

INITIAL SITE INVESTIGATION 929 SHELBURNE ROAD SOUTH BURLINGTON, VT

Prepared for: Mr. Gary Dean Merchants Bank P.O. Box 1009 South Burlington, VT

Project No. 08-209727.01 December 2008

Prepared for: ECS 1 Elm Street, Suite 3 Waterbury, VT 05676 tel 802.241.4131 fax 802.244.6894 www.ecsconsult.com

TABLE OF CONTENTS

EXECUTIVE SU	JMMARY							
1.0 INTRODUCTION								
	SITE DESCRIPTION AND PHYSICAL SETTING SITE HISTORY & CONCEPTUAL SITE MODEL							
	TIVES AND SCOPE OF WORK							
I.C OBIEC	IGATIVE PROCEDURES AND RESULTS							
	BORING / MONITORING WELL INSTALLATION							
	SCREENING RESULTS							
	ANALYTICAL RESULTS							
	NDWATER CHARACTERISTICS							
	NDWATER SAMPLING AND ANALYSIS							
	IVE RECEPTOR SURVEY AND RISK ASSESSMENT							
	TIVE RECEPTOR SURVEY							
	ASSESSMENT							
	USIONS							
	MENDATIONS							
<u>FIGURES</u>								
Figure 1	Site I coefion Man							
•	Site Location Map Site Plan							
Figure 2								
Figure 3	Groundwater Flow Direction Map							
Figure 4	Contaminant Concentration Map							
TABLES								
Table 1	Groundwater Elevation Calculations							
Table 2	Summary of Analytical Results							
14010 2	Summary of Finally flour Robusto							
APPENDICES	<u>1</u>							
Appendix A	Boring Logs / Monitoring Well Construction Diagrams and Field Notes							
Appendix B	Photodocumentation							
Appendix C	Soil Laboratory Analytical Report							
Appendix D	Low-flow Sampling Field Forms and Field Notes							
Appendix E	pendix E Groundwater Laboratory Analytical Results							

EXECUTIVE SUMMARY

Environmental Compliance Services, Inc. (ECS) has conducted an initial site investigation (ISI) in response to petroleum contamination encountered during the excavation of an abandoned underground storage tank (UST) on property owned by the Hannaford Bros. Company within the Kmart Plaza parking lot at 929 Shelburne Road in South Burlington, Vermont. This UST was discovered and removed during the installation of an underground utility line (storm water pipe line) in August 2008.

The ISI included the drilling of six soil borings (SB-A through SB-F) and subsequent installation of four monitoring wells (MW-1 through MW-4), and an evaluation of potential threats to nearby sensitive receptors. ECS's findings related to this work are summarized as follows:

- No volatile organic compounds (VOCs) were detected in any of the sampled wells. Total petroleum hydrocarbons diesel range organics (TPH-DRO) were detected in source area monitoring well MW-2 at 9.6 mg/L.
- During the ISI, photoionization detector (PID) readings ranging from zero to 4.8 parts per million (ppm) were observed from soil samples collected from the soil borings. The native soils generally consisted of fill material overlying native glaciolacustrine silts and clays. The highest PID reading was recorded in the former UST excavation below the water table at approximately 8 feet below ground surface (bgs) in MW-2. The second highest PID reading was 1.1 ppm in MW-3.
- ECS performed a sensitive receptor survey and did not identify any threat to any potential sensitive receptors.

Based on the findings stated above, it is the opinion of ECS that the site meets the criteria of a Sites Management Activities Completed (SMAC) designation.

ECS recommends properly abandoning monitoring wells MW-1, MW-2, MW-3, and MW-4. Following this activity, ECS would document the well abandonment in a short letter report to the VT DEC and request a SMAC designation.

1.0 INTRODUCTION

This report details the results of an Initial Site Investigation (ISI) performed by Environmental Compliance Services (ECS) in the parking lot of the Kmart Plaza at 929 Shelburne Road in South Burlington, Vermont (Figure 1). The property is owned by Hannaford Bros, and is leased to Merchants Bank.

The ISI was performed following the discovery of petroleum contamination stemming from an abandoned underground storage tank that was encountered while installing underground utilities onsite in August 2008.

This ISI included the drilling of six soil borings and subsequent installation of four monitoring wells (MW-1 through MW-4), and an evaluation of potential threats to nearby sensitive receptors. This work was conducted in general conformance with an ECS work plan dated 29 September 2008.

1.1 SITE DESCRIPTION AND PHYSICAL SETTING

The site is located within the Kmart Plaza parking lot at 929 Shelburne Road in South Burlington, Vermont. There are no structures within the immediate vicinity of the monitoring wells; they are located at the northeast corner of the Kmart Plaza parking lot.

There are no water supply wells or springs onsite. According to the Vermont Agency of Natural Resources Internet Mapping Site of Private Wells, there is one private water supply well located within a ½-mile of the site; however, it is located upgradient. Potash Brook is located approximately ¼ mile south of the site.

1.2 SITE HISTORY & CONCEPTUAL SITE MODEL

The previously unknown abandoned UST was discovered during site work associated with the construction of a new Merchants Bank facility at the subject property, which Merchants Bank leases from Hannaford Bros. A new storm water pipe line was being installed when the UST was discovered. The VT DEC was immediately notified and approval to remove the abandoned UST was granted by Mr. Ted Unkles following 10 VSA Section 1926 procedures.

The UST and it associated piping were found to be in poor condition. Soils consisted of approximately two feet of crushed stone fill underlain by silt and silty-clay to the excavation depth of eight feet. Groundwater was encountered at approximately 8 feet below ground surface. Weathered petroleum odors were observed from soils above and below the water table, with photoionization detector (PID) headspace readings ranging from zero to 10.3 parts per million (ppm).

Impacted soils removed during the UST removal were stockpiled on site. Due to the high silt content of the soil, it was determined it was not suitable backfill material for the storm water pipe, as it would not meet the compaction requirements. Impacted soils (151 tons, approx. 90 cubic yards) were disposed of as daily cover at Interstate Waste Services landfill located in Moretown, Vermont.

Due to the unknown nature and size of the UST, it was necessary to dewater the excavation in order to perform a safe UST removal. Approximately 3,000 gallons of petroleum-impacted groundwater was containerized on site in a portable Frac Tank, treated through carbon and discharged to the South Burlington sanitary sewer system. The onsite pump, treat, and discharge was approved by VT DEC and the City of South Burlington. The appropriate discharge application, public notice period, and discharge

reporting requirements were all met. Laboratory results indicted the groundwater dewatered from the excavation contained 65 ppm Total Petroleum Hydrocarbons – Diesel Range Organics (TPH-DRO) prior to carbon treatment. Post treatment laboratory results indicated all constituents tested for were below laboratory reporting limits (non-detect).

1.3 OBJECTIVES AND SCOPE OF WORK

The objectives of this initial site investigation were to:

- Evaluate the degree and extent of petroleum contamination in soil and groundwater in the vicinity of the UST;
- Qualitatively assess the risks to environmental and public health via relevant sensitive receptors and potential contaminant migration pathways; and,
- Identify appropriate monitoring and/or remedial actions based on the site conditions.

To accomplish these objectives, ECS has:

- Supervised the advancement of six soil borings and subsequent installation of four water-table monitoring wells (MW-1 through MW-4);
- Screened subsurface soils from soil borings for the possible presence of volatile organic compounds (VOCs) using a PID;
- Identified sensitive receptors in the area, and assessed the risk posed by the contamination to these potential receptors; and,
- Prepared this summary report, which details the work performed, qualitatively assesses risks, provides conclusions, and offers recommendations for further action.

2.0 INVESTIGATIVE PROCEDURES AND RESULTS

2.1 SOIL BORING / MONITORING WELL INSTALLATION

On 28 October 2008, ECS supervised the completion of six soil borings (SB-A through SB-F) and subsequent installation of four monitoring wells (MW-1 through MW-4) to initially characterize contaminant and hydrogeologic conditions at the site. Soil boring and monitoring well locations are presented on Figure 2. Borings were installed using Geoprobe, hydraulic direct push methodology by ECS of Agawam, Massachusetts. Soils were collected and screened continuously.

During drilling activities, groundwater was encountered between approximately 4 to 8 feet bgs. The soils were fill material (sand, gravel, bricks, cement) overlying native glaciolacustrine silts and clays. Monitoring well SB-A/MW-1 was located upgradient of the UST. SB-B/MW-2 was located within the former UST excavation. SB-C, SB-D, SB-E/MW-3 and SB-F/MW-4 were located in the presumed downgradient direction of the UST excavation.

The monitoring wells were constructed with one-inch diameter polyvinyl chloride (PVC) casing and factory-slotted 0.010-inch slot screen. The screen sections were set approximately 5 feet above and below the presumed groundwater level. Sections of solid PVC riser were added to bring the tops of the well casings to approximately 0.5 feet bgs. Clean silica #1 filter sand was placed in the borehole annulus around each well approximately two feet above the slotted interval. A granular bentonite seal, approximately 6 inches thick, was set above the sand pack and the remainder of the annular space was backfilled with sand or native material.

Each well was capped with a watertight plug and a flush-mounted protective casing. The wells were developed using a bailer on 28 October 2008. All purge water was discharged to the ground surface in the vicinity of each well.

On 4 November 2008, the monitoring wells and soil boring locations were surveyed relative to existing site features, with an azimuth accuracy of \pm 1.0 feet and an elevation accuracy of \pm 0.01 feet. Monitoring-well construction details are included on the soil-boring and well-construction logs in Appendix A. Field notes are also presented in Appendix A. Photodocumentation is presented in Appendix B.

2.2 SOIL-SCREENING RESULTS

During the soil-boring program on 28 October 2008, PID readings ranging from zero to 4.8 ppm were obtained from soil samples collected from the soil borings. The highest PID reading was recorded in the former UST excavation below the water at approximately 8 feet bgs in SB-B/MW-2. The second highest PID reading was 1.1 in SB-E/MW-3

No PID readings exceeding 1 ppm were obtained from the other borings onsite.

An ECS field scientist screened soil samples from discrete intervals in each soil boring for the possible presence of VOCs using an Ion Science Phocheck 1000 portable PID. The PID was calibrated in the field with an isobutylene standard gas to a benzene reference. Soil samples were placed into a polyethylene bag, which was then sealed, agitated, and allowed to equilibrate. The PID probe was inserted into the headspace, and the highest reading was recorded. PID screening results are included on the boring logs in Appendix A.

2.3 SOIL ANALYTICAL RESULTS

A soil sample from MW-2 was submitted for laboratory analysis via EPA method 8260 for the Vermont 8021B list of petroleum-related VOCs, and EPA method 8015 for TPH-DRO. No target analytes were detected above laboratory reporting limits. Soil laboratory results are included as Appendix C.

The soil sample was transported under chain-of-custody in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts.

2.4 GROUNDWATER CHARACTERISTICS

Based on the hydrogeologic data, the groundwater in the unconfined surficial aquifer at the site appears to flow generally west toward the Potash Brook (Figure 3). The average horizontal hydraulic gradient is 6 percent between MW-1 and MW-3. The vertical groundwater flow components at the site, and the hydraulic relationship between the shallow unconfined aquifer and the bedrock aquifer, are currently unknown.

Fluid levels were measured in the monitoring wells on 4 November 2008 to calculate the groundwater flow direction. Depths to groundwater in the on-site monitoring wells ranged from 5.10 feet in MW-1 to 6.62 feet in MW-3 below top-of-casing.

Static water-table elevations were computed for each monitoring well by subtracting the measured depth-to-water readings from the surveyed top-of-casing elevations, which are relative to an arbitrary site datum of 100.00 feet. Water-level measurements and elevation calculations are presented in Table 1. The groundwater flow direction map was prepared using these data (Figure 3).

2.5 GROUNDWATER SAMPLING AND ANALYSIS

Groundwater samples were collected on 4 November 2008 from the four newly installed monitoring wells and analyzed for the possible presence of VOCs and TPH-DRO (Figure 4).

No VOCs were detected in samples collected from any of the wells at concentrations above laboratory reporting limits.

No TPH-DRO was detected in MW-1, MW-3, and MW-4. TPH-DRO was detected in MW-2 at 9.6 mg/L.

Prior to groundwater sample collection, the monitoring wells were low-flowed in general accordance with EPA standard operating procedures. Low-flow forms are included as Appendix D. Purge water was discharged directly to the ground in the vicinity of each well. A trip blank and a blind duplicate sample from MW-1 were collected to ensure that adequate quality assurance/quality control (QA/QC) standards were maintained.

All samples were transported under chain-of-custody in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts, where they were analyzed for the possible presence of VOCs by EPA Method 8260 and for TPH-DRO by EPA Method 8015.

Analytical results of the blind duplicate sample, collected from MW-1, were all reported below detection limits. No petroleum-related compounds were detected in the trip blank. Analytical results are included in Table 2 and the laboratory analytical reports are presented in Appendix E.

3.0 SENSITIVE RECEPTOR SURVEY AND RISK ASSESSMENT

3.1 SENSITIVE RECEPTOR SURVEY

ECS conducted a survey to identify sensitive receptors in the vicinity of the former UST that could potentially be impacted by contamination associated with the site. The following sensitive receptors were identified in the vicinity of the property.

- The soil and groundwater beneath the former UST excavation area;
- The Potash Brook;
- The indoor air quality of the apartment building to the south of the excavation,
- Underground utilities.

3.2 RISK ASSESSMENT

ECS qualitatively assessed the risks that the residual soil and dissolved-phase subsurface contamination poses to the receptors identified above. In general, human exposure to petroleum-related contamination is possible through inhalation, ingestion, or direct contact while impacts to environmental receptors are due either to a direct release or contaminant migration through one receptor to another or along a preferential pathway.

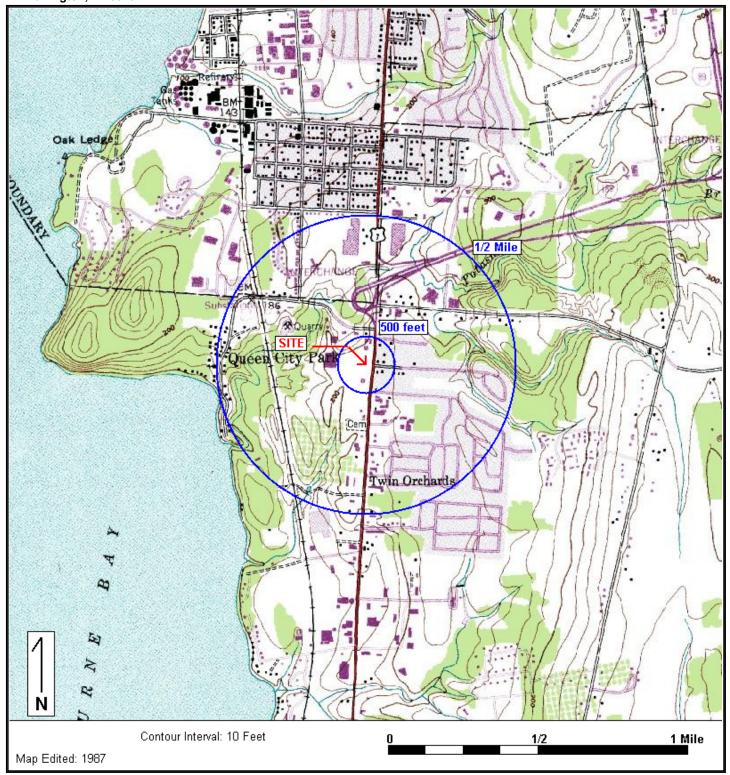
- Soil and Groundwater Beneath the Former UST Excavation Elevated VOCs just above 10 ppm were detected by PID in soil samples collected during the former UST removal and soil boring activities. Access to impacted soils in this area is prevented by pavement and the risk of human exposure is very low. Groundwater analytical results indicate that the limited groundwater contamination is not migrating away from the source area in groundwater
- <u>Potash Brook</u> The Potash Brook is located approximately ¼ mile west of the former UST excavation. Soil boring and groundwater quality data indicate that the limited contamination is not migrating away from the source area; therefore, it is highly unlikely that the Potash Brook is impacted by petroleum contamination from the site.
- Indoor Air Quality of the Downgradient Apartment Building Soil boring and groundwater quality data indicate that the limited contamination is not migrating away from the source area. Additionally, the diesel range organics detected at low levels in the groundwater from MW-2 are not highly volatile, and no VOCs were detected. Therefore indoor air quality is not likely impacted.
- <u>Underground Utilities</u> The underground utilities in the vicinity of the former UST excavation include water lines, sewer lines, but they are located upgradient of the source area, between MW-1 and MW-2. A storm water catch basin located 200 feet to the west of the source area was screened with a PID, and no VOCs were detected. The newly installed storm water pipe line is within close proximity to the former UST location, but laboratory results indicate very low concentration of contaminants in groundwater in this area. Also, approximately 90 ton of impacted soil were removed from the source area, further eliminating potential for exposure or migration of contaminants.

4.0 CONCLUSIONS

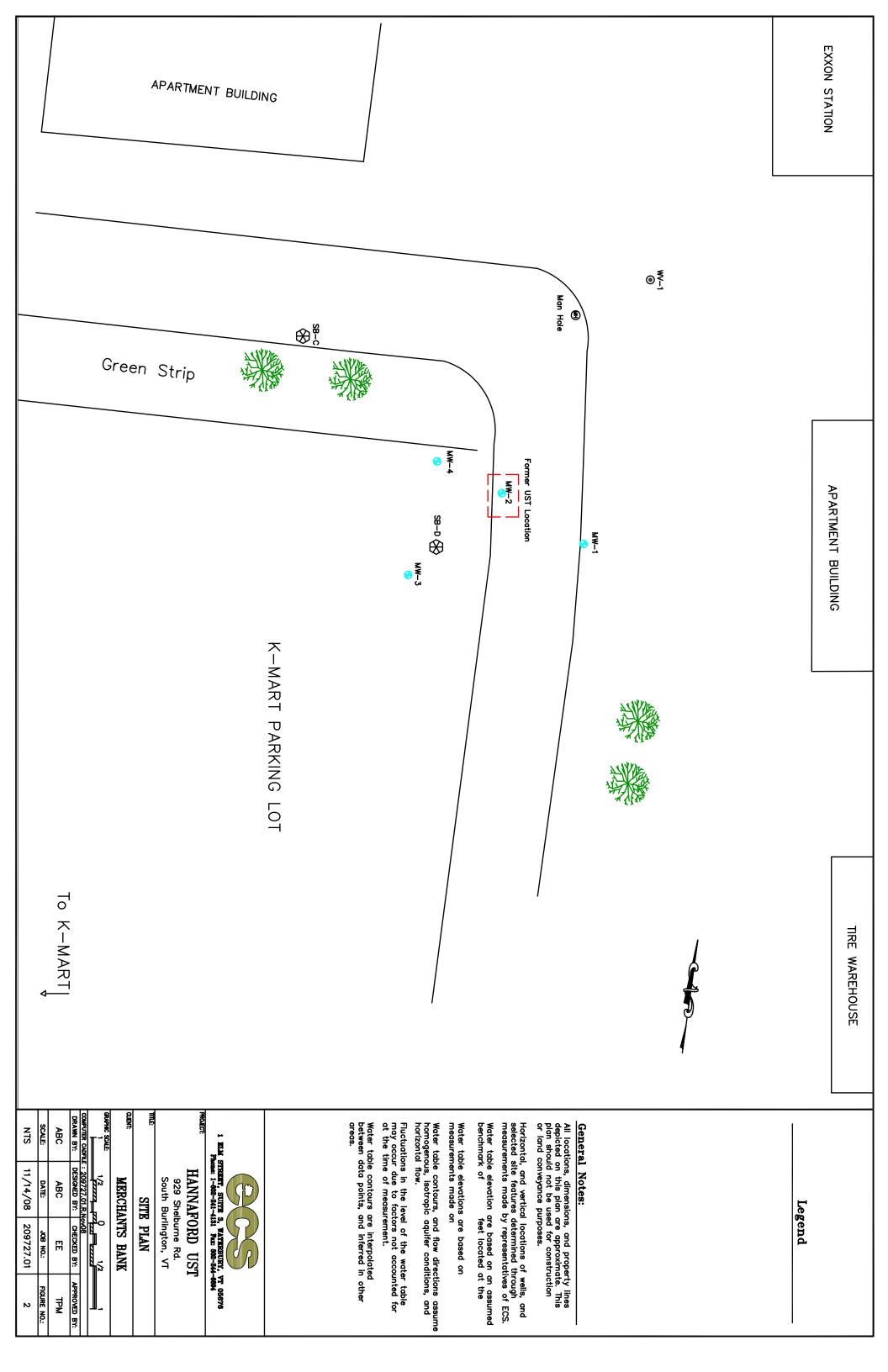
Based on the results of the site investigation described above, ECS concludes the following:

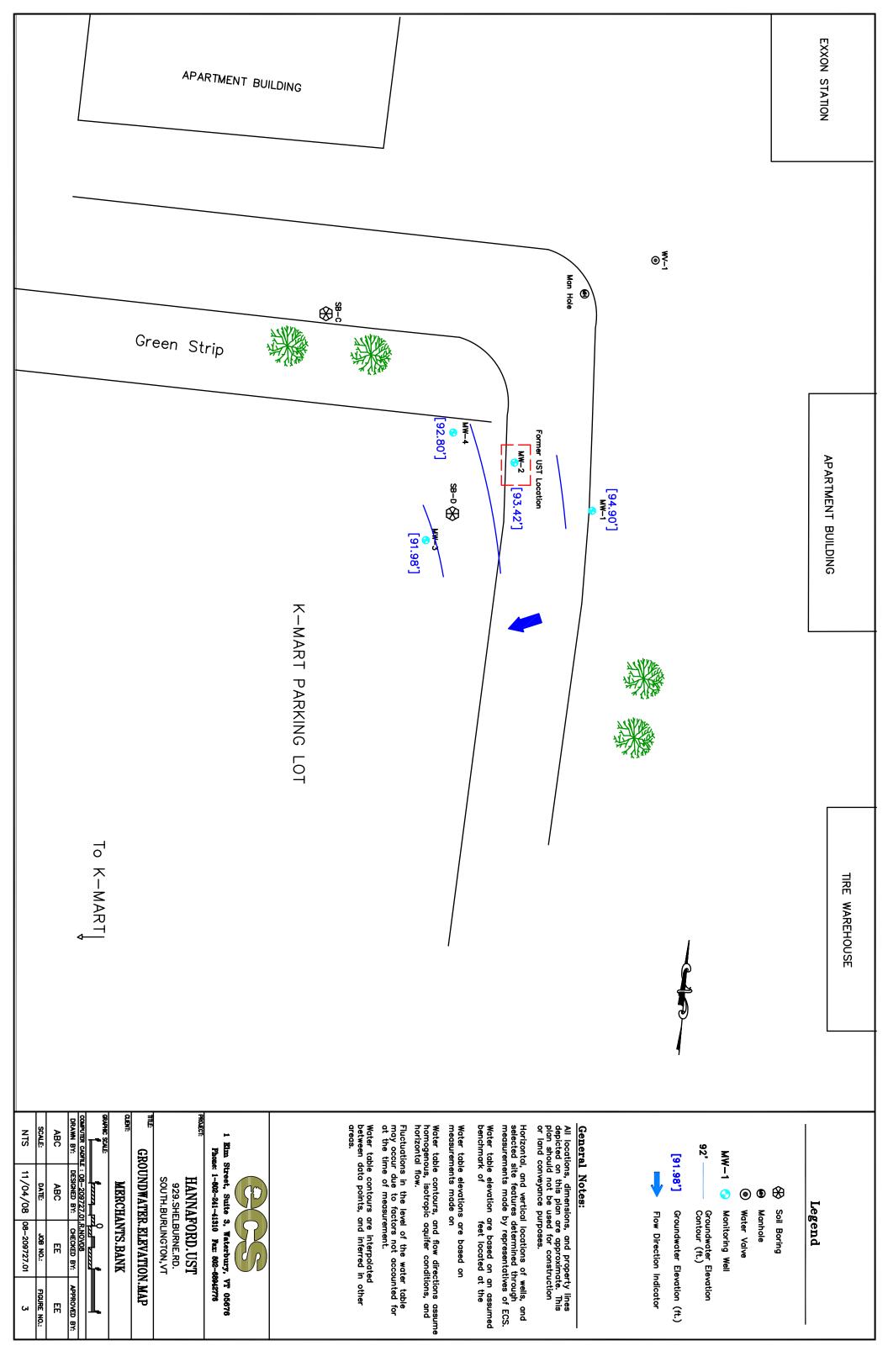
- No VOCs were detected in any of the sampled wells. TPH-DRO was detected in source area monitoring well MW-2 at 9.6 mg/L.
- During the soil-boring program, PID readings ranging from zero to 4.8 ppm were obtained from soil samples collected from the soil borings. The native soils generally consisted of fill material overlying native glaciolacustrine silts and clays. The highest PID reading was recorded in the former UST excavation below the water table at approximately 8 feet bgs in MW-2. The second highest PID reading was 1.1 ppm in MW-3.
- ECS performed a sensitive receptor survey and did not identify any threat to any potential sensitive receptors.

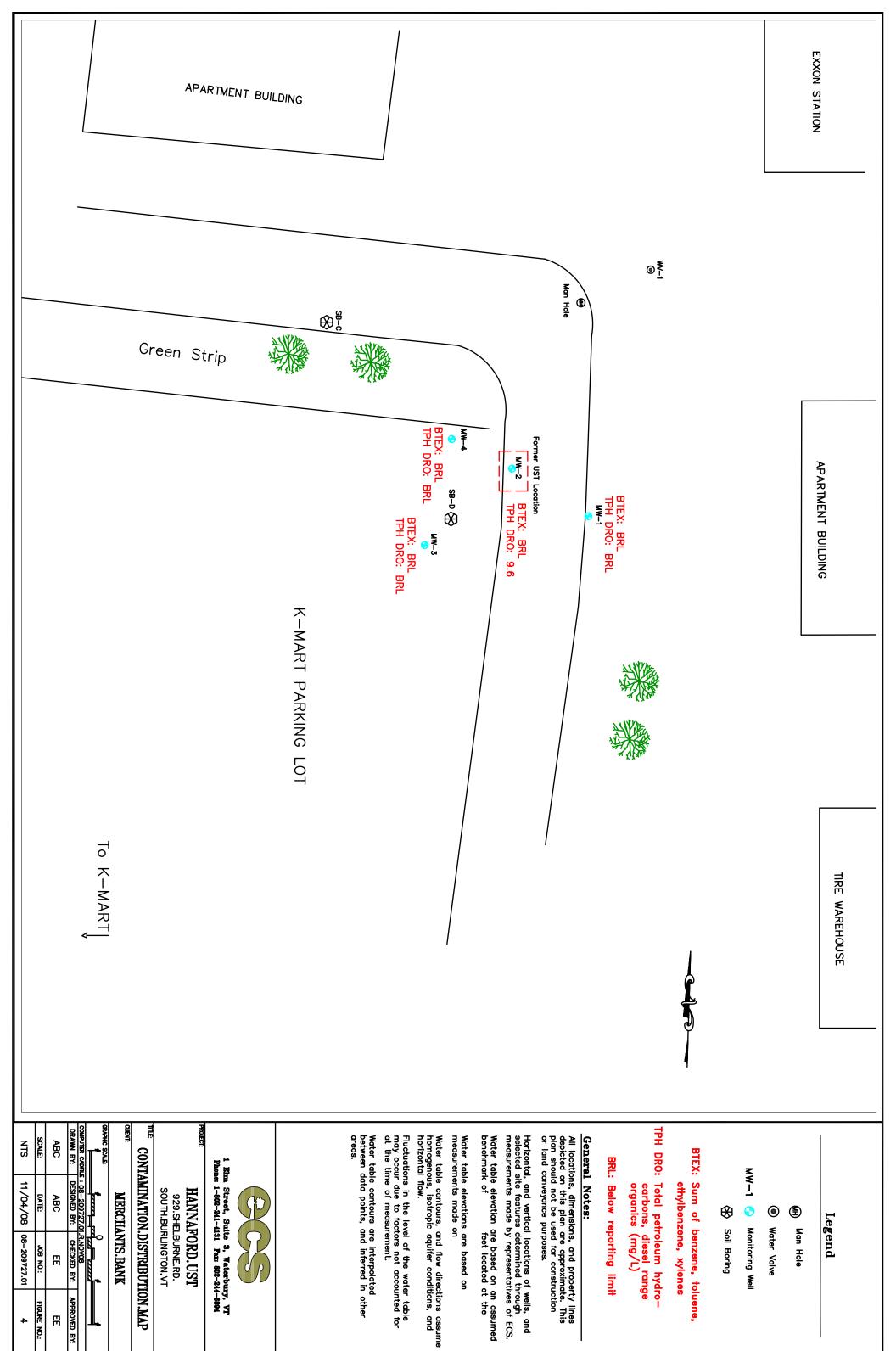
5.0 RECOMMENDATIONS


Based on the conclusions stated above, it is the opinion of ECS that the site meets the criteria of a Sites Management Activities Completed (SMAC) designation.

ECS recommends properly abandoning monitoring wells MW-1, MW-2, MW-3, and MW-4. Following this activity, ECS would document the well abandonment in a short letter report to the VT DEC and request a SMAC designation.




Merchants Bank - Shelburne Rd PO Box 1009 Burlington, VT 05402 Environmental Compliance Services, Inc. 65 Millet Street, Suite 301 Richmond, VT 05477 Phone (802) 434-4500 Fax (802) 434-6076 www.ecsconsult.com


Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey; Quadrangle Location: Burlington, VT
Lat/Lon: 44° 26' 34" NORTH, 73° 12' 36" WEST - UTM Coordinates: 18 642440 EAST / 4922625 NORTH
Generated By: Christine DiMaio

TABLE 1 GROUNDWATER ELEVATION CALCULATIONS

929 Shelburne Road South Burlington, VT

Monitoring Date: 4 November 2008

Well I.D.	Top of Casing Elevation	Depth to Water	Water Table Elevation
MW-1	100.00	5.10	94.90
MW-2	98.67	5.25	93.42
MW-3	98.60	6.62	91.98
MW-4	98.10	5.30	92.80

All values reported in feet relative to arbitrary site datum of 100.00 feet.

Table 2 Summary of Analytical Results

929 Shelburne Road South Burlington, Vermont

Monitoring Date: 4 November 2008

Well I.D.	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	Total TMB	Naphthalene	TPH (mg/L)
MW-1	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	BRL<0.2
MW-2	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	9.6
MW-3	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	BRL<0.2
MW-4	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	BRL<0.2
Duplicate (MW-2)	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	NA
Trip Blank	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<2.0	BRL<1.0	NA
VGES	5	1,000	700	10,000		40	350	20	

Notes:

Results given in micrograms per liter ($\mu g/L$), except TPH given in milligrams per liter (mg/L)

BTEX - a sum of benzene, toluene, ethylbenzene, and total xylenes

MTBE - methyl tertiary butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

All samples collected by ECS and analyzed by Spectrum Analytical, Inc.

TPH - Total Petroleum Hydrocarbons; results given in milligrams per liter (mg/L)

NA - not analyzed

ECS 209727 btex.xlsx

APPENDIX A

BORING LOGS/MONITORING WELL CONSTRUCTION DIAGRAMS AND FIELD NOTES

1 ELM ST, SUITE 3 (802) 241-4131 WATERBURY, VERMONT 05477 (802) 244-6894 - FAX

10 slot PVC

Upgradient well

BORING DEPTH:

2-4'

DEPTH:

DEPTH:

12'

1"

1"

PVC

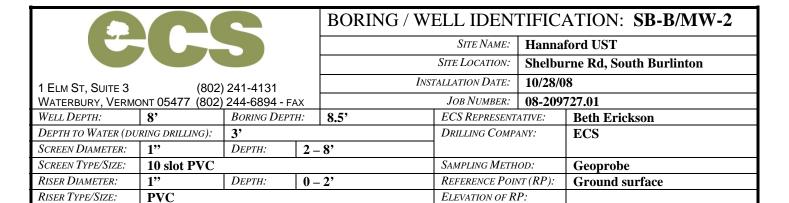
DEPTH TO WATER (DURING DRILLING):

WELL DEPTH:

SCREEN DIAMETER:

SCREEN TYPE/SIZE:

RISER DIAMETER:


RISER TYPE/SIZE:

REMARKS:

BORING / WELL IDENTIFICATION: SB-A/MW-1 SITE NAME: **Hannaford UST** SITE LOCATION: **Shelburne Rd, South Burlinton** INSTALLATION DATE: 10/28/08 JOB NUMBER: **08-209727.01** 16' ECS REPRESENTATIVE: **Beth Erickson** DRILLING COMPANY: **ECS** 2 – 12' SAMPLING METHOD: Geoprobe 0 - 2REFERENCE POINT (RP): **Ground surface** ELEVATION OF RP:

DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	LEGEND
(IN FEET)	DEPTH	(FT)	AND NOTES	(PPM)	PROFILE	
0	0-4'	2'	0 – 2' gravel fill	0.0		Concrete
1			2 – 4' sand fill, moist, no odor			Native Material
2						Bentonite
3						Filter Sand
4	4- 8'	3.5'	4 – 6' sand fill, wet (slight naphthalene odor at 5' bgs, but could be old asphalt fill material)	0.2		Riser
5			6 – 7' dense brown clayey silt fill	0.0		Screen
6			7 – 8' brick fill material, crushed brick	0.0		Water Level
7						
8	8 - 12	3.0	8 – 12' wet sandy fill material	0.0		
9						
10						
11						
12	12 – 16'		Clay at 12' bgs, fill material above this	0.0		
13			Dense clay			
14						
15						
16	16'		End of boring			
17			End of Sampling = 16feet Well set @ 12feet			

PROPORTIONS USED	BLOW COU	BLOW COUNT (COHESIVE SOILS)		JNT (GRANULAR SOILS)	Notes:
AND 33-50%	<2 V	ERY SOFT	0-4	VERY LOOSE	
SOME 20-33%	2-4 S	OFT	4-10	LOOSE	PID used: Ion Science Phocheck 1000+
LITTLE 10-20%	4-8 M	EDIUM STIFF	10-30	MEDIUM DENSE	
TRACE 0-10%	8-15 S	TIFF	30-50	DENSE	
	15-30 V	ERY STIFF	>50	VERY DENSE	
	>30 H	ARD			

PVC

Within former tank grave/Source area well

REMARKS:

DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	Li	EGEND
(IN FEET)	DEPTH	(FT)	AND NOTES	(PPM)	PROFILE		
0	0-4'	3'	0 – 4' sand fill below asphalt, moist at 2' bgs	0.0		\boxtimes	Concrete
1			Homogenous sandy fill material				Native Material
2							Bentonite
3							Filter Sand
4	4- 8'	2'	4 – 8' sand fill, wet (water pooling into hole)				Riser
5			Sand fill, slight weathered odor	0.9			Screen
6						•	Water Level
7			Tip at 8' bgs	4.8			
8	8 – 9'		Weird organics/wood – hitting refusal on it	0.6	200==200		
9							
10							
11							
12							
13							
14							
15							
16							
17			End of Sampling = 8.5feet Well set @ 8feet				

PROPORTIONS USED	BLOW COUNT (COHESIVE SOILS)	BLOW COUNT (GRANULAR SOILS)	Notes:
AND 33-50%	<2 VERY SOFT	0-4 VERY LOOSE	
SOME 20-33%	2-4 SOFT	4-10 LOOSE	PID used: Ion Science Phocheck 1000+
LITTLE 10-20%	4-8 MEDIUM STIFF	10-30 MEDIUM DENSE	
TRACE 0-10%	8-15 STIFF	30-50 DENSE	
	15-30 VERY STIFF	>50 VERY DENSE	
	>30 HARD		

1 ELM ST, SUITE 3 (802) 241-4131 WATERBURY, VERMONT 05477 (802) 244-6894 - FAX

BORING DEPTH:

8'

DEPTH:

DEPTH:

Downgradient, NW of source area

N/A

N/A

N/A

N/A

N/A

DEPTH TO WATER (DURING DRILLING):

WELL DEPTH:

SCREEN DIAMETER:

SCREEN TYPE/SIZE:

RISER DIAMETER:

RISER TYPE/SIZE:

REMARKS:

BORING / WELL IDENTIFICATION: SB-C SITE NAME: **Hannaford UST** SITE LOCATION: Shelburne Rd, South Burlington INSTALLATION DATE: 10/28/08 JOB NUMBER: **08-209727.01** ECS REPRESENTATIVE: N/A **Beth Erickson** DRILLING COMPANY: **ECS** N/A SAMPLING METHOD: Geoprobe N/A REFERENCE POINT (RP): **Ground surface** ELEVATION OF RP:

DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	LE	EGEND
(IN FEET)	DEPTH	(FT)	AND NOTES	(PPM)	PROFILE		
0	0-4'	3.75'	Sand fill under asphalt	0.0		\boxtimes	Concrete
1			No odor, no staining, homogeneous				Native Material
2							Bentonite
3			Moist at 3' bgs	0.0			Filter Sand
4	4- 8'	4'	4 – 6' same sand fill, moist (as above)				Riser
5			6 - 8' increasing silt content, no odor, no staining	0.0			Screen
6						▼	Water Level
7					▼		
8	8 – 12'		8 -10' sand fill, very wet, no odor	0.0			
9			10 -12' Old fill material, brick, cement chunks on top of wood layer	0.0			
10							
11			12' – same organics/wood as seen in SB-B/MW-2. End of boring.				
12							
13							
14							
15							
16							
17			End of Sampling = 12 feet Well set @ feet				

PROPORTIONS USED	BLOW COUNT (COHESIVE SOILS)	BLOW COUNT (GRANULAR SOILS)	Notes:
AND 33-50% SOME 20-33%	<2 VERY SOFT 2-4 SOFT	0-4 VERY LOOSE 4-10 LOOSE	PID used: Ion Science Phocheck 1000+
LITTLE 10-20%	4-8 MEDIUM STIFF	10-30 MEDIUM DENSE	PID used: 10th Science Phocheck 1000+
TRACE 0-10%	8-15 STIFF 15-30 VERY STIFF	30-50 DENSE >50 VERY DENSE	
	15-30 VERY STIFF >30 HARD	>50 VERY DENSE	

1 ELM ST, SUITE 3 (802) 241-4131 WATERBURY, VERMONT 05477 (802) 244-6894 - FAX

BORING DEPTH:

N/A

DEPTH:

DEPTH:

Downgradient of source area, SW

N/A

N/A

N/A

N/A

N/A

DEPTH TO WATER (DURING DRILLING):

WELL DEPTH:

SCREEN DIAMETER:

SCREEN TYPE/SIZE:

RISER DIAMETER:

RISER TYPE/SIZE:

REMARKS:

BORING / WELL IDENTIFICATION: SB-D SITE NAME: **Hannaford UST** SITE LOCATION: Shelburne Rd, South Burlington INSTALLATION DATE: 10/28/08 JOB NUMBER: **08-209727.01** ECS REPRESENTATIVE: N/A **Beth Erickson** DRILLING COMPANY: **ECS** N/A SAMPLING METHOD: Geoprobe N/A REFERENCE POINT (RP): **Ground surface** ELEVATION OF RP:

DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	LE	GEND
(IN FEET)	DEPTH	(FT)	AND NOTES	(PPM)	PROFILE		
0	0-4'	2.5	Fill material			\boxtimes	Concrete
1							Native Material
2							Bentonite
3			Concrete at 4' bgs, just above this is grey sand, moist with slight odor	0.9			Filter Sand
4			Refusal on concrete, moved further SW				Riser
5							Screen
6						▼	Water Level
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17			End of Sampling = 4 feet Well set @ feet				

PROPORTIONS USED	BLOW COUNT (COHESIVE SOILS)	BLOW COUNT (GRANULAR SOILS)	Notes:
AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10%	<2 VERY SOFT 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF	0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >-50 VERY DENSE	PID used: Ion Science Phocheck 1000+
	>30 HARD	VERT BEHOL	

ДЕРТН:

DEPTH:

Downgradient of source area to SW

DEPTH TO WATER (DURING DRILLING):

SCREEN DIAMETER:

SCREEN TYPE/SIZE:

RISER DIAMETER:

RISER TYPE/SIZE:

REMARKS:

1"

1"

PVC

10 slot PVC

	BORING / WELL IDENTIFICATION: SB-E/MW-3								
		SITE NAME:	Hanna	ford UST					
		SITE LOCATION:	Shelburne Rd, South Burlington						
	INST	INSTALLATION DATE:		8					
AΧ		JOB NUMBER:	08-209727.01						
<i>H:</i>	12'	ECS REPRESENTA	ATIVE:	Beth Erickson					
		DRILLING COMPA	ANY:	ECS					
2 –	12'								
		Sampling Meth	OD:	Geoprobe					
0 –	0 – 2' REFERENCE POIN		VT(RP):	Ground surface					
	·	ELEVATION OF R	P:						

DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	L	EGEND
(IN FEET)	DEPTH	(FT)	AND N OTES	(PPM)	PROFILE		
0	0 - 4	3.5'	Sand fill $0-3$ ', some cement, brick	0.0		\boxtimes	Concrete
1						\mathbb{Z}	Native Material
2			Thin, darker layer 3 – 3.5', black stained sand, Slight odor	1.1			Bentonite
3			Silty clay 3.5 – 4'	0.0			Filter Sand
4	4- 8'	3'	Alternating layers of sand and other fill – cement, sorted sand.	0.0			Riser
5			Moist at 7' bgs				Screen
6			Wet rounded gravel 7 – 8' bgs	0.0		•	Water Level
7							
8	8 – 12'	3'	8 – 10' very wet fill material, bricks, gravel	0.0			
9			10 – 12' grey clayey silt, massive	0.0			
10			12' end of boring, into massive lacustrine clay formation				
11							
12							
13							
14							
15							
16							
17			End of Sampling = 12 feet Well set @ 12 feet				

PROPORTIONS USED	BLOW COUNT (COHESIVE SOILS)	BLOW COUNT (GR	NULAR SOILS) Notes:	
	<2 VERY SOFT 2-4 SOFT	0-4 VERY 4-10 LOOS	LOOSE PID used: Ion Scien	nce Phocheck 1000+
LITTLE 10-20% TRACE 0-10% 8	4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF >30 HARD	10-30 MEDI 30-50 DENS	IM DENSE	Lee Filocolect 1000

12'

1"

1"

PVC

DEPTH TO WATER (DURING DRILLING):

WELL DEPTH:

SCREEN DIAMETER:

SCREEN TYPE/SIZE:

RISER DIAMETER:

RISER TYPE/SIZE:

REMARKS:

1 ELM ST, SUITE 3 (802) 241-4131 WATERBURY, VERMONT 05477 (802) 244-6894 - FAX

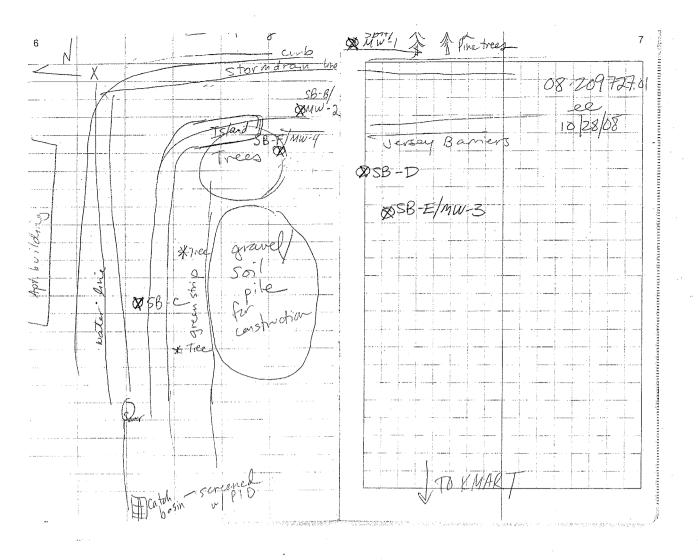
10 slot PVC

BORING DEPTH:

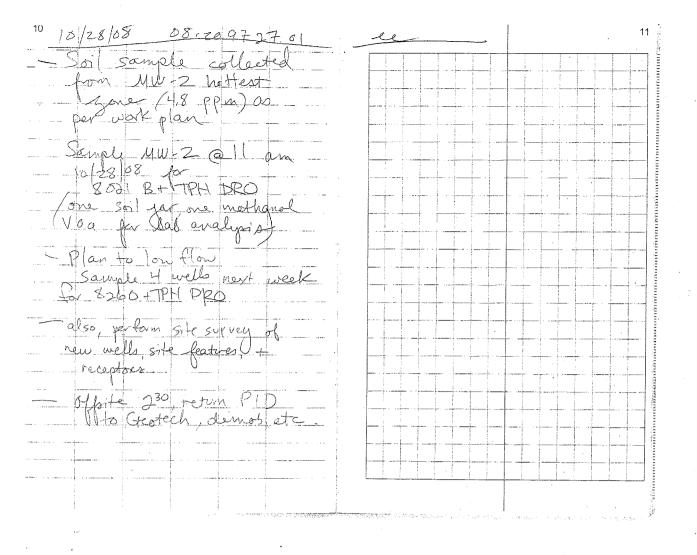
DEPTH:

DEPTH:

Downgradient of source area to NW


BORING / WELL IDENTIFICATION: SB-F/MW-4 SITE NAME: **Hannaford UST** SITE LOCATION: Shelburne Rd, South Burlington INSTALLATION DATE: 10/28/08 JOB NUMBER: **08-209727.01** 12' ECS REPRESENTATIVE: **Beth Erickson** DRILLING COMPANY: **ECS** 2 – 12' SAMPLING METHOD: Geoprobe 0 - 2REFERENCE POINT (RP): **Ground surface**

ELEVATION OF RP:


DEPTH	SAMPLE	RECOVERY	SAMPLE DESCRIPTION	PID	WELL	L	EGEND
(IN FEET)	DEPTH	(FT)	AND NOTES	(PPM)	PROFILE		
0	0 - 4	3'	Fill material, asphalt, concrete chunks, sand	0.0		\boxtimes	Concrete
1			Moist, no odor, no staining	0.0		\square	Native Material
2							Bentonite
3							Filter Sand
4	4- 8'	3'	4 – 6' fill material, dry cement chunks	0.0			Riser
5			6 – 7.75' moist grey clayey silt	0.0			Screen
6			7.75 – 8' organics, wood	0.0		•	Water Level
7							
8	8 – 12'	3.75'	8 – 10' fill material, wet	0.0			
9			10 – 11' black gravel, water is dark grey but no odor, no sheen	0.0			
10			11 – 12' massive grey brown clayey silt, no odor	0.0			
11							
12			12' end of boring				
13							
14							
15							
16							
17			End of Sampling = 12 feet Well set @ 12 feet				

PROPORTIONS USED	BLOW COUNT (COHESIVE SOI	ILS) BLOW COUNT (GRANULAR SOILS)	Notes:
AND 33-50%	<2 VERY SOFT	0-4 VERY LOOSE	
SOME 20-33%	2-4 SOFT	4-10 LOOSE	PID used: Ion Science Phocheck 1000+
LITTLE 10-20%	4-8 MEDIUM STIFF	10-30 MEDIUM DENSE	
TRACE 0-10%	8-15 STIFF	30-50 DENSE	
	15-30 VERY STIFF	>50 VERY DENSE	
	>30 HARD		

Dounglad to on large concrete (2) (House - upgrad rom UST excavation liveland to grade SB-B/MW-2 source area/tank grave well Flush mounted 3-C is domanadient toward catchbasin Did in this order due to availability & traffic contrat. I we have them for 3 hrs scheduled) Clean

10/28/08 08-Ze9727,01 Ron Lan SD Developed wells up bailors No odors, no sheeps the new well Has swarn to he brings ground up to Ve Sensitue Receptorsto North not an issue salement next to it MW-1 To Not Dosson ECS" Yenr large wil I clean boringo between Also likely no need to sample Marked Tokata of catel basin by Franny - 0's. Die Statance + no real Cold not mark USBsource plune peause its pour no rain but plan to surely Screened Catalogue w) DID- ao por Voce today. Will pleo swingstan w/ her Ar The location of very

APPENDIX B

PHOTODOCUMENTATION

Photodocumentation 929 Shelburne Road ISI 28 October 2008

MW-1 installation

MW-2 installation

MW-3 installation

APPENDIX C

SOIL LABORATORY ANALYTICAL REPORT

Report Date: 11-Nov-08 17:36

\checkmark	Final Report
	Re-Issued Report
┒	Revised Report

Laboratory Report

Environmental Compliance Services 1 Elm St. Suite 3 Waterbury, VT 05676

Attn: Beth Erickson

Project: Merchant's Bank-South Burlington, VT

Project 08-209727.01

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSA86718-01MW-2Soil28-Oct-08 11:0030-Oct-08 10:10

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 6 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Client Project # 08-209727.01

Matrix Soil Collection Date/Time 28-Oct-08 11:00 Received 30-Oct-08

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cei
Volatile (Organic Compounds										
	VOC Extraction	Field extr	acted	N/A		1	VOC Soil Extraction	30-Oct-08	30-Oct-08	8102293	
Volatile (Organic Compounds by 8260B		VC10		1	C = 1 = ! = l= 4 .	40.00				
Prepared	d by method SW846 5030 Soil (h	igh level)			Ini	tial weight:	19.83 g				
71-43-2	Benzene	BRL		μg/kg dry	52.3	50	SW846 8260B	31-Oct-08	31-Oct-08	8102340	
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/kg dry	52.3	50	u u	"	"	"	
107-06-2	1,2-Dichloroethane	BRL		μg/kg dry	52.3	50	u u	"	"	"	
100-41-4	Ethylbenzene	BRL		μg/kg dry	52.3	50	u u	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		μg/kg dry	52.3	50	u u	"	"	"	
91-20-3	Naphthalene	BRL		μg/kg dry	52.3	50	u u	"	"	"	
108-88-3	Toluene	BRL		μg/kg dry	52.3	50	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/kg dry	52.3	50	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/kg dry	52.3	50	"	"	"	"	
179601-23	-1m,p-Xylene	BRL		μg/kg dry	105	50	"	"	"	"	
95-47-6	o-Xylene	BRL		μg/kg dry	52.3	50	"	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	110		70-13	0 %		"	"	"	"	
2037-26-5	Toluene-d8	102		70-13	0 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	107		70-13	0 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	98		70-13	0 %		"	"	"	"	
Extractal	ble Petroleum Hydrocarbons										
Diesel R	ange Organics										
Prepared	d by method SW846 3550B										
68476-30-2	Fuel Oil #2	BRL		mg/kg dry	29.3	1	8015BM/ME4.1.25	31-Oct-08	03-Nov-08	8102300	
68476-31-3	Fuel Oil #4	BRL		mg/kg dry	29.3	1	"	"	"	"	
68553-00-4	Fuel Oil #6	BRL		mg/kg dry	29.3	1	"	"	"	"	
M0980000	⁰ Motor Oil	BRL		mg/kg dry	29.3	1	"	"	"	"	
J00100000	Aviation Fuel	BRL		mg/kg dry	29.3	1	"	"	"	"	
	Unidentified	BRL		mg/kg dry	29.3	1	"	"	"	"	
	Other Oil	BRL		mg/kg dry	29.3	1	"	"	"	"	
	Diesel Range Organics (DRO)	BRL		mg/kg dry	29.3	1	н	"	"	"	3
Surrogate	recoveries:										
3386-33-2	1-Chlorooctadecane	95		40-14	0 %		"	"	"	"	
General (Chemistry Parameters										
	% Solids	85.8		%		1	SM2540 G Mod.	06-Nov-08	06-Nov-08	8110429	
	* -										

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag Uni	ts *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8102340 - SW846 5030 Soil (high	ı level)								
Blank (8102340-BLK1)									
Prepared & Analyzed: 31-Oct-08									
Benzene	BRL	μg/k	g wet 1.0						
Chlorobenzene	BRL	μg/k	g wet 1.0						
1,2-Dibromoethane (EDB)	BRL	μg/k	g wet 1.0						
1,2-Dichloroethane	BRL	μg/k	g wet 1.0						
1,1-Dichloroethene	BRL	μg/k	g wet 1.0						
Ethylbenzene	BRL	μg/k	g wet 1.0						
Methyl tert-butyl ether	BRL	μg/k	g wet 1.0						
Naphthalene	BRL		g wet 1.0						
Toluene	BRL		g wet 1.0						
Trichloroethene	BRL		g wet 1.0						
1,2,4-Trimethylbenzene	BRL		g wet 1.0						
1,3,5-Trimethylbenzene	BRL		g wet 1.0						
m,p-Xylene	BRL		g wet 2.0						
o-Xylene	BRL		g wet 1.0						
Surrogate: 4-Bromofluorobenzene	30.0		g wet	30.0		100	70-130		
Surrogate: Toluene-d8	30.5		g wet	30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.6		g wet	30.0		112	70-130		
Surrogate: Dibromofluoromethane	31.4	μg/k	g wet	30.0		105	70-130		
LCS (8102340-BS1)									
Prepared & Analyzed: 31-Oct-08									
Benzene	19.4	μg/k	g wet	20.0		97	70-130		
1,2-Dibromoethane (EDB)	21.4	μg/k	g wet	20.0		107	70-130		
1,2-Dichloroethane	22.2	μg/k	g wet	20.0		111	70-130		
Ethylbenzene	21.4	μg/k	g wet	20.0		107	70-130		
Methyl tert-butyl ether	21.7	μg/k	g wet	20.0		108	70-130		
Naphthalene	17.2	μg/k	g wet	20.0		86	70-130		
Toluene	20.5	μg/k	g wet	20.0		103	70-130		
1,2,4-Trimethylbenzene	22.6	μg/k	g wet	20.0		113	70-130		
1,3,5-Trimethylbenzene	23.0	μg/k	g wet	20.0		115	70-130		
m,p-Xylene	45.7	μg/k	g wet	40.0		114	70-130		
o-Xylene	22.8	μg/k	g wet	20.0		114	70-130		
Surrogate: 4-Bromofluorobenzene	31.2	μg/k	g wet	30.0		104	70-130		
Surrogate: Toluene-d8	31.2		g wet	30.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.5		g wet	30.0		108	70-130		
Surrogate: Dibromofluoromethane	31.3	µg/k	g wet	30.0		104	70-130		
LCS Dup (8102340-BSD1)									
Prepared & Analyzed: 31-Oct-08	40.0			00.0		00	70.400		
Benzene	19.2		g wet	20.0		96	70-130	1	30
1,2-Dibromoethane (EDB)	20.4		g wet	20.0		102	70-130	4	25
1,2-Dichloroethane	22.3		g wet	20.0		111	70-130	0.3	25
Ethylbenzene Mattrod to the total attack	21.1		g wet	20.0		106	70-130	2	30
Methyl tert-butyl ether	20.3		g wet	20.0		101	70-130	7	30
Naphthalene	18.2		g wet	20.0		91	70-130	5	30
Toluene	19.4		g wet	20.0		97	70-130	6	30
1,2,4-Trimethylbenzene	21.5		g wet	20.0		108	70-130	5	30
1,3,5-Trimethylbenzene	22.0	μg/k	g wet	20.0		110	70-130	5	30
m,p-Xylene	43.6		g wet	40.0		109	70-130	5	30
o-Xylene	21.2		g wet	20.0		106	70-130	7	30
Surrogate: 4-Bromofluorobenzene	31.1		g wet	30.0		104	70-130		
Surrogate: Toluene-d8	30.3	μg/k	g wet	30.0		101	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8102340 - SW846 5030 Soil (1	nigh level)									
LCS Dup (8102340-BSD1)										
Prepared & Analyzed: 31-Oct-08										
Surrogate: 1,2-Dichloroethane-d4	32.6		μg/kg wet		30.0		109	70-130		
Surrogate: Dibromofluoromethane	31.5		μg/kg wet		30.0		105	70-130		
Matrix Spike (8102340-MS1)	Source: SA8669	8-01								
Prepared & Analyzed: 31-Oct-08										
Benzene	17.1		μg/kg wet		20.0	BRL	85	70-130		
Chlorobenzene	20.4		μg/kg wet		20.0	BRL	102	70-130		
1,1-Dichloroethene	17.8		μg/kg wet		20.0	BRL	89	70-130		
Toluene	18.6		μg/kg wet		20.0	BRL	93	70-130		
Trichloroethene	18.0		μg/kg wet		20.0	BRL	90	70-130		
Surrogate: 4-Bromofluorobenzene	31.1		μg/kg wet		30.0		104	70-130		
Surrogate: Toluene-d8	31.7		μg/kg wet		30.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.9		μg/kg wet		30.0		106	70-130		
Surrogate: Dibromofluoromethane	29.8		μg/kg wet		30.0		99	70-130		
Matrix Spike Dup (8102340-MSD1)	Source: SA8669	8-01								
Prepared & Analyzed: 31-Oct-08										
Benzene	17.5		μg/kg wet		20.0	BRL	88	70-130	3	30
Chlorobenzene	21.4		μg/kg wet		20.0	BRL	107	70-130	5	30
1,1-Dichloroethene	17.6		μg/kg wet		20.0	BRL	88	70-130	2	30
Toluene	18.6		μg/kg wet		20.0	BRL	93	70-130	0.05	30
Trichloroethene	18.9		μg/kg wet		20.0	BRL	94	70-130	4	30
Surrogate: 4-Bromofluorobenzene	30.9		μg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	31.2		μg/kg wet		30.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.6		μg/kg wet		30.0		102	70-130		
Surrogate: Dibromofluoromethane	30.4		μg/kg wet		30.0		101	70-130		

Extractable Petroleum Hydrocarbons - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8102300 - SW846 3550B										
Blank (8102300-BLK1)										
Prepared & Analyzed: 31-Oct-08										
Fuel Oil #2	BRL		mg/kg wet	13.3						
Fuel Oil #4	BRL		mg/kg wet	13.3						
Fuel Oil #6	BRL		mg/kg wet	13.3						
Motor Oil	BRL		mg/kg wet	13.3						
Aviation Fuel	BRL		mg/kg wet	13.3						
Unidentified	BRL		mg/kg wet	13.3						
Other Oil	BRL		mg/kg wet	13.3						
Diesel Range Organics (DRO)	BRL		mg/kg wet	13.3						
C9 - C36	BRL		mg/kg wet	13.3						
Surrogate: 1-Chlorooctadecane	2.77		mg/kg wet		3.33		83	40-140		
LCS (8102300-BS1)										
Prepared & Analyzed: 31-Oct-08										
Fuel Oil #2	677		mg/kg wet	13.3	667		102	40-140		
C9 - C36	BRL		mg/kg wet	13.3				40-140		
Surrogate: 1-Chlorooctadecane	3.50		mg/kg wet		3.33		105	40-140		
Duplicate (8102300-DUP1)	Source: SA8673	0-03								
Prepared: 31-Oct-08 Analyzed: 03-No	ov-08									
Fuel Oil #2	BRL		mg/kg dry	27.2		BRL				50
Fuel Oil #4	BRL		mg/kg dry	27.2		BRL				50
Fuel Oil #6	BRL		mg/kg dry	27.2		BRL				50
Motor Oil	BRL		mg/kg dry	27.2		BRL				50
Aviation Fuel	BRL		mg/kg dry	27.2		BRL				50
Unidentified	BRL		mg/kg dry	27.2		BRL				50
Other Oil	BRL		mg/kg dry	27.2		BRL				50
Diesel Range Organics (DRO)	BRL		mg/kg dry	27.2		BRL				50
Surrogate: 1-Chlorooctadecane	3.11		mg/kg dry		3.40		91	40-140		
	Gene	ral Che	mistry Para	meters - (Quality Co	ontrol				
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8110429 - General Preparati	ion									
Duplicate (8110429-DUP1)	Source: SA8669	7-01								
Prepared & Analyzed: 06-Nov-08										
% Solids	32.8		%			33.3			1	20

Notes and Definitions

VC10 The VOC preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 methods 5030

and 5035 but may be within the 1:1 volume to volume ratio. This variance may affect the final reporting limit.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D.

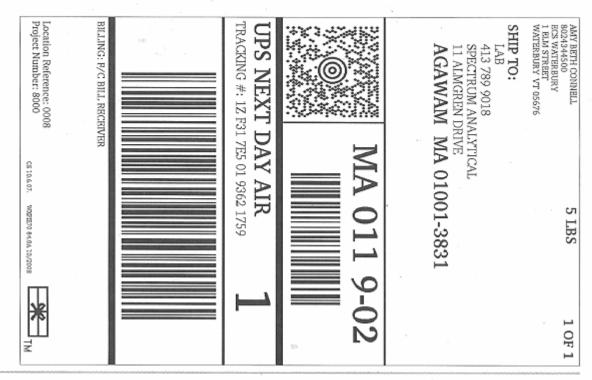
Project Mgr.: Both Endson P.O. No.:	Report To: LCS Invoice 1 SIM St SUFE 3	SPECTRUM ANALYTICAL, INC. HANIBAL TECHNOLOGY	
	Po:	Page of	
RON: 0002 Sampler(s) Beth Likeson	Site Name: Merchants Bank Location: South Burlington State: VT	Min. 24-hour notification needed for rus Samples disposed of after 60 days unle otherwise instructed.	I Compared to the Compared to

1=Na;S2O; 2=HC1 3=H;SO; 4=HNO; 5=NaOH 6=Ascorbic Acid

QA Reporting Notes: (check if needed)

CUSTODY RECORD Rush TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.	+	Project No.: 08-209727701 Site Name: Merchants Bank Site Name: Merchants Bank	Page of Project No.:_0 Site Name: M
	Special Handling:	☐ Rush TAT - 7 to 10 business days ☐ Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.	CUSTODY RECORD

7.5		24.2.87	1 346	0		,	V 0 I	7-
				71801	Lab Id:		DW=Drinking 0=0il SW= X1=]=Na,S2O, ЭСН,ОН 8
				MW-2	Sample Id:	(G=)Grab C	Water GW=Gro Surface Water X2=	2=HC1 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 8=NaHSO ₄ 9=10=
				10/28/08	Date:	:=Composite	oundwater WW= D=Soil SL=Slud X3=	4=HNO, 5=NaC
				1100	Time:		Wastewater ge A=Air	10=
				9	Туре	_		rbic Ac
				8	Matri	x		2
				Jan 7	Preser	vativ	ve	,
				-	-			
	-			_				Conta
 	++							Containers:
	1				w OI I	Tasti		
				X		4 3	B VTS	can
				\times	8015	T	PRO	
								≥
								Analyses:
				,				
								es:
								es:
								es:
					State s	Othe	Provid Provid OA	
					State specific	Other	□ Provide MA D □ Provide CT DE QA/QC R	
					State specific reporting	andard	□ Provide MA DEP MCF □ Provide CT DEP RCP QA/QC Reporting	
					State specific reporting standards:	Other No Oc	9 25	es: QA Reporting Notes: (check if needed)
					11 80/88/08 11	Sample Id: MW-2 10/78/08 1/99 Type	Sample Id: Date: Time: Type Matrix Preservativ # of VOA # of Ambe # of Plastic	W=Surface Water GW=Groundwater WW=Wastewater X2=


UPS CampusShip: View/Print Label

- not support this function select Print from the File menu to print the label. Print the label(s): Select the Print button on the print dislog box that appears. Note: If your browser does
- pouch, affix the folded label using clear plastic shipping tape over the entire label. Fold the printed label at the dotted line. Place the label in a UPS Shipping Pouch. If you do not have a
- GETTING YOUR SHIPMENT TO UPS
- Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip Customers without a Daily Pickup
- Take your package to any location of The UPS Store[®], UPS Drop Box, UPS Customer Center, UPS o Hand the package to any UPS driver in your area.
- Return ServicesSM (including via Ground) are accepted at Drop Boxes. Alliances (Office Depot® or Staples®) or Authorized Shipping Outlet near you. Items sent via UPS
- To find the location nearest you, please visit the Resources area of CampusShip and select UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

FOLD HERE

APPENDIX D

LOW-FLOW SAMPLING FIELD FORMS AND FIELD NOTES

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: Merchant's Shelburne Rd Date: 11/4/08
Sample I.D.: MW-4 Collection Time 10:30
Sampling Sequence: Of
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip): SSOF Sunny/breezy
Depth To Product: PD Feet Depth To Water: 5,10 Feet
Reference Point (TOC or other -Describe) TO C
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10 10 10
Well Yield: High X Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear X Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe) + ubing
Submitted For Analysis By (Method or Methods): 8260, 8015 DRO
Field Test Results (HACH Kits):
Alkalinity: NA Chloride: NA
Iron (II): NA Sulfate: NA
Notes:
1-

Low-Flow Well Sampling Form - Page 2 of 2

Location:	Merchant's shelburn	strelburne Rd	Depth To	/ (O. G ぞく Of Screen (Below RP)
Well Id:	mw-4		Top	Bottom
Field Personnel	nnel: EM		Pump Intake Depth: 8,0 4	+4
Reference F	Reference Point (RP – TOC or other-describe):_	scribe): TOC	Pumping Device: Penistalti	taltic

							,		,	
Comments									Sampled	
'Turbidity (NTU)	0.30 98:39	38.38	24.37	0) '8	てから	3.45	4.38	1.39	2,02	
DO (Mg/L)	0.30	0,12	0,11	0.01	0,01	0.01		0000		
ORP / eH (mV)	-119.3	51.0 24.21- 11.0	(6.74 -121.9 0.11	10.0 2,181- 17.0	6.78 -128.4 0.01	10,79 -130.0 0.01	0000 0:52:0	-131,0 0,00	0.82 -129,0 0,00	
Hd	50.0	11.0	なつみ	rc.0	6.78	prig	08.09	[% · 9]	6.82	
Specific Conductance (uS/cm)	51181	5,122	5,131	5, 131	5,128	51123	5,119	5,117	5.116	
Temperature °C	15,79	16,25	16,00	10,08	16.1	91,11	42. عا	14.23	14.28	
Cumulative Volume Purged(a4)		V.o		1,0	-		\s'-	·	2.0	
Pump Speed & PtM	251						,			
Purge Rate mL/min)					•				·	
Depth To Water (ft)	5,35	5,40	5,40	10:05 5:40	5,40	5,40	5.40	2140	८५७	
Time (24 Hr)	8:35 asib	9:55 5:40	10:00	50:01	10؛(۵	10:15 5:40	07:01	10:25 5:40	24.30 5.40	

Notes:

ECS Well Sampling Form – Page 1 of 2

Site Name/Location: Merchants Shelburne Rd Date: 11/4/08
Sample I.D.: MW-3 Collection Time 11:25
Sampling Sequence: 2 Of 4
EC S Field Staff Collecting This Sample: EM
Climatic Conditions (Temp/Precip): 550F Sunny
Depth To Product: ND Feet Depth To Water: 5,25 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10.22
Well Yield: High
Final Water Appearance (At Sample Collection) Clear \(\sum \) Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe) - woing
Submitted For Analysis By (Method or Methods): 8015 DRO, 8260
Field Test Results (HACH Kits):
Alkalinity: NA Chloride: NA
Iron (II): NA Sulfate: NA
Notes:
· · · · · · · · · · · · · · · · · · ·

Low-Flow Well Sampling Form - Page 2 of 2

Location: Spects Murchard's Shelburne	Depth To / 10,22.4 Of Screen (Below RP)
Well Id: MW-3	Top Bottom
Field Personnel:	Pump Intake Depth: 8,5 f+
Reference Point (RP – TOC or other-describe): TOC	Pumping Device: Peristaltic

Comments						ز			sampled		
Turbidity (NTU)	292,5	81,10	18,58	9:30	08.0	10.07	1,860	6119	7.97		
DO (Mg/L)		800	0,02	10.0	60.00	0000	000	10.01	-0.01		
ORP / eH (mV)	7.00 -112.4 0.02	-117,2 0.08	7010 7.711-	6,97 -120,4 0,01	10,910 -122.4 00.00	695 -125.0	6.94 -126.3 0.00	6.94 -1266 -0.01	-126.3 -0.01		
Hd	7.06	7.03	७७.म	6.97	6.96	695	46.94	46.9	46.94		
Specific Conductance (uS/cm)	4.119	7.11	4,112	4.13	4,112	4,112	4.112		4,113		
Temperature °C	15,48	15,58	15,50	15,50	15.101	15,60	15.00	15.61	15,58		
Cumulative Volume Purged(94)		0.8		١٥		1.5			2.0	,	
Pump Speed &PM	150										
Purge Rate mL/min)											
Depth To Water (ft)	5.33	5:33	10:55 5:35	5,35	5,35	5:35	1:15 5:35	5:35	5:35		
Time (24 Hr)	10:45 5:33	10:50 5:33	55:01	11:00 5,35	5675 50.11	01:11	21:11	11:20	11:25 5:35		

Notes:

ECS Well Sampling Form – Page 1 of 2

Site Name/Location: Merchant's Shellowne Date: 114/08
Sample I.D.: MW-1 Collection Time 12:25
Sampling Sequence: 43 Of 4
EC S Field Staff Collecting This Sample: EW
Climatic Conditions (Temp/Precip): 50°F Sunny/Breezy
Depth To Product: ND Feet Depth To Water: 6.62 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): + 0, 6 feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 1162
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) ClearCloudyOpaque
Sample Collected from (tubing, bailer, or other-describe) + Lubin Q
Submitted For Analysis By (Method or Methods): 8015 DRO, 8260
Field Test Results (HACH Kits):
Alkalinity: NA Chloride: NA
Iron (II): WA Sulfate: NA
Notes:
· · · · · · · · · · · · · · · · · · ·

Low-Flow Well Sampling Form - Page 2 of 2

Location: Merchant's Shelburne	Depth To	/ Il (Of Of Screen (Below RP)
Well Id: MLO - 1	Top Top	Bottom
Field Personnel: EM	Pump Intake Depth: Q, S +	<u>.</u>
Reference Point (RP – TOC or other-describe):	Pumping Device: Perista L	7,1

											·
Comments										Sampled	
Turbidity (NTU)	398,7	102,5	-74.3 0:10 68:04	71.72	-68,0 0.02 62,17	44.99	-57,9 -0,0, 24,90	Dr.CI	14,83	カレ兔	
DO (Mg/L)	0.20	0,18	0110	20.0	20.0	0,00	1010-	10.0-	1010-	10.0-4.52-	
ORP / eH (mV)	-75,2 6,20	-75,2 0,18	-74.3	6.95-72,1 0.08	-b&;0	-65,0 0.00	-579	10.0-5.72	5.95-06.2	-56.F	
Hd	7,03	7.02	2.00	6.95			+	26.9	26.9	6,90	
Specific Conductance (uS/cm)	3,575 7.03	3,583	3, 621	3,700	3,722 6.93	3,745 6.92	8,775 6,90	31778	3.783	2,784	-
Temperature °C	14.30	14.29	14.27	14,25	14.25	14.24	14.23	14,24	14,23	14,19	
Cumulative Volume Purged (941)			5,0								
Pump Speed	150			-							
Purge Rate mL/min)											
Depth To Water (ft)	(a, w2	6.02	6.02	7 mig 55:11	20.0	تمانا	20.0	12:15 6.62	6.63	6,63	
Time (24 Hr)	11:40 6.02	11:45 6.02	7019 05:11	55;11	12,00 6.02	12,05 6.42	12:10 6:42	12:15	12:20 6.63	12:25 6.63	Notes:

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: Merchant's Shelburne Rel Date: 1/4/08
Sample I.D.: MW-2 Collection Time 13:40
Sampling Sequence: 4 4 Of 4
EC S Field Staff Collecting This Sample: & M
Climatic Conditions (Temp/Precip): 55°F Sunny/Breezy
Depth To Product: ND Feet Depth To Water: 5.30 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method: ND
Total Depth Of Boring (Take Measurement After Sampling): 7.45 C+
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) ClearCloudyXOpaque
Sample Collected from (tubing, bailer, or other-describe) + Ubing
Submitted For Analysis By (Method or Methods): 8260, 8015 DRO
Field Test Results (HACH Kits):
Alkalinity: NA Chloride: NA
Iron (II): NA Sulfate: NA
Notes:

Low-Flow Well Sampling Form - Page 2 of 2

Location: Mercheunt's shelburne Rel	Depth To / フ・サ Screen (Below RP)
Well Id: MW-2	Top Bottom
Field Personnel:	Pump Intake Depth: (2, 0 ++
Reference Point (RP – TOC or other-describe): (TO C	Pumping Device: Peristalf C

Comments											
Turbidity (NTU)											
DO (Mg/L)										2	
ORP / eH (mV)). 			Dande	
hd						-			4	dund	ple
Specific Conductance (uS/cm)	RV 6	•									Sample
Temperature °C	\triangle							,	4000101	GILLING	then
Cumulative Volume Purged	DUMPET					5	·		٠		and
Pump	PU								<i>h o o o o o o o o o o</i>	2100	arge
Purge Rate mL/min)		,							()	molt - ma	est to Recharge
Depth To Water (ft)		-				7			[V [0])		1447
Time (24 Hr)									Notes:		

lul sa			08-209°	33 7 27.01
14/08			Merchan	t's Shelbin
S	m on sef si met or o/const	inny usite cl	wcked i	M
Location MW-3 SB-D MW-4 MW-1 Curb-1 Curb-2 Curb-3 CP-1 CP-2 WV-1 CB-1	top ly	101 5.53.49 5.53.49 5.42 4.09 3.91 4.25 0.70 0.78 5.17	5.38 5.68 4.25 5.70 4.40 4.21 4.03 3.73 1.40 1.34 4.00 5.70	angle 9 358 19 44 29 69 44 75 18 12

Commence of the Commence of th	34 11/4/08				08-2097)
1 1 1 1 1						Shelburne
- Total	100	top	mid	bot	Angle	
	Curb-4	5.24	5.80	5.24		
	curb-5	7.86	7.31	6.75	337	
- 1 - 3	curb-6	11.58	10.82	10.05	304	
	curb-4	6,70	6115	5.61	353	
1000	CP-4	10,48	9.80	9.14	346	
場の情	CP-3	12.45	11.40	10.75	3 09	
	SB-C	5.04	7.60	7,15	328	
H						
	Take	Swind	Tie	Measur	rements	<u></u>
	MW=3-					_
	Start	End	dist	<u> </u>		
	MW-3	MW-4	31,25			- 1
	MW-4	MW-2	19.9			
100	MW-3	MW-2	33.7			
	mw-i	mw-4	49.0	<u></u>		
	MW-1	mw-2	27.0			
		70w				4
-	Duplica	4 take	n from	n Mw	-1@12:2	5
A Company	14:30	EM	offs		entrolle of the state of the st	
			o heal	ut	- IN M	
A COLUMN			X M	year	11/4/09)

APPENDIX E

GROUNDWATER LABORATORY ANALYTICAL RESULTS

Report Date: 17-Nov-08 11:49

\checkmark	Final Report
	Re-Issued Report
	Revised Report

Laboratory Report

Environmental Compliance Services

1 Elm St. Suite 3 Waterbury, VT 05676 Attn: Beth Erickson Project: Merchant's Shelburne Rd - South Burlington, VT

Project 08-209727.01

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA87135-01	MW-4	Ground Water	04-Nov-08 10:30	06-Nov-08 10:40
SA87135-02	MW-3	Ground Water	04-Nov-08 11:25	06-Nov-08 10:40
SA87135-03	MW-2	Ground Water	04-Nov-08 13:40	06-Nov-08 10:40
SA87135-04	MW-1	Ground Water	04-Nov-08 12:25	06-Nov-08 10:40
SA87135-05	Duplicate	Ground Water	04-Nov-08 00:00	06-Nov-08 10:40
SA87135-06	Trip Blank	Ground Water	04-Nov-08 08:00	06-Nov-08 10:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 20 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924

Rhode Island # 98 USDA # S-51435 Vermont # VT-11393 nelac

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 10:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds										
olatile (Organic Compounds										
repared	d by method SW846 5030 Water I	ИS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fre 113)	oiBRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	X
7-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	X
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	>
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	u u	"	"	"	>
7-66-3	Chloroform	BRL		μg/l	1.0	1	п	"	"	"	>
-87-3	Chloromethane	BRL		μg/l	2.0	1	u u	"	"	"	>
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	п	"	"	"	
6-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	п	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	п	"	"	"	>
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	п	"	"	"	>
6-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	п	"	"	"	>
-95-3	Dibromomethane	BRL		μg/l	1.0	1	п	"	"	"	>
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	"	"	>
5-71-8	Dichlorodifluoromethane (Freon12) BRL		μg/l	2.0	1	п	"	"	"	>
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	п	"	"	"	>
2-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	п	"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	п	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	п	"	"	"	>
061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	n .	u u	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	n .	n .	"	"	>
0-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n .	n .	"	"	>
'-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	n .	"	"	>
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	n .	n .	"	"	>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	n .	"	"	>
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	n .	"	"	>
34-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	>
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	п	n .	"		>
1-20-3	Naphthalene	BRL		μg/l	1.0	1	n .	n .	"		X
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	n .	"	"		X

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 10:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile O	Organic Compounds										
Volatile C	Organic Compounds										
Prepared	by method SW846 5030 Water N	//S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	X
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
179601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	n .	"	"	"	Х
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	n .	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	n .	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	n .	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	u	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89		70-13	30 %		"	"	"	"	
2037-26-5	Toluene-d8	101		70-13	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-13	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	105		70-1	30 %		n .	"	"	u u	
Extractab	le Petroleum Hydrocarbons										
Diesel Ra	ange Organics										
Prepared	by method SW846 3510C										
	Fuel Oil #2	BRL		mg/l	0.2	1	8015BM/ME4.1.25	12-Nov-08	13-Nov-08	8110838	
	Fuel Oil #4	BRL		mg/l	0.2	1	"	"	"		
	Fuel Oil #6	BRL		mg/l	0.2	1	"	"	"		
	Motor Oil	BRL		mg/l	0.2	1	"	"	"		
	Aviation Fuel	BRL		mg/l	0.2	1	"	"	"	"	
	Unidentified	BRL		mg/l	0.2	1	"	"	"	"	
	Other Oil	BRL		mg/l	0.2	1	"	"	"	"	
	Diesel Range Organics (DRO)	BRL		mg/l	0.2	1	"	"	"	"	
Surragata				-							
surrogate	recoveries:										

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 11:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cei
olatile (Organic Compounds										
olatile (Organic Compounds										
repared	d by method SW846 5030 Water N	ИS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fre	orBRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	X
7-64-1	113) Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	>
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	>
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	")
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	")
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	")
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
8-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	")
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	")
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	,
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	")
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	")
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	")
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	")
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	")
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	2
4-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	u u)
5-71-8	Dichlorodifluoromethane (Freon12) BRL		μg/l	2.0	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	")
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	")
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	u u)
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	u u)
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	u u)
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	u u)
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	")
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	")
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	")
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	")
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1		"	"	")
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	")
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	")
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	")
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	")
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	>
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	>
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"	"	"	")

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 11:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile C	Organic Compounds										
Volatile C	Organic Compounds										
Prepared	by method SW846 5030 Water N	ИS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Х
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Х
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	X
179601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Χ
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90		70-1	30 %		"	"	"	"	
2037-26-5	Toluene-d8	101		70-1	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	112		70-1	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-13	30 %		"	"	"	"	
Extractab	ole Petroleum Hydrocarbons										
Diesel Ra	ange Organics										
Prepared	by method SW846 3510C										
68476-30-2	Fuel Oil #2	BRL		mg/l	0.2	1	8015BM/ME4.1.25	12-Nov-08	13-Nov-08	8110838	
	Fuel Oil #4	BRL		mg/l	0.2	1	"	"	"	"	
	Fuel Oil #6	BRL		mg/l	0.2	1	n .	"	"	"	
M09800000	Motor Oil	BRL		mg/l	0.2	1	n .	"	"	"	
	Aviation Fuel	BRL		mg/l	0.2	1	n .	"	"	"	
	Unidentified	BRL		mg/l	0.2	1	n .	"	"	"	
	Other Oil	BRL		mg/l	0.2	1	"	"	"	"	
	Diesel Range Organics (DRO)	BRL		mg/l	0.2	1	W	"	"	"	
Surrogate	recoveries:										
•	1-Chlorooctadecane	57		40-14			"	"	"		

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 13:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds										
olatile (Organic Compounds										
repared	d by method SW846 5030 Water N	/IS									
'6-13-1	1,1,2-Trichlorotrifluoroethane (Fred 113)	_{DI} BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Х
7-64-1	Acetone	BRL	R03	μg/l	20.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
8-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	Х
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-71-8	Dichlorodifluoromethane (Freon12)BRL		μg/l	2.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
12-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	X
0061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
'-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	"	X
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	X
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	Х
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	Х
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 13:40

CAS No.	Analyte(s)	Result Fi	ag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile O	Organic Compounds										
Volatile C	Organic Compounds										
Prepared	by method SW846 5030 Water M	IS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	92		70-13	30 %		"	"	"	"	
2037-26-5	Toluene-d8	101		70-13	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	112		70-13	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-13	30 %		"	"	"	"	
Extractab	ole Petroleum Hydrocarbons										
Diesel Ra	ange Organics										
Prepared	by method SW846 3510C										
68476-30-2	Fuel Oil #2	Calculated as		mg/l	0.2	1	8015BM/ME4.1.25	12-Nov-08	13-Nov-08	8110838	
8476-31-3	Fuel Oil #4	BRL		mg/l	0.2	1	"	"	"	"	
8553-00-4	Fuel Oil #6	BRL		mg/l	0.2	1	"	"	"	"	
/0980000	Motor Oil	Calculated as		mg/l	0.2	1	"	"	"	"	
J00100000	Aviation Fuel	BRL		mg/l	0.2	1	"	"	"	"	
	Unidentified	9.6		mg/l	0.2	1	n .	"	"	"	
	Other Oil	BRL		mg/l	0.2	1	n .	"	"	"	
	Diesel Range Organics (DRO)	9.6		mg/l	0.2	1	"	"	"	"	
Surrogate	recoveries:										
_	1-Chlorooctadecane	52		40-14	10.0/		"				

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 12:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
olatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	l by method SW846 5030 Water N	ИS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	orBRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	X
7-64-1	113) Acetone	BRL		μg/l	10.0	1	"		"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"		"	"	X
1-43-2	Benzene	BRL		μg/l	1.0	1	"		"	"	>
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	,
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"		"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"		"	")
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	")
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	")
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	")
8-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"		"	"	•
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"		"	")
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	,
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"		"	")
7-66-3	Chloroform	BRL		μg/l	1.0	1	"		"	"	,
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"		"	"	,
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	-
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	,
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"		"	"	,
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	,
4-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	,
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"		"	")
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"		"	")
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
5-71-8	Dichlorodifluoromethane (Freon12			μg/l	2.0	1	"		"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"		"	")
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"		"	")
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	,
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"		"	")
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	,
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	,
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	")
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	n .	"	")
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	")
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1		"	"	")
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	n .	"	")
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1		"	"	")
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	")
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	")
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1		"	"	")
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	")
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	")
. 200	Napillialelle	DI L		μg/l	1.0	1)

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 12:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile (Organic Compounds										
Volatile (<u> Organic Compounds</u>										
Prepared	by method SW846 5030 Water	MS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	X
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11) BRL		μg/l	1.0	1	"	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	n .	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	n .	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	u u	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
0-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	II .	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
Surrogate	recoveries:										
160-00-4	4-Bromofluorobenzene	90		70-13	30 %		n .	"	"	"	
	Toluene-d8	101		70-13			"	"	"		
	1,2-Dichloroethane-d4	110		70-13			n .	"	"		
	Dibromofluoromethane	107		70-13			n .	"	"		
	ble Petroleum Hydrocarbons										
	ange Organics										
	by method SW846 3510C										
	Fuel Oil #2	BRL		mg/l	0.2	1	8015BM/ME4.1.25	12-Nov-08	13-Nov-08	8110838	
	Fuel Oil #4	BRL		mg/l	0.2	1	" "	"	10 1404-00	"	
		BRL		mg/l	0.2	1		"	,,		
	Fuel Oil #6	BRL		_	0.2	1	"	"	"		
	Motor Oil	BRL		mg/l	0.2	1	"	"	"		
1000000	Aviation Fuel			mg/l		1	"	"	"		
	Unidentified	BRL		mg/l	0.2		"	"	"		
	Other Oil	BRL		mg/l	0.2	1 1	"				
	Diesel Range Organics (DRO)	BRL		mg/l	0.2	ı					
-	recoveries:										
	1-Chlorooctadecane	62		40-14	40.07		"	"			

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
olatile (Organic Compounds										
olatile (Organic Compounds										
repared	d by method SW846 5030 Water I	ИS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fre	oiBRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Х
7-64-1	113) Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	X
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	>
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	")
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	>
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	>
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	")
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	")
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	>
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
5-71-8	Dichlorodifluoromethane (Freon12			μg/l	2.0	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	")
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	u u	"	"	"	>
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	n .	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	n .	"	"	>
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	>
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	u	"	"	"	>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"		>
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"		>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"		>
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"		>
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"		>
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	п	"	"	"	>

Sample Identification **Duplicate**SA87135-05

Client Project # 08-209727.01

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	d by method SW846 5030 Wate	r MS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Х
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	11) BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
179601-23	-1m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:				·						
460-00-4	4-Bromofluorobenzene	89		70-13	30 %		"	"	"	"	
2037-26-5	Toluene-d8	102		70-1	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-1	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 08:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds										
olatile (<u>Organic Compounds</u>										
repared	d by method SW846 5030 Water I	ИS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fre 113)	oiBRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Х
7-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Χ
-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	X
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	X
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-71-8	Dichlorodifluoromethane (Freon12			μg/l	2.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
12-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	X
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	X
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	Х
1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	"	X
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	X
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"		Х
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"		X
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	Х
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"	"	"		Х

<u>Matrix</u> Ground Water Collection Date/Time 04-Nov-08 08:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	d by method SW846 5030 Water N	//S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	11-Nov-08	12-Nov-08	8110777	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	u u	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
179601-23-	⁻¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
64-17-5	Ethanol	BRL		μg/l	400	1	II .	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89		70-13	30 %		"	"	"	"	
2037-26-5	Toluene-d8	101		70-13	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-13	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-13	30 %		"	"	"	"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8110777 - SW846 5030 Water MS		0								
Blank (8110777-BLK1)										
Prepared & Analyzed: 11-Nov-08										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL			0.5						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						
	BRL		μg/l							
2-Butanone (MEK) n-Butylbenzene			μg/l	10.0						
•	BRL BRL		μg/l	1.0 1.0						
sec-Butylbenzene tert-Butylbenzene	BRL		μg/l	1.0						
•	BRL		μg/l	5.0						
Carbon disulfide	BRL		μg/l	1.0						
Carbon tetrachloride	BRL		μg/l							
Chlorosthana	BRL		μg/l	1.0						
Chloroform	BRL		μg/l	2.0						
Chloroform Chloromethane	BRL		μg/l	1.0 2.0						
	BRL		μg/l							
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene	BRL		μg/l	1.0 2.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5						
Dibromochloromethane			μg/l							
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8110777 - SW846 5030 Water MS										
Blank (8110777-BLK1)										
Prepared & Analyzed: 11-Nov-08										
n-Propylbenzene	BRL		μg/l	1.0						
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l	400						
Surrogate: 4-Bromofluorobenzene	44.9		μg/l		50.0		90	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	50.4 53.6		μg/l μg/l		50.0 50.0		101 107	70-130 70-130		
Surrogate: Dibromofluoromethane	51.9		μg/l		50.0		104	70-130		
LCS (8110777-BS1)										
Prepared & Analyzed: 11-Nov-08										
1,1,2-Trichlorotrifluoroethane (Freon 113)	14.7		μg/l		20.0		74	70-130		
Acetone	21.9		μg/l		20.0		109	31.7-144		
Acrylonitrile	20.5		μg/l		20.0		103	70-130		
Benzene	21.8		μg/l		20.0		109	70-130		
Bromobenzene	21.7		μg/l		20.0		109	70-130		
Bromochloromethane	21.8		μg/l		20.0		109	70-130		
Bromodichloromethane	22.1		μg/l		20.0		110	70-130		
Bromoform	19.3		μg/l		20.0		97	70-130		
Bromomethane	21.5		μg/l		20.0		108	43-158		
2-Butanone (MEK)	16.3		μg/l		20.0		82	54.5-137		
n-Butylbenzene	17.4		μg/l		20.0		87	70-130		
sec-Butylbenzene	17.8		μg/l		20.0		89	70-130		
tert-Butylbenzene	18.1		μg/l		20.0		90	70-130		
Carbon disulfide	18.6		μg/l		20.0		93	70-130		
Carbon tetrachloride	18.5		μg/l		20.0		92	70-130		
Chlorobenzene	21.3		μg/l		20.0		106	70-130		

Analyte(s) Batch 8110777 - SW846 5030 Water MS LCS (8110777-BS1) Prepared & Analyzed: 11-Nov-08 Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	Result Flag 20.4 22.2 19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4 22.4	рд/I рд/I	*RDL	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Result	%REC 102 111 96 101 102 106 113 114	60.1-131 70-130 70-130 70-130 70-130 66.2-145 70-130	RPD	Limit
LCS (8110777-BS1) Prepared & Analyzed: 11-Nov-08 Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.2 19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		111 96 101 102 106 113	70-130 70-130 70-130 70-130 70-130 66.2-145		
Prepared & Analyzed: 11-Nov-08 Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.2 19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		111 96 101 102 106 113	70-130 70-130 70-130 70-130 70-130 66.2-145		
Prepared & Analyzed: 11-Nov-08 Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.2 19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		111 96 101 102 106 113	70-130 70-130 70-130 70-130 70-130 66.2-145		
Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.2 19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		111 96 101 102 106 113	70-130 70-130 70-130 70-130 70-130 66.2-145		
Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	19.3 20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0		96 101 102 106 113	70-130 70-130 70-130 70-130 66.2-145		
2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	20.1 20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l		20.0 20.0 20.0 20.0 20.0 20.0		101 102 106 113	70-130 70-130 70-130 66.2-145		
4-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	20.3 21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0 20.0 20.0		102 106 113	70-130 70-130 66.2-145		
1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	21.2 22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	hā\] hā\] hā\] hā\] hā\]		20.0 20.0 20.0 20.0		106 113	70-130 66.2-145		
Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.5 22.7 21.8 23.0 22.6 21.3 12.7 21.4	ha\l ha\l ha\l ha\l ha\l		20.0 20.0 20.0		113	66.2-145		
1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.7 21.8 23.0 22.6 21.3 12.7 21.4	hā\ hā\ hā\ hā\ hā\		20.0 20.0					
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	21.8 23.0 22.6 21.3 12.7 21.4	hā\l hā\l hā\l		20.0		114	70 120		
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	23.0 22.6 21.3 12.7 21.4	µg/l µg/l µg/l					10-130		
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	22.6 21.3 12.7 21.4	μg/l μg/l μg/l		20.0		109	70-130		
1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	21.3 12.7 21.4	μg/l μg/l				115	70-130		
Dichlorodifluoromethane (Freon12) 1,1-Dichloroethane 1,2-Dichloroethane	12.7 21.4	μg/l		20.0		113	70-130		
1,1-Dichloroethane 1,2-Dichloroethane	21.4			20.0		106	70-130		
1,1-Dichloroethane 1,2-Dichloroethane				20.0		64	46.9-168		
1,2-Dichloroethane	22.4	μg/l		20.0		107	70-130		
1.1 Diablaracthona		μg/l		20.0		112	70-130		
1,1-Dichloroethene	18.2	μg/l		20.0		91	70-130		
cis-1,2-Dichloroethene	23.3	μg/l		20.0		116	70-130		
trans-1,2-Dichloroethene	20.3	μg/l		20.0		101	70-130		
1,2-Dichloropropane	22.0	μg/l		20.0		110	70-130		
1,3-Dichloropropane	21.9	μg/l		20.0		110	70-130		
2,2-Dichloropropane	19.6	μg/l		20.0		98	70-130		
1,1-Dichloropropene	19.4	μg/l		20.0		97	70-130		
cis-1,3-Dichloropropene	22.3	μg/l		20.0		112	70-130		
trans-1,3-Dichloropropene	19.9	μg/l		20.0		99	70-130		
Ethylbenzene	19.5	μg/l		20.0		98	70-130		
Hexachlorobutadiene	18.7	μg/l		20.0		93	70-135		
2-Hexanone (MBK)	17.8	μg/l		20.0		89	70-130		
Isopropylbenzene	18.6	μg/l		20.0		93	70-130		
4-Isopropyltoluene	18.2	μg/l		20.0		91	70-130		
Methyl tert-butyl ether	22.5	μg/l		20.0		112	70-130		
4-Methyl-2-pentanone (MIBK)	19.2	μg/l		20.0		96	57.6-130		
Methylene chloride	22.6	μg/l		20.0		113	70-130		
Naphthalene	19.6	μg/l		20.0		98	70-130		
n-Propylbenzene	18.3	μg/l		20.0		91	70-130		
Styrene	19.5	μg/l		20.0		97	70-130		
1,1,1,2-Tetrachloroethane	22.4	μg/l		20.0		112	70-130		
1,1,2,2-Tetrachloroethane	22.5	μg/l		20.0		112	70-130		
Tetrachloroethene	19.1	μg/l		20.0		96	70-130		
Toluene	20.9	μg/l		20.0		104	70-130		
1,2,3-Trichlorobenzene	21.9	μg/l		20.0		110	70-130		
1,2,4-Trichlorobenzene	18.9	μg/l		20.0		95	70-130		
1,3,5-Trichlorobenzene	19.6	μg/l		20.0		98	70-130		
1,1,1-Trichloroethane	20.0	μg/l		20.0		100	70-130		
1,1,2-Trichloroethane	21.4	μg/l		20.0		107	70-130		
Trichloroethene	20.8	μg/l		20.0		104	70-130		
Trichlorofluoromethane (Freon 11)	16.0	μg/l		20.0		80	64.9-147		
1,2,3-Trichloropropane	22.6	μg/l		20.0		113	70-130		
1,2,4-Trimethylbenzene	19.8	μg/l		20.0		99	70-130		
1,3,5-Trimethylbenzene	18.9	μg/l		20.0		94	70-130		

A ::= 1-4-(-)	Dlt	Pl	T T i.e	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8110777 - SW846 5030 Water MS										
LCS (8110777-BS1)										
Prepared & Analyzed: 11-Nov-08										
Vinyl chloride	21.8		μg/l		20.0		109	70-130		
m,p-Xylene	40.2		μg/l		40.0		101	70-130		
o-Xylene	21.0		μg/l		20.0		105	70-130		
Tetrahydrofuran	20.0		μg/l		20.0		100	70-130		
Ethyl ether	22.5		μg/l		20.0		113	70-130		
Tert-amyl methyl ether	22.6		μg/l		20.0		113	70-130		
Ethyl tert-butyl ether	20.1		μg/l		20.0		101	70-130		
Di-isopropyl ether	20.0		μg/l		20.0		100	70-130		
Tert-Butanol / butyl alcohol	211		μg/l		200		106	70-130		
1,4-Dioxane	233		μg/l		200		116	53.8-137		
trans-1,4-Dichloro-2-butene	17.1		μg/l		20.0		86	70-130		
Ethanol	503		μg/l		400		126	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	49.5 40.5		μg/l		50.0		99	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	49.5 49.6		μg/l μg/l		50.0 50.0		99 99	70-130 70-130		
_			P-3··							
LCS Dup (8110777-BSD1) Prepared & Analyzed: 11-Nov-08										
1,1,2-Trichlorotrifluoroethane (Freon 113)	14.1		μg/l		20.0		71	70-130	4	25
Acetone	19.3		μg/l		20.0		96	31.7-144	13	50
Acrylonitrile	20.0		μg/l		20.0		100	70-130	3	25
Benzene	21.0		μg/l		20.0		105	70-130	4	25
Bromobenzene	21.2		μg/l		20.0		106	70-130	3	25
Bromochloromethane	21.6		μg/l		20.0		108	70-130	0.8	25
Bromodichloromethane	21.3		μg/l		20.0		106	70-130	4	25
Bromoform	18.0		μg/l		20.0		90	70-130	7	25
Bromomethane	20.3		μg/l		20.0		101	43-158	6	50
2-Butanone (MEK)	16.0		μg/l		20.0		80	54.5-137	2	50
n-Butylbenzene	17.5		μg/l		20.0		87	70-130	0.6	25
sec-Butylbenzene	17.6		μg/l		20.0		88	70-130	1	25
tert-Butylbenzene	17.7		μg/l		20.0		88	70-130	2	25
Carbon disulfide	17.5		μg/l		20.0		88	70-130	6	25
Carbon tetrachloride	17.9		μg/l		20.0		90	70-130	3	25
Chlorobenzene	20.4		μg/l		20.0		102	70-130	4	25
Chloroethane	19.3		μg/l		20.0		97	60.1-131	5	50
Chloroform	20.8		μg/l		20.0		104	70-130	6	25
Chloromethane	18.1		μg/l		20.0		90	70-130	6	25
2-Chlorotoluene	19.6		μg/l		20.0		98	70-130	3	25
4-Chlorotoluene	19.7		μg/l		20.0		98	70-130	3	25 25
1,2-Dibromo-3-chloropropane	20.2		μg/l		20.0		101	70-130	5	25 25
Dibromochloromethane	21.4		μg/l		20.0		107	66.2-145	5	50
1,2-Dibromoethane (EDB)	22.2		μg/l		20.0		111	70-130	2	25
Dibromomethane	21.4		μg/l		20.0		107	70-130	2	25 25
1,2-Dichlorobenzene	22.8		μg/l		20.0		114	70-130	1	25
1,3-Dichlorobenzene	22.1		μg/l		20.0		111	70-130	2	25
1,4-Dichlorobenzene	21.1		μg/l		20.0		106	70-130	0.7	25 25
Dichlorodifluoromethane (Freon12)	12.1				20.0		61	46.9-168	5	50
1,1-Dichloroethane	20.5		µg/l ug/l		20.0		102	70-130	5	25
1,2-Dichloroethane	20.5		µg/l		20.0		110	70-130 70-130	2	25 25
			µg/l							
1,1-Dichloroethene	17.5		μg/l		20.0		88	70-130	4	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8110777 - SW846 5030 Water MS										
_CS Dup (8110777-BSD1)										
Prepared & Analyzed: 11-Nov-08										
cis-1,2-Dichloroethene	22.2		μg/l		20.0		111	70-130	5	25
trans-1,2-Dichloroethene	20.0		μg/l		20.0		100	70-130	1	25
1,2-Dichloropropane	20.8		μg/l		20.0		104	70-130	6	25
1,3-Dichloropropane	21.6		μg/l		20.0		108	70-130	1	25
2,2-Dichloropropane	18.6		μg/l		20.0		93	70-130	5	25
1,1-Dichloropropene	18.4		μg/l		20.0		92	70-130	6	25
cis-1,3-Dichloropropene	21.7		μg/l		20.0		109	70-130	3	25
trans-1,3-Dichloropropene	19.1		μg/l		20.0		96	70-130	4	25
Ethylbenzene	18.7		μg/l		20.0		93	70-130	4	25
Hexachlorobutadiene	17.8		μg/l		20.0		89	70-135	5	50
2-Hexanone (MBK)	17.9		μg/l		20.0		90	70-130	8.0	25
Isopropylbenzene	18.3		μg/l		20.0		91	70-130	2	25
4-Isopropyltoluene	18.4		μg/l		20.0		92	70-130	0.9	25
Methyl tert-butyl ether	22.3		μg/l		20.0		111	70-130	1	25
4-Methyl-2-pentanone (MIBK)	19.2		μg/l		20.0		96	57.6-130	0.2	50
Methylene chloride	22.1		μg/l		20.0		110	70-130	3	25
Naphthalene	17.7		μg/l		20.0		89	70-130	10	25
n-Propylbenzene	17.9		μg/l		20.0		90	70-130	2	25
Styrene	19.1		μg/l		20.0		95	70-130	2	25
1,1,1,2-Tetrachloroethane	21.5		μg/l		20.0		107	70-130	4	25
1,1,2,2-Tetrachloroethane	21.7		μg/l		20.0		109	70-130	3	25
Tetrachloroethene	18.4		μg/l		20.0		92	70-130	4	25
Гoluene	20.2		μg/l		20.0		101	70-130	3	25
1,2,3-Trichlorobenzene	20.6		μg/l		20.0		103	70-130	6	25
1,2,4-Trichlorobenzene	18.6		μg/l		20.0		93	70-130	2	25
1,3,5-Trichlorobenzene	19.9		μg/l		20.0		100	70-130	2	25
1,1,1-Trichloroethane	18.8		μg/l		20.0		94	70-130	6	25
1,1,2-Trichloroethane	21.2		μg/l		20.0		106	70-130	1	25
Trichloroethene	19.7		μg/l		20.0		98	70-130	6	25
Trichlorofluoromethane (Freon 11)	15.4		μg/l		20.0		77	64.9-147	4	50
1,2,3-Trichloropropane	22.0		μg/l		20.0		110	70-130	3	25
1,2,4-Trimethylbenzene	19.3		μg/l		20.0		97	70-130	2	25
1,3,5-Trimethylbenzene	18.7		μg/l		20.0		93	70-130	1	25
Vinyl chloride	20.6		μg/l		20.0		103	70-130	6	25
n,p-Xylene	38.4		μg/l		40.0		96	70-130	5	25
p-Xylene	19.8		μg/l		20.0		99	70-130	6	25
Tetrahydrofuran	20.0		μg/l		20.0		100	70-130	0.2	25
Ethyl ether	21.6		μg/l		20.0		108	70-130	4	50
Fert-amyl methyl ether	21.7		μg/l		20.0		109	70-130	4	25
Ethyl tert-butyl ether	20.0		μg/l		20.0		100	70-130	0.5	25
Di-isopropyl ether	19.7		μg/l		20.0		98	70-130	2	25
Tert-Butanol / butyl alcohol	207		μg/l		200		104	70-130	2	25
1,4-Dioxane	205		μg/l		200		102	53.8-137	13	25
trans-1,4-Dichloro-2-butene	16.4		μg/l		20.0		82	70-130	4	25
Ethanol	452		μg/l		400		113	70-130	11	30
Surrogate: 4-Bromofluorobenzene	50.5		μg/l		50.0		101	70-130	•••	
Surrogate: 4-biomondolobenzene Surrogate: Toluene-d8	49.8		μg/l μg/l		50.0		100	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	49.7		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	49.5		μg/l		50.0		99	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8110777 - SW846 5030 Water	MS									
Matrix Spike (8110777-MS1)	Source: SA8713	5-01								
Prepared: 11-Nov-08 Analyzed: 12-No										
Benzene	18.8		μg/l		20.0	BRL	94	70-130		
Chlorobenzene	20.2				20.0	BRL	101	70-130		
			μg/l							
1,1-Dichloroethene	18.2		μg/l 		20.0	BRL	91	70-130		
Toluene	19.1		μg/l		20.0	BRL	96	70-130		
Trichloroethene	18.5		μg/l		20.0	BRL	92	70-130		
Surrogate: 4-Bromofluorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	49.7 49.9		μg/l		50.0 50.0		99	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	49.9 48.8		μg/l μg/l		50.0 50.0		100 98	70-130 70-130		
_			P9/1		00.0		30	70 700		
Matrix Spike Dup (8110777-MSD1)	Source: SA8713	5-01								
Prepared: 11-Nov-08 Analyzed: 12-No										
Benzene	19.3		μg/l		20.0	BRL	97	70-130	3	30
Chlorobenzene	20.3		μg/l		20.0	BRL	102	70-130	0.5	30
1,1-Dichloroethene	19.3		μg/l		20.0	BRL	96	70-130	6	30
Toluene	19.6		μg/l		20.0	BRL	98	70-130	2	30
Trichloroethene	19.2		μg/l		20.0	BRL	96	70-130	4	30
Surrogate: 4-Bromofluorobenzene	51.5		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.6		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.7		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	49.6		μg/l		50.0		99	70-130		
	Extracta	ble Pet	roleum Hy	drocarbon	s - Ouality	Control				
			•		~ ~	00111101				
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL			%REC	%REC Limits	RPD	
• • • • • • • • • • • • • • • • • • • •	Result	Flag			Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C	Result	Flag			Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1)		Flag			Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No		Flag	Units		Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-Novel Oil #2	v-08 BRL	Flag	Units mg/l	*RDL	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4	v-08 BRL BRL	Flag	Units mg/l mg/l	*RDL 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6	v-08 BRL BRL BRL	Flag	Units mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-Novel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil	v-08 BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-Novel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel	v-08 BRL BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-Nover Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified	v-08 BRL BRL BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil	v-08 BRL BRL BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil	v-08 BRL BRL BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO)	v-08 BRL BRL BRL BRL BRL BRL	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Spike	Source	%REC		RPD	RPD Limi
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO) C9 - C36	y-08 BRL BRL BRL BRL BRL BRL BRL BR	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Spike	Source	%REC		RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO) C9 - C36 Surrogate: 1-Chlorooctadecane	v-08 BRL BRL BRL BRL BRL BRL BRL BR	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Spike Level	Source		Limits	RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO) C9 - C36 Surrogate: 1-Chlorooctadecane	y-08 BRL BRL BRL BRL BRL BRL BRL BR	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Spike Level	Source		Limits	RPD	
Batch 8110838 - SW846 3510C Blank (8110838-BLK1) Prepared: 12-Nov-08 Analyzed: 13-No Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO) C9 - C36 Surrogate: 1-Chlorooctadecane LCS (8110838-BS1)	y-08 BRL BRL BRL BRL BRL BRL BRL BR	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Spike Level	Source		Limits	RPD	
Fuel Oil #4 Fuel Oil #6 Motor Oil Aviation Fuel Unidentified Other Oil Diesel Range Organics (DRO) C9 - C36 Surrogate: 1-Chlorooctadecane LCS (8110838-BS1) Prepared: 12-Nov-08 Analyzed: 13-No	v-08 BRL BRL BRL BRL BRL BRL BRL BR	Flag	Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	*RDL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Spike Level	Source	55	Limits 40-140	RPD	

Notes and Definitions

R03 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds

present in the sample.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Rebecca Merz

			1
V W		ŧ	2
		+)
-	٢	1)

CHAIN OF CUSTODY RECORD

SPECTRUM ANALYTICAL, INC.

Rush TAT - Date Needed:

All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.

 Samples disposed of after 60 days unless otherwise instructed. Special Handling:

Fax results E-mail to EDD Format Condition upon		Day seeds				(2 /2	20	104	03	1 02	713501	Lab ld:			DW=Drinking Water O=Oil SW= Surface	1=Na ₂ S2O ₃ 2: 7=CH ₃ OH 8=	Project Mgr.:	Waterb	1 Elm	Report To:	HAN	
Fax results when available to ()	when mailable to (The state of	this blank	Duplicate	NW-1	MW-2	5-MM	mw-4	Sample Id:	G=Grab C=0		GW-G Water	2=HCl 3=H ₂ SO ₄ 4 8= NaHSO ₄ 9=	Beth Encksor	Waterbury, VT		ECS	HANIBAL TECHNOLOGY		
□ Ambient □ °C		ecscons	-					+		4			11/4	Date:	C=Composite	11	S	1=HNO ₃ 5=N	K 6010	05676			
V	i	most lu						8,00		12:25	13:40	11125	10:30	Time:		111	WW=Wastewater =Sludge A=Air	4=HNO ₃ 5=NaOH · 6=Ascorbic Acid	P.O.			Invo	
,		0						4				-	P	Турс				rbic Ac	P.O. No.:	4		Invoice To:	
		has						4				-	GW.	Matri	x ,			, E		7			
	sabe	60	Reline	Relin		4					2	Preservative # of VOA Vials			location.				-				
	N	8	Relinquished by:	312				_	4	4		E	2	# of V				_	2				
	2	3	d by:							_				# of C				Containers:	QN:	- 8		-	
	6,	E.										ř.		# of I				ners:	RQN: 0002				
		6					94	-											ř				2
					-			4		-	_	_	×	821	OD					-	-	_	
										←	F		×	801	5	DR	0		Sampler(s):	Locati	Site Na	Project	
	2		Rece			'											7	Ana	er(s):	100	ame:	 No.:	
	8		Received by:	-			-		7									Analyses:		tries.	3	0	1
	Maria	2	у:																25	2	CCK	5-2	
	W																			77	124	100	Minerw
	Dusuillo 14					24.5				-								130	-	7. 1.	3	72	Ise msi
		11/5/08	Date:											State specific rep	Other	QA/QC Rep	☐ Provide MA DEP MCP CAM ☐ Provide CT DEP RCP Report	QA Report		Location: South Burlington State: VT	Site Name: Merchants Shelburne Pd	Project No.: 08-209721,01	otherwise instructed.
	0401 80/0	8:00	Time:	1										State specific reporting standards:	E No QC	-	☐ Provide MA DEP MCP CAM Report ☐ Provide CT DEP RCP Report	QA Reporting Notes: (check if needed)		F .	me ed		

