
1,3-Dichlorobenzene	20.7		μg/l		20.0		103	70-130	6	20
1,4-Dichlorobenzene	19.5		μg/l		20.0		98	70-130	2	20
Dichlorodifluoromethane (Freon12)	21.4		μg/l		20.0		107	70-130	5	20
1,1-Dichloroethane	19.3		μg/l		20.0		96	70-130	4	20
1,2-Dichloroethane	18.5		μg/l		20.0		92	70-130	2	20
1,1-Dichloroethene	17.0		μg/l		20.0		85	70-130	5	20
cis-1,2-Dichloroethene	19.2		μg/l		20.0		96	70-130	3	20
trans-1,2-Dichloroethene	19.3		μg/l		20.0		97	70-130	6	20
1,2-Dichloropropane	19.2		μg/l		20.0		96	70-130	4	20
1,3-Dichloropropane	19.0		μg/l		20.0		95	70-130	3	20
2,2-Dichloropropane	19.0		μg/l		20.0		95	70-130	5	20
1,1-Dichloropropene	18.9		μg/l		20.0		95	70-130	7	20
cis-1,3-Dichloropropene	21.4		μg/l		20.0		107	70-130	6	20
trans-1,3-Dichloropropene	21.4		μg/l		20.0		107	70-130	3	20
Ethylbenzene	19.7		μg/l		20.0		99	70-130	7	20
Hexachlorobutadiene	19.7		μg/l		20.0		98	70-130	7	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1602314 - SW846 5030 Water MS										
LCS Dup (1602314-BSD1)					Pre	epared & A	nalyzed: 08-	Feb-16		
2-Hexanone (MBK)	19.8		μg/l		20.0		99	70-130	5	20
Isopropylbenzene	20.0		μg/l		20.0		100	70-130	7	20
4-Isopropyltoluene	19.9		μg/l		20.0		100	70-130	6	20
Methyl tert-butyl ether	19.4		μg/l		20.0		97	70-130	3	20
4-Methyl-2-pentanone (MIBK)	19.9		μg/l		20.0		100	70-130	4	20
Methylene chloride	21.4		μg/l		20.0		107	70-130	4	20
Naphthalene	20.8		μg/l		20.0		104	70-130	10	20
n-Propylbenzene	20.3		μg/l		20.0		102	70-130	7	20
Styrene	20.8		μg/l		20.0		104	70-130	5	20
1,1,1,2-Tetrachloroethane	22.7		μg/l		20.0		113	70-130	6	20
1,1,2,2-Tetrachloroethane	24.4		μg/l		20.0		122	70-130	5	20
Tetrachloroethene	19.4		μg/l		20.0		97	70-130	5	20
Toluene	19.0		μg/l		20.0		95	70-130	5	20
1,2,3-Trichlorobenzene	23.1		μg/l		20.0		116	70-130	6	20
1,2,4-Trichlorobenzene	21.6		μg/l		20.0		108	70-130	7	20
1,3,5-Trichlorobenzene	21.3		μg/l		20.0		106	70-130	4	20
1,1,1-Trichloroethane	20.1		μg/l		20.0		101	70-130	6	20
1,1,2-Trichloroethane	19.5		μg/l		20.0		98	70-130	4	20
Trichloroethene	17.5		μg/l		20.0		88	70-130	6	20
Trichlorofluoromethane (Freon 11)	16.0		μg/l		20.0		80	70-130	5	20
1,2,3-Trichloropropane	20.9		μg/l		20.0		104	70-130	3	20
1,2,4-Trimethylbenzene	21.3		μg/l		20.0		106	70-130	6	20
1,3,5-Trimethylbenzene	20.6		μg/l		20.0		103	70-130	7	20
Vinyl chloride	17.8		μg/l		20.0		89	70-130	0.2	20
m,p-Xylene	20.1		μg/l		20.0		101	70-130	7	20
o-Xylene	20.1				20.0		102	70-130	6	20
Tetrahydrofuran	18.7		μg/l		20.0		94	70-130	6	20
Ethyl ether	16.7		μg/l		20.0		83	70-130	1	20
Tert-amyl methyl ether			μg/l		20.0		95	70-130	3	20
	18.9		μg/l		20.0		95 96	70-130		20
Ethyl tert-butyl ether	19.2		μg/l						4	
Di-isopropyl ether	19.1		μg/l		20.0		96	70-130	3	20
Tert-Butanol / butyl alcohol	175	Б	μg/l "		200		87	70-130	3	20
1,4-Dioxane	215	В	μg/l		200		107	70-130	5	20
trans-1,4-Dichloro-2-butene	22.4		μg/l 		20.0		112	70-130	8	20
Ethanol	344		μg/l		400		86	70-130	4	20
Surrogate: 4-Bromofluorobenzene	51.4		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.8		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.0		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
atch 1602363 - SW846 5030 Water MS										
Blank (1602363-BLK1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1602363 - SW846 5030 Water MS										
Blank (1602363-BLK1)					Pre	epared & Ai	nalyzed: 09	-Feb-16		
n-Butylbenzene	< 1.0		μg/l	1.0		•	•			
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0			1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0			1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
·	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 0.5		μg/l	0.5						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene			μg/l							
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0 < 1.0		μg/l	10.0 1.0						
Isopropylbenzene			μg/l							
4-Isopropyltoluene	< 1.0 < 1.0		μg/l	1.0						
Methyl 2 portogon (MIRK)			μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0 < 2.0		μg/l	10.0						
Methylene chloride	< 2.0 < 1.0		μg/l	2.0						
Naphthalene n Propylhenzene	< 1.0 < 1.0		μg/l	1.0						
n-Propylbenzene			μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5 < 1.0		μg/l	0.5						
Tetrachloroethene			μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602363 - SW846 5030 Water MS										
Blank (1602363-BLK1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,2,3-Trichloropropane	< 1.0		μg/l	1.0		•	,			
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/I μg/I	5.0						
Ethanol	< 400		μg/l μg/l	400						
Surrogate: 4-Bromofluorobenzene	49.0			400	50.0		98	70-130		
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	49.0 49.8		μg/l		50.0		96 100	70-130 70-130		
			μg/l							
Surrogate: 1,2-Dichloroethane-d4	49.3		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	51.3		μg/l		50.0		103	70-130		
LCS (1602363-BS1)						epared & Ai	nalyzed: 09-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.7		μg/l		20.0		109	70-130		
Acetone	16.5		μg/l		20.0		82	70-130		
Acrylonitrile	15.4		μg/l		20.0		77	70-130		
Benzene	19.3		μg/l		20.0		96	70-130		
Bromobenzene	19.8		μg/l		20.0		99	70-130		
Bromochloromethane	20.4		μg/l		20.0		102	70-130		
Bromodichloromethane	20.3		μg/l		20.0		102	70-130		
Bromoform	24.3		μg/l		20.0		121	70-130		
Bromomethane	15.4		μg/l		20.0		77	70-130		
2-Butanone (MEK)	18.0		μg/l		20.0		90	70-130		
n-Butylbenzene	20.5		μg/l		20.0		102	70-130		
sec-Butylbenzene	21.4		μg/l		20.0		107	70-130		
tert-Butylbenzene	21.4		μg/l		20.0		107	70-130		
Carbon disulfide	25.1		μg/l		20.0		126	70-130		
Carbon tetrachloride	20.8		μg/l		20.0		104	70-130		
Chlorobenzene	19.4		μg/l		20.0		97	70-130		
Chloroethane	17.2		μg/l		20.0		86	70-130		
Chloroform	18.5		μg/l		20.0		92	70-130		
Chloromethane	16.4		μg/l		20.0		82	70-130		
2-Chlorotoluene	20.5		μg/l		20.0		102	70-130		
4-Chlorotoluene	20.0		μg/l		20.0		100	70-130		
1,2-Dibromo-3-chloropropane	23.0		μg/l		20.0		115	70-130		
Dibromochloromethane	22.0		μg/l		20.0		110	70-130		
1,2-Dibromoethane (EDB)	19.9		μg/l		20.0		100	70-130		
Dibromomethane	19.3		μg/l		20.0		97	70-130		
1,2-Dichlorobenzene	19.9		μg/l		20.0		100	70-130		
1,3-Dichlorobenzene	20.4		μg/l		20.0		102	70-130		
1,4-Dichlorobenzene	19.1		μg/l		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	17.0		μg/l		20.0		85	70-130		
1,1-Dichloroethane	19.4		μg/l		20.0		97	70-130		
1,2-Dichloroethane	19.4 18.4		μg/l μg/l		20.0		97 92	70-130 70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1602363 - SW846 5030 Water MS										
LCS (1602363-BS1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,1-Dichloroethene	17.7		μg/l		20.0		88	70-130		
cis-1,2-Dichloroethene	19.5		μg/l		20.0		98	70-130		
trans-1,2-Dichloroethene	20.0		μg/l		20.0		100	70-130		
1,2-Dichloropropane	19.1		μg/l		20.0		96	70-130		
1,3-Dichloropropane	18.9		μg/l		20.0		95	70-130		
2,2-Dichloropropane	19.2		μg/l		20.0		96	70-130		
1,1-Dichloropropene	20.7		μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	20.8		μg/l		20.0		104	70-130		
trans-1,3-Dichloropropene	20.1		μg/l		20.0		100	70-130		
Ethylbenzene	20.2		μg/l		20.0		101	70-130		
Hexachlorobutadiene	20.9		μg/l		20.0		105	70-130		
2-Hexanone (MBK)	18.6		μg/l		20.0		93	70-130		
Isopropylbenzene	20.8		μg/l		20.0		104	70-130		
4-Isopropyltoluene	20.6		μg/l		20.0		103	70-130		
Methyl tert-butyl ether	19.2		μg/l		20.0		96	70-130		
4-Methyl-2-pentanone (MIBK)	18.9		μg/l		20.0		95	70-130		
Methylene chloride	19.1		μg/l		20.0		96	70-130		
Naphthalene	13.1	QC2	μg/l		20.0		65	70-130		
n-Propylbenzene	20.7		μg/l		20.0		103	70-130		
Styrene	20.4		μg/l		20.0		102	70-130		
1,1,1,2-Tetrachloroethane	21.8		μg/l		20.0		109	70-130		
1,1,2,2-Tetrachloroethane	23.8		μg/l		20.0		119	70-130		
Tetrachloroethene	20.6		μg/l		20.0		103	70-130		
Toluene	19.3		μg/l		20.0		97	70-130		
1,2,3-Trichlorobenzene	17.0		μg/l		20.0		85	70-130		
1,2,4-Trichlorobenzene	16.2		μg/l		20.0		81	70-130		
1,3,5-Trichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,1,1-Trichloroethane	21.1		μg/l		20.0		106	70-130		
1,1,2-Trichloroethane	19.8		μg/l		20.0		99	70-130		
Trichloroethene	18.0		μg/l		20.0		90	70-130		
Trichlorofluoromethane (Freon 11)	18.3		μg/l		20.0		91	70-130		
1,2,3-Trichloropropane	20.2		μg/l		20.0		101	70-130		
1,2,4-Trimethylbenzene	21.2		μg/l		20.0		106	70-130		
1,3,5-Trimethylbenzene	21.0		μg/l		20.0		105	70-130		
Vinyl chloride	16.2		μg/l		20.0		81	70-130		
m,p-Xylene	20.3		μg/l		20.0		102	70-130		
o-Xylene	20.5		μg/l		20.0		102	70-130		
Tetrahydrofuran	18.0		μg/l		20.0		90	70-130		
Ethyl ether	15.9		μg/l		20.0		80	70-130		
Tert-amyl methyl ether	17.6		μg/l		20.0		88	70-130		
Ethyl tert-butyl ether	18.5		μg/l		20.0		92	70-130		
Di-isopropyl ether	18.9		μg/l		20.0		94	70-130		
Tert-Butanol / butyl alcohol	169		μg/l		200		85	70-130		
1,4-Dioxane	205		μg/l		200		103	70-130		
trans-1,4-Dichloro-2-butene	20.4		μg/l		20.0		102	70-130		
Ethanol	321		μg/l		400		80	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.1		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	51.5		μg/l		50.0		103	70-130		
LCS Dup (1602363-BSD1)	01.0		H9'1			epared & A				

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602363 - SW846 5030 Water MS										
LCS Dup (1602363-BSD1)					Pre	epared & Ar	nalyzed: 09-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.7		μg/l		20.0		98	70-130	10	20
Acetone	15.6		μg/l		20.0		78	70-130	5	20
Acrylonitrile	15.4		μg/l		20.0		77	70-130	0.3	20
Benzene	18.2		μg/l		20.0		91	70-130	6	20
Bromobenzene	19.4		μg/l		20.0		97	70-130	2	20
Bromochloromethane	19.5		μg/l		20.0		98	70-130	4	20
Bromodichloromethane	19.2		μg/l		20.0		96	70-130	6	20
Bromoform	22.3		μg/l		20.0		112	70-130	8	20
Bromomethane	14.3		μg/l		20.0		72	70-130	7	20
2-Butanone (MEK)	17.9		μg/l		20.0		89	70-130	0.4	20
n-Butylbenzene	19.1		μg/l		20.0		95	70-130	7	20
sec-Butylbenzene	20.0		μg/l		20.0		100	70-130	7	20
tert-Butylbenzene	20.5		μg/l		20.0		102	70-130	5	20
Carbon disulfide	23.3		μg/l		20.0		117	70-130	7	20
Carbon tetrachloride	19.0		μg/l		20.0		95	70-130	9	20
Chlorobenzene	18.7		μg/l		20.0		94	70-130	4	20
Chloroethane	16.0		μg/l		20.0		80	70-130	7	20
Chloroform	17.6		μg/l		20.0		88	70-130	5	20
Chloromethane	15.6		μg/l		20.0		78	70-130	5	20
2-Chlorotoluene	19.3		μg/l		20.0		96	70-130	6	20
4-Chlorotoluene	19.0		μg/l		20.0		95 95	70-130	5	20
1,2-Dibromo-3-chloropropane	21.2				20.0		106	70-130	8	20
Dibromochloromethane			μg/l		20.0		106	70-130 70-130	5	20
	20.9		μg/l							
1,2-Dibromoethane (EDB)	19.0		μg/l		20.0		95	70-130	5	20
Dibromomethane	18.6		μg/l		20.0		93	70-130	4	20
1,2-Dichlorobenzene	18.6		μg/l		20.0		93	70-130	7	20
1,3-Dichlorobenzene	19.5		μg/l 		20.0		97	70-130	5	20
1,4-Dichlorobenzene	17.9		μg/l "		20.0		90	70-130	6	20
Dichlorodifluoromethane (Freon12)	17.9		μg/l		20.0		90	70-130	5	20
1,1-Dichloroethane	18.4		μg/l		20.0		92	70-130	5	20
1,2-Dichloroethane	17.6		μg/l		20.0		88	70-130	4	20
1,1-Dichloroethene	16.8		μg/l		20.0		84	70-130	5	20
cis-1,2-Dichloroethene	18.2		μg/l		20.0		91	70-130	7	20
trans-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130	5	20
1,2-Dichloropropane	18.3		μg/l		20.0		92	70-130	4	20
1,3-Dichloropropane	17.8		μg/l		20.0		89	70-130	6	20
2,2-Dichloropropane	17.4		μg/l		20.0		87	70-130	10	20
1,1-Dichloropropene	19.1		μg/l		20.0		96	70-130	8	20
cis-1,3-Dichloropropene	19.7		μg/l		20.0		98	70-130	5	20
trans-1,3-Dichloropropene	19.6		μg/l		20.0		98	70-130	2	20
Ethylbenzene	19.3		μg/l		20.0		96	70-130	5	20
Hexachlorobutadiene	19.2		μg/l		20.0		96	70-130	9	20
2-Hexanone (MBK)	18.8		μg/l		20.0		94	70-130	1	20
Isopropylbenzene	19.6		μg/l		20.0		98	70-130	6	20
4-Isopropyltoluene	19.0		μg/l		20.0		95	70-130	8	20
Methyl tert-butyl ether	18.3		μg/l		20.0		92	70-130	4	20
4-Methyl-2-pentanone (MIBK)	18.4		μg/l		20.0		92	70-130	3	20
Methylene chloride	15.9		μg/l		20.0		80	70-130	18	20
Naphthalene	12.7	QC2	μg/l		20.0		64	70-130	3	20
n-Propylbenzene	19.5		μg/l		20.0		98	70-130	6	20
Styrene	19.3		μg/l		20.0		97	70-130	5	20
1,1,1,2-Tetrachloroethane	20.7		μg/l		20.0		104	70-130	5	20

Analyta(a)	D 200-14	Ela-	IJmi+-	*DD1	Spike	Source	0/DEC	%REC	רות ק	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1602363 - SW846 5030 Water MS										
LCS Dup (1602363-BSD1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,1,2,2-Tetrachloroethane	23.4		μg/l		20.0		117	70-130	2	20
Tetrachloroethene	19.5		μg/l		20.0		97	70-130	6	20
Toluene	18.1		μg/l		20.0		90	70-130	7	20
1,2,3-Trichlorobenzene	16.2		μg/l		20.0		81	70-130	5	20
1,2,4-Trichlorobenzene	15.7		μg/l		20.0		78	70-130	3	20
1,3,5-Trichlorobenzene	18.8		μg/l		20.0		94	70-130	6	20
1,1,1-Trichloroethane	19.9		μg/l		20.0		100	70-130	6	20
1,1,2-Trichloroethane	18.7		μg/l		20.0		93	70-130	6	20
Trichloroethene	17.1		μg/l		20.0		86	70-130	5	20
Trichlorofluoromethane (Freon 11)	17.1		μg/l		20.0		86	70-130	6	20
1,2,3-Trichloropropane	19.7		μg/l		20.0		98	70-130	3	20
1,2,4-Trimethylbenzene	20.2		μg/l		20.0		101	70-130	4	20
1,3,5-Trimethylbenzene	19.9		μg/l		20.0		99	70-130	6	20
Vinyl chloride	18.2		μg/l		20.0		91	70-130	11	20
m,p-Xylene	19.3		μg/l		20.0		97	70-130	5	20
o-Xylene	19.6		μg/l		20.0		98	70-130	4	20
Tetrahydrofuran	17.7		μg/l		20.0		89	70-130	1	20
Ethyl ether	15.5		μg/l		20.0		77	70-130	3	20
Tert-amyl methyl ether	17.1		μg/l		20.0		85	70-130	3	20
Ethyl tert-butyl ether	17.1				20.0		89	70-130	3	20
			µg/l				90	70-130		20
Di-isopropyl ether	18.0		μg/l		20.0				5	
Tert-Butanol / butyl alcohol	164		μg/l		200		82	70-130	3	20
1,4-Dioxane	196		μg/l "		200		98	70-130	5	20
trans-1,4-Dichloro-2-butene	19.0		μg/l		20.0		95	70-130	7	20
Ethanol	319		μg/l		400		80	70-130	0.5	20
Surrogate: 4-Bromofluorobenzene	51.6		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.6		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	51.5		μg/l		50.0		103	70-130		
Matrix Spike (1602363-MS1)			Source: SC	17886-05	Pre	epared & A	nalyzed: 09-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.5	D	μg/l		20.0	BRL	92	70-130		
Acetone	15.8	D	μg/l		20.0	BRL	79	70-130		
Acrylonitrile	16.0	D	μg/l		20.0	BRL	80	70-130		
Benzene	17.4	D	μg/l		20.0	BRL	87	70-130		
Bromobenzene	20.0	D	μg/l		20.0	BRL	100	70-130		
Bromochloromethane	18.9	D	μg/l		20.0	BRL	94	70-130		
Bromodichloromethane	17.8	D	μg/l		20.0	BRL	89	70-130		
Bromoform	19.9	D	μg/l		20.0	BRL	99	70-130		
Bromomethane	10.6	QM7, D	μg/l		20.0	BRL	53	70-130		
2-Butanone (MEK)	17.1	D.	μg/l		20.0	BRL	85	70-130		
n-Butylbenzene	17.1	D	μg/l		20.0	BRL	96	70-130		
sec-Butylbenzene	21.0	D	μg/l μg/l		20.0	BRL	105	70-130 70-130		
•		D				BRL		70-130 70-130		
tert-Butylbenzene	21.0		µg/l		20.0		105 67			
Carbon disulfide	14.5	QM7, D	μg/l		20.0	1.0	67	70-130		
Carbon tetrachloride	15.9	D	μg/l		20.0	BRL	79 25	70-130		
Chlorobenzene	19.0	D	μg/l 		20.0	BRL	95	70-130		
Chloroethane	13.5	QM7, D	μg/l		20.0	BRL	68	70-130		
Chloroform	17.4	D	μg/l		20.0	BRL	87	70-130		
Chloromethane	11.2	QM7, D	μg/l		20.0	BRL	56	70-130		
2-Chlorotoluene	19.7	D	μg/l		20.0	BRL	99	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602363 - SW846 5030 Water MS										
Matrix Spike (1602363-MS1)			Source: SC	17886-05	Pre	epared & Ar	nalyzed: 09-	Feb-16		
1,2-Dibromo-3-chloropropane	18.8	D	μg/l		20.0	BRL	94	70-130		
Dibromochloromethane	19.1	D	μg/l		20.0	BRL	95	70-130		
1,2-Dibromoethane (EDB)	18.4	D	μg/l		20.0	BRL	92	70-130		
Dibromomethane	18.1	D	μg/l		20.0	BRL	91	70-130		
1,2-Dichlorobenzene	19.2	D	μg/l		20.0	BRL	96	70-130		
1,3-Dichlorobenzene	20.1	D	μg/l		20.0	BRL	100	70-130		
1,4-Dichlorobenzene	18.5	D	μg/l		20.0	BRL	93	70-130		
Dichlorodifluoromethane (Freon12)	11.7	QM7, D	μg/l		20.0	BRL	59	70-130		
1,1-Dichloroethane	18.0	D	μg/l		20.0	BRL	90	70-130		
1,2-Dichloroethane	17.6	D	μg/l		20.0	BRL	88	70-130		
1,1-Dichloroethene	14.7	D	μg/l		20.0	BRL	74	70-130		
cis-1,2-Dichloroethene	21.2	D	μg/l		20.0	3.4	89	70-130		
trans-1,2-Dichloroethene	16.9	D	μg/l		20.0	BRL	85	70-130		
1,2-Dichloropropane	18.0	D	μg/l		20.0	BRL	90	70-130		
1,3-Dichloropropane	18.2	D	μg/l		20.0	BRL	91	70-130		
2,2-Dichloropropane	13.3	QM7, D	μg/l		20.0	BRL	67	70-130		
1,1-Dichloropropene	17.4	D	μg/l		20.0	BRL	87	70-130		
cis-1,3-Dichloropropene	17.1	D	μg/l		20.0	BRL	86	70-130		
trans-1,3-Dichloropropene	16.2	D	μg/l		20.0	BRL	81	70-130		
Ethylbenzene	19.4	D	μg/l		20.0	BRL	97	70-130		
Hexachlorobutadiene	20.0	D	μg/l		20.0	BRL	100	70-130		
2-Hexanone (MBK)	18.5	D	μg/l		20.0	BRL	93	70-130		
Isopropylbenzene	20.0	D	μg/l		20.0	BRL	100	70-130		
4-Isopropyltoluene	19.6	D	μg/l		20.0	BRL	98	70-130		
Methyl tert-butyl ether	17.6	D	μg/l		20.0	BRL	88	70-130		
4-Methyl-2-pentanone (MIBK)	18.6	D	μg/l		20.0	BRL	93	70-130		
Methylene chloride	19.8	D	μg/l		20.0	BRL	99	70-130		
Naphthalene	11.2	QC2, D	μg/l		20.0	BRL	56	70-130		
n-Propylbenzene	19.9	D	μg/l		20.0	BRL	99	70-130		
Styrene	19.8	D	μg/l		20.0	BRL	99	70-130		
1,1,1,2-Tetrachloroethane	18.9	D	μg/l		20.0	BRL	95	70-130		
1,1,2,2-Tetrachloroethane	23.8	D	μg/l		20.0	BRL	119	70-130		
Tetrachloroethene	30.6	D	μg/l		20.0	13.1	88	70-130		
Toluene	18.0	D	μg/l		20.0	BRL	90	70-130		
1,2,3-Trichlorobenzene	14.6	D	μg/l		20.0	BRL	73	70-130		
1,2,4-Trichlorobenzene	14.2	D	μg/l		20.0	BRL	71	70-130		
1,3,5-Trichlorobenzene	18.7	D	μg/l		20.0	BRL	93	70-130		
1,1,1-Trichloroethane	17.8	D	μg/l		20.0	BRL	89	70-130		
1,1,2-Trichloroethane	19.4	D	μg/l		20.0	BRL	97	70-130		
Trichloroethene	17.8	D	μg/l		20.0	1.2	83	70-130		
Trichlorofluoromethane (Freon 11)	15.0	D	μg/l		20.0	BRL	75	70-130		
1,2,3-Trichloropropane	20.2	D	μg/l		20.0	BRL	101	70-130		
1,2,4-Trimethylbenzene	20.7	D	μg/l		20.0	BRL	104	70-130		
1,3,5-Trimethylbenzene	20.4	D	μg/l		20.0	BRL	102	70-130		
Vinyl chloride	13.9	D	μg/l		20.0	BRL	70	70-130		
m,p-Xylene	19.4	D	μg/l		20.0	BRL	97	70-130		
o-Xylene	20.1	D	μg/l		20.0	BRL	100	70-130		
Tetrahydrofuran	17.9	D	μg/l		20.0	BRL	89	70-130		
Ethyl ether	14.4	D	μg/l		20.0	BRL	72	70-130		
Tert-amyl methyl ether	16.1	D	μg/l		20.0	BRL	81	70-130		
Ethyl tert-butyl ether	17.0	D	μg/l		20.0	BRL	85	70-130		
Di-isopropyl ether	17.8	D	μg/l		20.0	BRL	89	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
eatch 1602363 - SW846 5030 Water MS										
Matrix Spike (1602363-MS1)			Source: SC	C17886-05	Pre	epared & Ar	nalyzed: 09-	Feb-16		
Tert-Butanol / butyl alcohol	158	D	μg/l		200	BRL	79	70-130		
1,4-Dioxane	202	D	μg/l		200	BRL	101	70-130		
trans-1,4-Dichloro-2-butene	18.0	D	μg/l		20.0	BRL	90	70-130		
Ethanol	344	D	μg/l		400	BRL	86	70-130		
Surrogate: 4-Bromofluorobenzene	51.7		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.6		μg/l		50.0		95	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/l		50.0		100	70-130		
Matrix Spike Dup (1602363-MSD1)			Source: SC	C17886-05	Pre	epared & Ar	nalyzed: 09-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.7	D	μg/l		20.0	BRL	94	70-130	1	20
Acetone	16.8	D	μg/l		20.0	BRL	84	70-130	6	20
Acrylonitrile	15.8	D	μg/l		20.0	BRL	79	70-130	2	20
Benzene	18.0	D	μg/l		20.0	BRL	90	70-130	3	20
Bromobenzene	20.2	D	μg/l		20.0	BRL	101	70-130	1	20
Bromochloromethane	19.6	D	μg/l		20.0	BRL	98	70-130	4	20
Bromodichloromethane	18.6	D	μg/l		20.0	BRL	93	70-130	4	20
Bromoform	21.0	D	μg/l		20.0	BRL	105	70-130	5	20
Bromomethane	11.4	QM7, D	μg/l		20.0	BRL	57	70-130	8	20
2-Butanone (MEK)	18.6	D	μg/l		20.0	BRL	93	70-130	8	20
n-Butylbenzene	19.4	D	μg/l		20.0	BRL	97	70-130	1	20
sec-Butylbenzene	20.8	D	μg/l		20.0	BRL	104	70-130	0.5	20
tert-Butylbenzene	21.0	D	μg/l		20.0	BRL	105	70-130	0.4	20
Carbon disulfide	14.9	D	μg/l		20.0	1.0	70	70-130	3	20
Carbon tetrachloride	16.4	D	μg/l		20.0	BRL	82	70-130	4	20
Chlorobenzene	19.2	D	μg/l		20.0	BRL	96	70-130	0.8	20
Chloroethane	13.6	QM7, D	μg/l		20.0	BRL	68	70-130	0.2	20
Chloroform	18.2	D	μg/l		20.0	BRL	91	70-130	4	20
Chloromethane	11.3	QM7, D	μg/l		20.0	BRL	56	70-130	0.6	20
2-Chlorotoluene	20.0	D	μg/l		20.0	BRL	100	70-130	1	20
4-Chlorotoluene	19.5	D	μg/l		20.0	BRL	98	70-130	1	20
1,2-Dibromo-3-chloropropane	19.4	D	μg/l		20.0	BRL	97	70-130	3	20
Dibromochloromethane	20.0	D	μg/l		20.0	BRL	100	70-130	5	20
1,2-Dibromoethane (EDB)	19.2	D	μg/l		20.0	BRL	96	70-130	5	20
Dibromomethane	19.1	D	μg/l		20.0	BRL	95	70-130	5	20
1,2-Dichlorobenzene	19.9	D	μg/l		20.0	BRL	100	70-130	4	20
1,3-Dichlorobenzene	20.2	D	μg/l		20.0	BRL	101	70-130	0.8	20
1,4-Dichlorobenzene	18.8	D	μg/l		20.0	BRL	94	70-130	1	20
Dichlorodifluoromethane (Freon12)	12.3	QM7, D	μg/l		20.0	BRL	62	70-130	5	20
1,1-Dichloroethane	18.3	D -	μg/l		20.0	BRL	91	70-130	2	20
1,2-Dichloroethane	18.1	D	μg/l		20.0	BRL	91	70-130	3	20
1,1-Dichloroethene	14.7	D	μg/l		20.0	BRL	73	70-130	0.2	20
cis-1,2-Dichloroethene	22.0	D	μg/l		20.0	3.4	93	70-130	4	20
trans-1,2-Dichloroethene	17.2	D	μg/l		20.0	BRL	86	70-130	2	20
1,2-Dichloropropane	18.5	D	μg/l		20.0	BRL	92	70-130	3	20
1,3-Dichloropropane	18.8	D OM7 D	μg/l		20.0	BRL	94	70-130	3	20
2,2-Dichloropropane	13.9	QM7, D	μg/l		20.0	BRL	69	70-130	4	20
1,1-Dichloropropene	17.7	D	μg/l		20.0	BRL	88	70-130	2	20
cis-1,3-Dichloropropene	18.0	D	µg/l		20.0	BRL	90	70-130	5	20
trans-1,3-Dichloropropene	17.2	D D	μg/l		20.0	BRL	86	70-130 70-130	6	20
Ethylbenzene	19.5	U	μg/l		20.0	BRL	98	70-130	0.6	20 20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1602363 - SW846 5030 Water MS										
Matrix Spike Dup (1602363-MSD1)			Source: SC	C17886-05	Pre	epared & Ar	nalyzed: 09-	Feb-16		
2-Hexanone (MBK)	18.8	D	μg/l		20.0	BRL	94	70-130	2	20
Isopropylbenzene	20.1	D	μg/l		20.0	BRL	101	70-130	0.5	20
4-Isopropyltoluene	20.0	D	μg/l		20.0	BRL	100	70-130	2	20
Methyl tert-butyl ether	18.3	D	μg/l		20.0	BRL	92	70-130	4	20
4-Methyl-2-pentanone (MIBK)	19.5	D	μg/l		20.0	BRL	97	70-130	4	20
Methylene chloride	19.9	D	μg/l		20.0	BRL	99	70-130	0.6	20
Naphthalene	11.8	QC2, D	μg/l		20.0	BRL	59	70-130	6	20
n-Propylbenzene	20.3	D	μg/l		20.0	BRL	101	70-130	2	20
Styrene	20.0	D	μg/l		20.0	BRL	100	70-130	1	20
1,1,1,2-Tetrachloroethane	19.2	D	μg/l		20.0	BRL	96	70-130	1	20
1,1,2,2-Tetrachloroethane	23.8	D	μg/l		20.0	BRL	119	70-130	0.3	20
Tetrachloroethene	30.9	D	μg/l		20.0	13.1	89	70-130	1	20
Toluene	18.4	D	μg/l		20.0	BRL	92	70-130	2	20
1,2,3-Trichlorobenzene	15.3	D	μg/l		20.0	BRL	77	70-130	5	20
1,2,4-Trichlorobenzene	14.4	D	μg/l		20.0	BRL	72	70-130	1	20
1,3,5-Trichlorobenzene	18.9	D	μg/l		20.0	BRL	95	70-130	1	20
1,1,1-Trichloroethane	18.1	D	μg/l		20.0	BRL	90	70-130	2	20
1,1,2-Trichloroethane	20.0	D	μg/l		20.0	BRL	100	70-130	3	20
Trichloroethene	18.0	D	μg/l		20.0	1.2	84	70-130	1	20
Trichlorofluoromethane (Freon 11)	15.2	D	μg/l		20.0	BRL	76	70-130	1	20
1,2,3-Trichloropropane	20.9	D	μg/l		20.0	BRL	104	70-130	3	20
1,2,4-Trimethylbenzene	20.8	D	μg/l		20.0	BRL	104	70-130	0.2	20
1,3,5-Trimethylbenzene	20.7	D	μg/l		20.0	BRL	104	70-130	1	20
Vinyl chloride	10.8	QM7, QR5, D	μg/l		20.0	BRL	54	70-130	25	20
m,p-Xylene	19.8	D	μg/l		20.0	BRL	99	70-130	2	20
o-Xylene	20.1	D	μg/l		20.0	BRL	101	70-130	0.1	20
Tetrahydrofuran	18.4	D	μg/l		20.0	BRL	92	70-130	3	20
Ethyl ether	14.6	D	μg/l		20.0	BRL	73	70-130	1	20
Tert-amyl methyl ether	16.6	D	μg/l		20.0	BRL	83	70-130	3	20
Ethyl tert-butyl ether	17.5	D	μg/l		20.0	BRL	87	70-130	3	20
Di-isopropyl ether	18.3	D	μg/l		20.0	BRL	91	70-130	2	20
Tert-Butanol / butyl alcohol	165	D	μg/l		200	BRL	83	70-130	4	20
1,4-Dioxane	208	D	μg/l		200	BRL	104	70-130	3	20
trans-1,4-Dichloro-2-butene	17.6	D	μg/l		20.0	BRL	88	70-130	2	20
Ethanol	364	D	μg/l		400	BRL	91	70-130	6	20
Surrogate: 4-Bromofluorobenzene	51.1		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.2		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.1		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	50.9		μg/l		50.0		102	70-130		
itch 1602364 - SW846 5030 Water MS										
Blank (1602364-BLK1)					Pre	epared & Ar	nalyzed: 09-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0				<del></del>		
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1602364 - SW846 5030 Water MS										
Blank (1602364-BLK1)					Pre	epared & Ai	nalyzed: 09-	-Feb-16		
n-Butylbenzene	< 1.0		μg/l	1.0		•				
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0			1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane			μg/l	1.0						
	< 1.0		μg/l							
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l 	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602364 - SW846 5030 Water MS										
Blank (1602364-BLK1)					Pre	epared & Ai	nalyzed: 09-	Feb-16		
1,2,3-Trichloropropane	< 1.0		μg/l	1.0		•	-			
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0			20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 5.0 < 400		μg/l μg/l	400						
					50 O		01	70 120		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	45.4 48.9		μg/l		50.0 50.0		91 98	70-130 70-130		
=			μg/l							
Surrogate: 1,2-Dichloroethane-d4	54.4		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	52.8		μg/l		50.0		106	70-130		
LCS (1602364-BS1)						epared & Ai	nalyzed: 09-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.5		μg/l		20.0		128	70-130		
Acetone	23.3		μg/l		20.0		116	70-130		
Acrylonitrile	22.2		μg/l		20.0		111	70-130		
Benzene	22.1		μg/l		20.0		110	70-130		
Bromobenzene	21.8		μg/l		20.0		109	70-130		
Bromochloromethane	23.7		μg/l		20.0		119	70-130		
Bromodichloromethane	20.9		μg/l		20.0		105	70-130		
Bromoform	23.7		μg/l		20.0		119	70-130		
Bromomethane	20.4		μg/l		20.0		102	70-130		
2-Butanone (MEK)	20.9		μg/l		20.0		104	70-130		
n-Butylbenzene	25.2		μg/l		20.0		126	70-130		
sec-Butylbenzene	22.5		μg/l		20.0		112	70-130		
tert-Butylbenzene	26.5	QM9	μg/l		20.0		132	70-130		
Carbon disulfide	22.6		μg/l		20.0		113	70-130		
Carbon tetrachloride	25.3		μg/l		20.0		127	70-130		
Chlorobenzene	20.8		μg/l		20.0		104	70-130		
Chloroethane	21.1		μg/l		20.0		106	70-130		
Chloroform	21.4		μg/l		20.0		107	70-130		
Chloromethane	18.7		μg/l		20.0		94	70-130		
2-Chlorotoluene	23.7		μg/l		20.0		119	70-130		
4-Chlorotoluene	23.7		μg/l		20.0		118	70-130		
1,2-Dibromo-3-chloropropane	21.3		μg/l		20.0		106	70-130		
Dibromochloromethane	21.1		μg/l		20.0		106	70-130		
1,2-Dibromoethane (EDB)	21.6		μg/l		20.0		108	70-130		
Dibromomethane	22.2		μg/l		20.0		111	70-130		
1,2-Dichlorobenzene	21.8		μg/l		20.0		109	70-130		
1,3-Dichlorobenzene	22.6		μg/l		20.0		113	70-130		
1,4-Dichlorobenzene	19.9		μg/l		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	24.2				20.0		121	70-130		
			µg/l							
1,1-Dichloroethane	21.2		μg/l		20.0		106	70-130		
1,2-Dichloroethane	20.4		μg/l		20.0		102	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1602364 - SW846 5030 Water MS										
LCS (1602364-BS1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,1-Dichloroethene	24.2		μg/l		20.0		121	70-130		
cis-1,2-Dichloroethene	22.0		μg/l		20.0		110	70-130		
trans-1,2-Dichloroethene	22.3		μg/l		20.0		111	70-130		
1,2-Dichloropropane	21.1		μg/l		20.0		105	70-130		
1,3-Dichloropropane	20.6		μg/l		20.0		103	70-130		
2,2-Dichloropropane	23.2		μg/l		20.0		116	70-130		
1,1-Dichloropropene	24.8		μg/l		20.0		124	70-130		
cis-1,3-Dichloropropene	22.0		μg/l		20.0		110	70-130		
trans-1,3-Dichloropropene	21.6		μg/l		20.0		108	70-130		
Ethylbenzene	23.1		μg/l		20.0		115	70-130		
Hexachlorobutadiene	24.2		μg/l		20.0		121	70-130		
2-Hexanone (MBK)	21.2		μg/l		20.0		106	70-130		
Isopropylbenzene	24.0		μg/l		20.0		120	70-130		
4-Isopropyltoluene	24.3		μg/l		20.0		121	70-130		
Methyl tert-butyl ether	21.4		μg/l		20.0		107	70-130		
4-Methyl-2-pentanone (MIBK)	23.3		μg/l		20.0		116	70-130		
Methylene chloride	20.9		μg/l		20.0		104	70-130		
Naphthalene	17.9		μg/l		20.0		89	70-130		
n-Propylbenzene	24.2		μg/l		20.0		121	70-130		
Styrene	23.4		μg/l		20.0		117	70-130		
1,1,1,2-Tetrachloroethane	21.8		μg/l		20.0		109	70-130		
1,1,2,2-Tetrachloroethane	21.6		μg/l		20.0		108	70-130		
Tetrachloroethene	23.7		μg/l		20.0		118	70-130		
Toluene	21.3		μg/l		20.0		107	70-130		
1,2,3-Trichlorobenzene	23.8		μg/l		20.0		119	70-130		
1,2,4-Trichlorobenzene	22.9		μg/l		20.0		114	70-130		
1,3,5-Trichlorobenzene	23.5		μg/l		20.0		117	70-130		
1,1,1-Trichloroethane	24.0				20.0		120	70-130		
1,1,2-Trichloroethane	21.2		μg/l		20.0		106	70-130		
Trichloroethene	22.3		µg/l		20.0		111	70-130		
			μg/l					70-130		
Trichlorofluoromethane (Freon 11)	25.9		μg/l		20.0		130			
1,2,3-Trichloropropane	21.3	QM9	μg/l		20.0		107	70-130		
1,2,4-Trimethylbenzene	26.1		μg/l		20.0		131	70-130		
1,3,5-Trimethylbenzene	26.8	QM9	μg/l		20.0		134	70-130		
Vinyl chloride	22.9		μg/l		20.0		115	70-130		
m,p-Xylene	24.9		μg/l		20.0		124	70-130		
o-Xylene	25.0		μg/l "		20.0		125	70-130		
Tetrahydrofuran	20.4		μg/l 		20.0		102	70-130		
Ethyl ether	21.4		μg/l "		20.0		107	70-130		
Tert-amyl methyl ether	23.4		μg/l		20.0		117	70-130		
Ethyl tert-butyl ether	21.3		μg/l		20.0		106	70-130		
Di-isopropyl ether	21.6		μg/l		20.0		108	70-130		
Tert-Butanol / butyl alcohol	198		μg/l		200		99	70-130		
1,4-Dioxane	239		μg/l		200		120	70-130		
trans-1,4-Dichloro-2-butene	20.7		μg/l		20.0		103	70-130		
Ethanol	415		μg/l		400		104	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.6		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/l		50.0		101	70-130		
LCS Dup (1602364-BSD1)					Pre	epared & A	nalyzed: 09-	Feb-16		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
	Result	1 lug	Omts	RDL	Level	Result	70KEC	Limis	МЪ	Liiii
Batch 1602364 - SW846 5030 Water MS					D.	l O A		F-1- 40		
LCS Dup (1602364-BSD1)						epared & A	nalyzed: 09-		40	
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.1		μg/l		20.0		115	70-130	10	20
Acetone	21.9		μg/l		20.0		110	70-130	6	20
Acrylonitrile Benzene	21.2		µg/l		20.0		106	70-130	5	20
	20.7		µg/l		20.0		104	70-130	7	20
Bromobenzene Bromochloromethane	20.7		µg/l		20.0 20.0		104 113	70-130 70-130	5 5	20 20
Bromodichloromethane	22.6 19.9		µg/l		20.0		100	70-130	5	20
Bromoform	22.8		μg/l μg/l		20.0		114	70-130	4	20
Bromomethane	19.4		μg/l		20.0		97	70-130	5	20
2-Butanone (MEK)	22.1		μg/l		20.0		111	70-130	6	20
n-Butylbenzene	22.1		μg/l		20.0		112	70-130	12	20
sec-Butylbenzene	21.4		μg/l		20.0		107	70-130	5	20
tert-Butylbenzene	24.7		μg/l		20.0		124	70-130	7	20
Carbon disulfide	20.8		μg/l		20.0		104	70-130	8	20
Carbon tetrachloride	23.4		μg/l		20.0		117	70-130	8	20
Chlorobenzene	19.8		μg/l		20.0		99	70-130	5	20
Chloroethane	19.4		μg/l		20.0		97	70-130	8	20
Chloroform	20.1		μg/l		20.0		100	70-130	6	20
Chloromethane	17.9		μg/l		20.0		90	70-130	4	20
2-Chlorotoluene	22.6		μg/l		20.0		113	70-130	5	20
4-Chlorotoluene	22.4		μg/l		20.0		112	70-130	6	20
1,2-Dibromo-3-chloropropane	20.1		μg/l		20.0		100	70-130	6	20
Dibromochloromethane	20.4		μg/l		20.0		102	70-130	3	20
1,2-Dibromoethane (EDB)	21.0		μg/l		20.0		105	70-130	3	20
Dibromomethane	21.4		μg/l		20.0		107	70-130	4	20
1,2-Dichlorobenzene	19.8		μg/l		20.0		99	70-130	9	20
1,3-Dichlorobenzene	21.7		μg/l		20.0		109	70-130	4	20
1,4-Dichlorobenzene	18.1		μg/l		20.0		91	70-130	9	20
Dichlorodifluoromethane (Freon12)	22.8		μg/l		20.0		114	70-130	6	20
1,1-Dichloroethane	20.0		μg/l		20.0		100	70-130	6	20
1,2-Dichloroethane	19.6		μg/l		20.0		98	70-130	4	20
1,1-Dichloroethene	22.3		μg/l		20.0		112	70-130	8	20
cis-1,2-Dichloroethene	21.0		μg/l		20.0		105	70-130	5	20
trans-1,2-Dichloroethene	20.9		μg/l		20.0		105	70-130	6	20
1,2-Dichloropropane	19.8		μg/l		20.0		99	70-130	6	20
1,3-Dichloropropane	19.3		μg/l		20.0		97	70-130	6	20
2,2-Dichloropropane	21.2		μg/l		20.0		106	70-130	9	20
1,1-Dichloropropene	22.8		μg/l		20.0		114	70-130	8	20
cis-1,3-Dichloropropene	21.1		μg/l		20.0		105	70-130	5	20
trans-1,3-Dichloropropene	21.1		μg/l		20.0		106	70-130	2	20
Ethylbenzene	21.7		μg/l		20.0		108	70-130	6	20
Hexachlorobutadiene	22.0		μg/l		20.0		110	70-130	10	20
2-Hexanone (MBK)	21.0		μg/l		20.0		105	70-130	1	20
Isopropylbenzene	22.6		μg/l		20.0		113	70-130	6	20
4-Isopropyltoluene	21.9		μg/l		20.0		110	70-130	10	20
Methyl 2 posterope (MIRK)	20.8		µg/l		20.0		104	70-130	3	20
4-Methyl-2-pentanone (MIBK)	22.6		µg/l		20.0		113	70-130	3	20
Methylene chloride	19.9		µg/l		20.0		100	70-130	5	20
Naphthalene	16.6		µg/l		20.0 20.0		83 11 <i>1</i>	70-130 70-130	7	20 20
n-Propylbenzene Styrene	22.8 22.2		μg/l		20.0		114 111	70-130 70-130	6 5	20
1,1,1,2-Tetrachloroethane	21.0		μg/l μg/l		20.0		105	70-130 70-130	5 4	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602364 - SW846 5030 Water MS										
LCS Dup (1602364-BSD1)					Pre	epared & A	nalyzed: 09-	Feb-16		
1,1,2,2-Tetrachloroethane	20.8		μg/l		20.0		104	70-130	3	20
Tetrachloroethene	22.0		μg/l		20.0		110	70-130	7	20
Toluene	20.2		μg/l		20.0		101	70-130	5	20
1,2,3-Trichlorobenzene	21.7		μg/l		20.0		108	70-130	9	20
1,2,4-Trichlorobenzene	21.1		μg/l		20.0		105	70-130	8	20
1,3,5-Trichlorobenzene	21.2		μg/l		20.0		106	70-130	10	20
1,1,1-Trichloroethane	22.5		μg/l		20.0		112	70-130	7	20
1,1,2-Trichloroethane	20.4		μg/l		20.0		102	70-130	4	20
Trichloroethene	20.9		μg/l		20.0		105	70-130	6	20
Trichlorofluoromethane (Freon 11)	23.7		μg/l		20.0		118	70-130	9	20
1,2,3-Trichloropropane	20.5		μg/l		20.0		103	70-130	4	20
1,2,4-Trimethylbenzene	25.0		μg/l		20.0		125	70-130	5	20
1,3,5-Trimethylbenzene	25.5		μg/l		20.0		128	70-130	5	20
Vinyl chloride	21.3				20.0		107	70-130	7	20
m,p-Xylene			μg/l		20.0		117	70-130 70-130	6	20
• •	23.4		μg/l							
o-Xylene	24.0		μg/l		20.0		120	70-130	4	20
Tetrahydrofuran	20.6		μg/l		20.0		103	70-130	1	20
Ethyl ether	20.6		μg/l		20.0		103	70-130	3	20
Tert-amyl methyl ether	22.7		μg/l		20.0		113	70-130	3	20
Ethyl tert-butyl ether	20.6		μg/l		20.0		103	70-130	3	20
Di-isopropyl ether	20.8		μg/l		20.0		104	70-130	4	20
Tert-Butanol / butyl alcohol	195		μg/l		200		98	70-130	1	20
1,4-Dioxane	229		μg/l		200		114	70-130	4	20
trans-1,4-Dichloro-2-butene	20.3		μg/l		20.0		102	70-130	2	20
Ethanol	393		μg/l		400		98	70-130	6	20
Surrogate: 4-Bromofluorobenzene	52.2		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	49.9		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.2		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	49.8		μg/l		50.0		100	70-130		
atch 1602521 - SW846 5030 Water MS										
Blank (1602521-BLK1)					Pre	epared & A	nalyzed: 11-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.0			1.0						
sec-Butylbenzene	< 1.0		μg/l	1.0						
•			μg/l							
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1602521 - SW846 5030 Water MS										
Blank (1602521-BLK1)					Pre	epared & Ai	nalyzed: 11-	Feb-16		
4-Chlorotoluene	< 1.0		μg/l	1.0			-			
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0			1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0			1.0						
• •	< 1.0		μg/l	1.0						
Styrene 1.1.1.2 Totrachleroothana			μg/l							
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	< 1.0		μg/l	1.0						
Tetrachloroethene	< 0.5 < 1.0		μg/l	0.5 1.0						
	< 1.0		μg/l							
Toluene 1,2,3-Trichlorobenzene	< 1.0 < 1.0		μg/l	1.0 1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
* *	< 1.0		μg/l							
1,3,5-Trichlorobenzene	< 1.0 < 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0 < 1.0		μg/l	1.0						
1,1,2-Trichloroethane			μg/l	1.0						
Trichlorofluoromethana (Fronn 11)	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1602521 - SW846 5030 Water MS										
Blank (1602521-BLK1)					Pre	epared & Ar	nalyzed: 11-	Feb-16		
Di-isopropyl ether	< 1.0		μg/l	1.0			-			
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	46.5		μg/l		50.0		93	70-130		
Surrogate: Toluene-d8	50.4		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.2		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		
LCS (1602521-BS1)			F-9·			enared & Ai	nalyzed: 11-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.1		μg/l		20.0	<u> </u>	101	70-130		
Acetone	20.4		μg/l		20.0		102	70-130		
Acrylonitrile	21.0		μg/l		20.0		105	70-130		
Benzene	21.0		μg/l		20.0		110	70-130		
Bromobenzene	21.3		μg/l		20.0		106	70-130		
Bromochloromethane	21.5		μg/l		20.0		108	70-130		
Bromodichloromethane	22.0		μg/l		20.0		110	70-130		
Bromoform	20.4		μg/l		20.0		102	70-130		
Bromomethane	20.4		μg/l		20.0		102	70-130		
2-Butanone (MEK)	21.0				20.0		105	70-130		
			μg/l		20.0		93	70-130		
n-Butylbenzene sec-Butylbenzene	18.6 19.5		μg/l		20.0		93 98	70-130		
tert-Butylbenzene	19.8		μg/l		20.0		99	70-130		
Carbon disulfide	20.3		µg/l		20.0		102	70-130		
Carbon distillide  Carbon tetrachloride	20.3		μg/l		20.0		102	70-130		
Chlorobenzene	20.2		μg/l				100	70-130		
Chloroethane			μg/l		20.0		106			
	21.1		μg/l		20.0			70-130		
Chloroform	20.6		μg/l		20.0		103	70-130		
Chloroteluge	19.7		μg/l		20.0		99	70-130		
2-Chlorotoluene	22.0		μg/l		20.0		110	70-130		
4-Chlorotoluene	19.9		μg/l		20.0		99	70-130		
1,2-Dibromo-3-chloropropane	20.4		μg/l		20.0		102	70-130		
Dibromochloromethane	20.7		μg/l		20.0		104	70-130		
1,2-Dibromoethane (EDB)	22.2		μg/l		20.0		111	70-130		
Dibromomethane	21.3		μg/l		20.0		107	70-130		
1,2-Dichlorobenzene	21.1		μg/l		20.0		105	70-130		
1,3-Dichlorobenzene	21.8		μg/l		20.0		109	70-130		
1,4-Dichlorobenzene	19.2		μg/l		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	21.0		μg/l 		20.0		105	70-130		
1,1-Dichloroethane	21.0		μg/l		20.0		105	70-130		
1,2-Dichloroethane	20.8		μg/l 		20.0		104	70-130		
1,1-Dichloroethene	22.6		μg/l		20.0		113	70-130		
cis-1,2-Dichloroethene	21.0		μg/l		20.0		105	70-130		
trans-1,2-Dichloroethene	21.1		μg/l		20.0		106	70-130		
1,2-Dichloropropane	21.7		μg/l		20.0		109	70-130		
1,3-Dichloropropane	21.5		μg/l		20.0		107	70-130		
2,2-Dichloropropane	17.9		μg/l		20.0		90	70-130		
1,1-Dichloropropene	20.2		μg/l		20.0		101	70-130		
cis-1,3-Dichloropropene	20.0		μg/l		20.0		100	70-130		
trans-1,3-Dichloropropene	20.4		μg/l		20.0		102	70-130		
Ethylbenzene	21.9		μg/l		20.0		110	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602521 - SW846 5030 Water MS										
LCS (1602521-BS1)					Pre	epared & Ar	nalyzed: 11-	Feb-16		
Hexachlorobutadiene	20.5		μg/l		20.0		103	70-130		
2-Hexanone (MBK)	21.6		μg/l		20.0		108	70-130		
Isopropylbenzene	21.1		μg/l		20.0		106	70-130		
4-Isopropyltoluene	19.5		μg/l		20.0		97	70-130		
Methyl tert-butyl ether	18.7		μg/l		20.0		93	70-130		
4-Methyl-2-pentanone (MIBK)	22.8		μg/l		20.0		114	70-130		
Methylene chloride	20.2		μg/l		20.0		101	70-130		
Naphthalene	21.9		μg/l		20.0		110	70-130		
n-Propylbenzene	19.5		μg/l		20.0		98	70-130		
Styrene	20.1		μg/l		20.0		101	70-130		
1,1,1,2-Tetrachloroethane	21.3		μg/l		20.0		107	70-130		
1,1,2,2-Tetrachloroethane	21.1		μg/l		20.0		105	70-130		
Tetrachloroethene	20.9		μg/l		20.0		104	70-130		
Toluene	21.6		μg/l		20.0		108	70-130		
1,2,3-Trichlorobenzene	22.1		μg/l		20.0		110	70-130		
1,2,4-Trichlorobenzene	21.0		μg/l		20.0		105	70-130		
1,3,5-Trichlorobenzene	19.6		μg/l		20.0		98	70-130		
1,1,1-Trichloroethane	21.7		μg/l		20.0		109	70-130		
1,1,2-Trichloroethane	21.2		μg/l		20.0		106	70-130		
Trichloroethene	21.5		μg/l		20.0		107	70-130		
Trichlorofluoromethane (Freon 11)	20.8		μg/l		20.0		104	70-130		
1,2,3-Trichloropropane	21.6		μg/l		20.0		108	70-130		
1,2,4-Trimethylbenzene	19.6		μg/l		20.0		98	70-130		
1,3,5-Trimethylbenzene	19.8		μg/l		20.0		99	70-130		
Vinyl chloride	20.6		μg/l		20.0		103	70-130		
m,p-Xylene	20.0		μg/l		20.0		100	70-130		
o-Xylene	20.6		μg/l		20.0		103	70-130		
Tetrahydrofuran	19.0		μg/l		20.0		95	70-130		
Ethyl ether	21.5		μg/l		20.0		108	70-130		
Tert-amyl methyl ether					20.0		110	70-130		
• •	22.1		μg/l				92	70-130		
Ethyl tert-butyl ether	18.5		μg/l		20.0			70-130 70-130		
Di-isopropyl ether	20.5		μg/l		20.0		103			
Tert-Butanol / butyl alcohol	186		μg/l		200		93	70-130		
1,4-Dioxane	210		μg/l		200		105	70-130		
trans-1,4-Dichloro-2-butene	20.4		μg/l		20.0		102	70-130		
Ethanol	466		μg/l		400		117	70-130		
Surrogate: 4-Bromofluorobenzene	51.1		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.9		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/l		50.0		100	70-130		
LCS Dup (1602521-BSD1)					Pre	epared & Ar	nalyzed: 11-	Feb-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.4		μg/l		20.0		107	70-130	6	20
Acetone	21.5		μg/l		20.0		108	70-130	6	20
Acrylonitrile	21.4		μg/l		20.0		107	70-130	1	20
Benzene	22.9		μg/l		20.0		114	70-130	4	20
Bromobenzene	21.7		μg/l		20.0		109	70-130	2	20
Bromochloromethane	22.0		μg/l		20.0		110	70-130	2	20
Bromodichloromethane	22.9		μg/l		20.0		114	70-130	4	20
Bromoform	21.0		μg/l		20.0		105	70-130	3	20
Bromomethane	20.7		μg/l		20.0		103	70-130	1	20
2-Butanone (MEK)	22.0		μg/l		20.0		110	70-130	5	20

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Satch 1602521 - SW846 5030 Water MS										
LCS Dup (1602521-BSD1)					Pre	enared & A	nalyzed: 11-	Feh-16		
n-Butylbenzene	20.2		μg/l		20.0	epareu & A	101	70-130	9	20
sec-Butylbenzene	21.0				20.0		101	70-130	7	20
•			µg/l							
tert-Butylbenzene Carbon disulfide	21.2		μg/l		20.0 20.0		106 108	70-130 70-130	6	20 20
	21.6		µg/l						6	
Carbon tetrachloride	21.6		μg/l		20.0		108	70-130	7	20
Chlorobenzene	20.9		μg/l		20.0		104	70-130	4	20
Chloroethane	21.7		μg/l		20.0		108	70-130	2	20
Chloroform	21.2		μg/l		20.0		106	70-130	3	20
Chloromethane	21.1		μg/l		20.0		106	70-130	7	20
2-Chlorotoluene	22.9		μg/l 		20.0		115	70-130	4	20
4-Chlorotoluene	21.0		μg/l		20.0		105	70-130	5	20
1,2-Dibromo-3-chloropropane	20.1		μg/l		20.0		100	70-130	1	20
Dibromochloromethane	21.0		μg/l		20.0		105	70-130	2	20
1,2-Dibromoethane (EDB)	22.7		μg/l 		20.0		114	70-130	2	20
Dibromomethane	22.2		μg/l		20.0		111	70-130	4	20
1,2-Dichlorobenzene	21.8		μg/l		20.0		109	70-130	3	20
1,3-Dichlorobenzene	22.6		μg/l		20.0		113	70-130	4	20
1,4-Dichlorobenzene	20.2		μg/l		20.0		101	70-130	5	20
Dichlorodifluoromethane (Freon12)	21.9		μg/l		20.0		110	70-130	4	20
1,1-Dichloroethane	21.8		μg/l		20.0		109	70-130	4	20
1,2-Dichloroethane	21.2		μg/l		20.0		106	70-130	2	20
1,1-Dichloroethene	24.3		μg/l		20.0		122	70-130	7	20
cis-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130	2	20
trans-1,2-Dichloroethene	22.1		μg/l		20.0		110	70-130	4	20
1,2-Dichloropropane	21.8		μg/l		20.0		109	70-130	0.6	20
1,3-Dichloropropane	21.7		μg/l		20.0		109	70-130	1	20
2,2-Dichloropropane	18.8		μg/l		20.0		94	70-130	5	20
1,1-Dichloropropene	21.6		μg/l		20.0		108	70-130	7	20
cis-1,3-Dichloropropene	20.6		μg/l		20.0		103	70-130	3	20
trans-1,3-Dichloropropene	20.7		μg/l		20.0		104	70-130	2	20
Ethylbenzene	23.4		μg/l		20.0		117	70-130	6	20
Hexachlorobutadiene	22.1		μg/l		20.0		110	70-130	7	20
2-Hexanone (MBK)	22.5		μg/l		20.0		112	70-130	4	20
Isopropylbenzene	22.3		μg/l		20.0		111	70-130	5	20
4-Isopropyltoluene	20.5		μg/l		20.0		103	70-130	5	20
Methyl tert-butyl ether	19.3		μg/l		20.0		97	70-130	3	20
4-Methyl-2-pentanone (MIBK)	23.2		μg/l		20.0		116	70-130	2	20
Methylene chloride	20.5		μg/l		20.0		103	70-130	2	20
Naphthalene	23.3		μg/l		20.0		116	70-130	6	20
n-Propylbenzene	21.2		μg/l		20.0		106	70-130	8	20
Styrene	21.0		μg/l		20.0		105	70-130	4	20
1,1,1,2-Tetrachloroethane	22.4		μg/l		20.0		112	70-130	5	20
1,1,2,2-Tetrachloroethane	21.9		μg/l		20.0		110	70-130	4	20
Tetrachloroethene							110			20
	22.0		µg/l		20.0 20.0			70-130 70-130	5	20
Toluene	22.3		µg/l				111	70-130	3	
1,2,3-Trichlorobenzene	23.2		µg/l		20.0		116	70-130	5	20
1,2,4-Trichlorobenzene	21.4		μg/l		20.0		107	70-130	2	20
1,3,5-Trichlorobenzene	21.1		μg/l		20.0		106	70-130	7	20
1,1,1-Trichloroethane	23.1		μg/l 		20.0		115	70-130	6	20
1,1,2-Trichloroethane	21.8		μg/l		20.0		109	70-130	3	20
Trichloroethene	23.0		μg/l		20.0		115	70-130	7	20
Trichlorofluoromethane (Freon 11)	22.1		μg/l		20.0		110	70-130	6	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1602521 - SW846 5030 Water MS										
LCS Dup (1602521-BSD1)					Pre	epared & Ar	nalyzed: 11-	Feb-16		
1,2,3-Trichloropropane	22.1		μg/l		20.0		111	70-130	2	20
1,2,4-Trimethylbenzene	20.6		μg/l		20.0		103	70-130	5	20
1,3,5-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	5	20
Vinyl chloride	21.1		μg/l		20.0		106	70-130	2	20
m,p-Xylene	21.1		μg/l		20.0		105	70-130	5	20
o-Xylene	21.3		μg/l		20.0		107	70-130	3	20
Tetrahydrofuran	21.5		μg/l		20.0		108	70-130	12	20
Ethyl ether	22.0		μg/l		20.0		110	70-130	2	20
Tert-amyl methyl ether	22.6		μg/l		20.0		113	70-130	3	20
Ethyl tert-butyl ether	18.9		μg/l		20.0		94	70-130	2	20
Di-isopropyl ether	21.2		μg/l		20.0		106	70-130	3	20
Tert-Butanol / butyl alcohol	191		μg/l		200		96	70-130	3	20
1,4-Dioxane	229		μg/l		200		114	70-130	9	20
trans-1,4-Dichloro-2-butene	20.8		μg/l		20.0		104	70-130	2	20
Ethanol	495		μg/l		400		124	70-130	6	20
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.2		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	49.6		μg/l		50.0		99	70-130		

#### **Notes and Definitions**

В	Analyte is found in the associated blank as well as in the sample (CLP B-flag).
D	Data reported from a dilution

E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

QB2 The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

QR5 RPD out of acceptance range.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly LaPlante



Page 1 of \$3 BC

8	Standard TAT - 7 to 10 business days
	Rush TAT - Date Needed:
	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes
	0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

Special Handling:

HANIBA	L TECHNOLOGY														4	Samples	nsposed	after 60 days unless otherwise instructed.
Report To:	S Brattleboro		Invoice To	E	ECS	5 /	AG	AW	IAA	Λ_			I	roject No:				00.331
TR.	ratteboro, VT, OS	301											5	ite Name:	Do	2 5	it : y	Windsor GWS
	relationary 11, 03	301											I I	ocation:				
Telephone #:	802-257-1195									r			1	ampler(s):	44-	Bra	Sley	Depot St. State: VT Conway, Jason S.K.
Project Mgr:	Alicea Flamm	ia	P.O No.:				Quote	/RQN:	Ex	ere	we_						<u> </u>	<u> </u>
	1=Na ₂ S2O ₃											L	ist Prese	rvative C	ode belov	w:		QA/QC Reporting Notes:
/=CH3OH	HSO ₄ 9=Deionized Water 10=H ₃ PO ₄	11==	Ice							3	2,11							* additional charges may appply
DW=Dinking Wate	r GW=Groundwater SW=Surfa	ace Water WV	V=Waste Water				Co	ntaine	ers					Analysis				MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No
O=Oil SO=Soil	SL=Sludge A=Indoor/Ambien	nt Air SG=Soi	l Gas								0						pa	
X1=	X2=	X3=		p. I	1	als	lass	Glass		hy	928						chlorinated	□ DQA* □ ASP A* □ ASP B*
	G Grab	C=Compsite		79-1		A Vi	iber C	ar Gl	stic		1			1			if chle	
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	# of VOA Vials	of Amber Glass	of Clear (	of Plastic		28						neck i	Tier II* Tier IV*
17886 01	CBM-5	2/1/2016	11:20	G		3	#	#	#		X			a l				State-specific reporting standards:
-01	CBM-4	212016	11:43	0 (							X	1.77						
-02						3					X	BC						
	CBM-3		13:35			3					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	., -						
1.03	CBM-2		13:05			3					X							
- 01	CBM-1		13:20		1	3					X	21			1402			
	J-GW-DEP8		14:05			3					*	-BC						
-05	J-GW-DEP9		14:12		-	3					X							
-06	J-GW-APT 2		15:35		-	3					X							
1-0	J-GW-APT3		15:55			3					X			13				Hold until nutified
1-08	GAI-35	*	16:25	4	V	3					7							
V Reline	quished by:	Received	by:		I	Date:			Time:		Temp	o°C	□ в	DD format				
12	da	11/1/	all		2-4	1//		//	100	)	Observed.	6	M B	-mail to:	A	FLAM	MIA	@ ECSCONSULT. COM
1	West !	OM	In all	10	2/4	116		IF	533	3	Corecction	Pactor			3	5KARA	(BAK	AKIS@ BOSO USULT. COM
* /	bottom of	J (4	Juliun		111	10		1	//		Corrected	,	Conditi			Contain C	- Los	Present Intact Broken
											Corrected				1	//		
											0	1	An	bient	Iced [	Refrige	rated	☐ DI VOA Frozen ☐ Soil Jar Frozen
		11 Almgren Dr	ive • Agawam.	MA 010	01 - 41	3-789-	9018	FAX	413-75	89-407	6 • wwv	v snec	trum-an	alytical.c	om /	1		Rev. Jan 2014



Page 2 of 3

Special Handling:	0
Standard TAT - 7 to 10 business days	
Rush TAT - Date Needed:	
All TATs subject to laboratory approval	

لسا	Rush 1711 - Dute Needed.
	All TATs subject to laboratory approval
-	Min. 24-hr notification needed for rushes
	Samples disposed after 60 days unless otherwise instructed.
F2 9	1 12 11100 11

Report To: ECS Brattleboro  70 Landmark Hill  Brattleboro, VT, OF  Telephone #: 802-257-1195  Project Mgr: Alicia Flamma	Q	Invoice To: P.O No.:						eme	Site Name:		188.00 Windsor, GWS Depot St. State: VT mway, JASON SK
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄		NaOH 6=A							List Preservative Code	below:	QA/QC Reporting Notes:
						ontain		2,11	Analysis		* additional charges may appply
DW=Dinking Water GW=Groundwater SW=Surfa  O=Oil SO=Soil SL=Sludge A=Indoor/Ambier  X1= 1 H2 / HC	nt Air SG=Soil C		pe	# of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	c 4260	Analysis	Check if chlorinated	MA DEP MCP CAM Report?
Lab ID: Sample ID:	Date:	Time:	Type	# of 1	/ Jo #	) Jo #	# of I	8		Chee	Other: VTDEC State-specific reporting standards:
1786-09 GAI-2S	2/1/2016	17:25	G 60	3				X	0		
1 10 GAI-3D		17:35	111	3				X			
11 GAI - 1 D		18:37		3				X			
12 GAI-18		18:55	1	1.				X			
13 Trip Blank		8:00	X1	- 1				X	4 2 3		
14 Duplicate		NAB	166	3				X			
15 Equipment Blowk	4	8:05	V X1	- 1				X			R R R R R R R R R R R R R R R R R R R
-10 Trip Blank	2/3/2016	9:00 (	3 XI	- 1				X	9 8 1 8		
1-17 CMB-3		13:25	G	V 3				X			
-18 J-GW-DEP 8	4		VI	3				X			
Relinquished by:	Received b	y:		Date:			Time:	Temp °C	EDD format:		
Brycas	7/1/	well	2-	4-	6	110	90	2.6	E-mail to:	AFLAMMIA &	ECSCONSUFF-COM
Most	ONCIL	ulles	2	4/16		15	133	Corecction Facto	r	JKARABAKAK	US @ ECSCONSULT, com
	11 Almgren Driv			1100				Consisted 6	Condition upon receip	t: Custody Seals:	☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen  Rev. Jan 2014



Page 3 of 3

Special Handling:	
Standard TAT - 7 to 10 business days	
Rush TAT - Date Needed:	
All TATs subject to laboratory approval	
Min. 24-hr notification needed for rushes	

	AL TECHNOLOGY																oo days unless otherwise histracted.	
Report To:	Invoice To: ECS Agawam Project No										Project No:	04	04-224488,00					
70 Landmark Hill Rd										-	-		Site Name: Windsor GWS				125	
_ 5	snattlebors, VT. 05	301																
	802-257-1	190						-					Location:	WIN	150V, V	10	Dept St State: VT	
Telephone #: Project Mgr:	Alicia Flammia		P.O No.:				Quot	e/RQN:	EX	tre	me		Sampier(s).		aoicy		ri way	
	1=Na ₂ S2O ₃									T								
	aHSO ₄ 9=Deionized Water 10=H ₃ PO									,		List Pre	servative C	ode below:			QA/QC Reporting Notes:  * additional charges may appply	
											2,11							
DW=Dinking Water	er GW=Groundwater SW=Sur	rface Water WV	V=Waste Water	- 3.		- 10.50	C	ontain	ers				Analysis			N	MA DEP MCP CAM Report? Yes X	
O=Oil SO=So	il SL=Sludge A=Indoor/Ambie	ent Air SG=Soil	l Gas												- 17	25.04	Standard No QC	
X1= 0.3	F H20/HC1 x2=	X3=				Is	lass	SS	iic		9					Check if chlorinated	□ DQA*	
	1,40,11					Via	ber G	r Gla			6						☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full*	
	C=Compsite		Type	Matrix	# of VOA Vials	# of Amber Glass	# of Clear Glass	of Plastic							ck if	Tier II* Tier IV*		
Lab ID:	Sample ID:	Date:	Time:	17/4	Z	Jo#	# of	# of	Jo#		VOC				4	Che	Other: VT DF 6 State-specific reporting standards:	
7886 -19	J-GW-APT3 KAS-1	2/3/2016	18:00			3					X						Hold until notific	
1 70	KAS-1	3 1	18:47			3				A	X							
0	11/10	7																
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
	1											_	0.20					
											-							
														N .				
				- 1										4 1/4 1/2				
Relin	iquished by:	Received	bv:			Date:			Time:		Temp °C	18r	EDD format	ALI	ΛΛΛΛ	ATA	QECS Consult	
D		11/11	. 4		9	11		10000	1/2		Observed /		E-mail to:	731	-14/1/10	1	FOR TOS CONSUIT	
151	Cy V	LANG	W	-	1-	471	6	1	100		d16	7	L-man to.	JK	A of DO	KOLF	KLS@ECS Consul	
9	Maget			Æ		4/1	6	1	53	3	0							
-//	W W	-14			1	11		-			Downted /	Condi	ion upon re	ceint: Cu	tody Seals:		Present  Intact Broken	
``										-	7 1 P			\	/			
											01		mbient	Iced	Refrigerated		DI VOA Frozen Soil Jar Froz	
	1	11 Almgren Dr	ive • Agawam,	MA 01	001 • .	413-78	9-9018	• FAX	413-78	9-4076	• www.sp	ectrum-a	malytical.co	om			Rev. Jan 2014	



Page 1 of \$3 BC

>	Standard TAT - 7 to 10 business days	
	Rush TAT - Date Needed:	
	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes	

Special Handling:

Brutle Telephone #: 80		30\	Invoice To: P.O No.:									04-2244 DBJG St.,	Windson GWS Depot St. State: VT Conway, Jason S.K.
	2O ₃ <b>2</b> =HCl <b>3</b> =H ₂ SO ₄	4=HNO ₃ 5	NaOH 6=	Ascorbic A	cid				\$ 211	I	List Preservative Code	e below:	QA/QC Reporting Notes: * additional charges may appply
O=Oil SO=Soil SL=	Sludge A=Indoor/Ambier  X2=	nt Air SG=Soil		(4	# of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	09280		Analysis	k if chlorinated	MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV*
1700	Sample ID:	Date: 2/1/2016	Time:	Type		# of A	# of C	# of P	3			Checl	Other: VT DEC State-specific reporting standards:
02 CB 03 CB 04 CB 05 J-0 06 J-0 (1) J-6	M-4 M-3 M-1 M-DEP8 W-DEP9 W-APT 2 W-APT 3 L-35	Received	11:20 11:43 12:25 13:05 13:20 14:05 14:12 15:35 16:25		3 3 3 3 3 3 3 3			Time:	X X X	BC BC			Hold Until mitited Rus persiences
Proper	Vallent 1	Sh	Snoull		4/16	2		633	Observed Correcting IR ID	6 2	E-mail to:  Condition upon receip	A FLAMMIA  JKARABAK  ot: Custody Seals:  d Refrigerated	C ECSCONSULT. COM  AKIS C BOSCONSULT. COM  Present Intact Broken  DI VOA Frozen Soil Jar Frozen  Rev. Jan 2014