

October 5, 2009

Mr. Dennis O'Neill National Grange Mutual Insurance Company 27B Midstate Drive, Suite 100 Auburn, MA 01501-1896

RE: Corrective Action Feasibility Investigation Report

Jeffery Residence 8 Nichols Road Landgrove, Vermont

VT DEC SMS Site No. 20022951 CEA Project No.: RI-0011-06

Dear Mr. O'Neill,

Corporate Environmental Advisors, Inc. (CEA) presents this Corrective Action Feasibility Investigation (CAFI) Report for a release of fuel oil at the above-referenced location (the Site).

If you have any questions, or require additional information, please contact either of the undersigned at (603) 225-7400.

Sincerely,

Corporate Environmental Advisors, Inc.

William H. Hopper

Sr. Environmental Scientist

Eric M. Johnson, CPG

Regional Manager

cc:

Mr. Gerald Noyes, VTDEC, Waste Management Division, 103 South Main Street/West

Building, Waterbury, VT 05671-0404

Mr. Michael Jeffery, 8 Nichols Road, Landgrove, VT 05418

Phase (check one)	Type (check one)
☐ Initial Site Investigation	□ Work Scope
✓ Corrective Action Feasibility	✓ Technical Report
Investigation	☐ PCF Reimbursement Request
☐ Corrective Action Plan	☐ General Correspondence
☐ Corrective Action Summary Rpt	
☐ Operations & Monitoring Report	

CORRECTIVE ACTION FEASABILITY INVESTIGATION REPORT Jeffery Residence

8 Nichols Road Landgrove, Vermont VT DEC SMS Site No. 20022951 CEA Project # RI-0011-06

Prepared for: National Grange Mutual Insurance Company 27B Midstate Drive, Suite 100 Auburn, MA 01501-1896 (508) 407-6168 x-168 Contact: Mr. Dennis O'Neill

Prepared By: Corporate Environmental Advisors, Inc. 62A Hall Street Concord, NH 03301 Telephone: 603-225-7400 Fax: 603-225-7404

October 5, 2009

Sr. Environmental Scientist

Eric M. Johnson, CPO

Regional Manager

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	GENERAL SITE INFORMATION1
2.1	Site Description
2.2	Site History1
3.0	SUMMARY OF 2009 ASSESSMENT1
3.1	Summary of June – August Assessment Activities
3.2	Survey
3.3	· · · · · · · · · · · · · · · · · · ·
	.3.1 Air Sample Collection
3.4	The state of the s
3.5	Drain Line Discharge Investigation
3.6	Summary of Recent Groundwater Sampling Events
_	.6.1 June 2009 Groundwater Sampling Event
3	.6.2 August 2009 Groundwater Sampling Event
4.0	SITE GEOLOGY AND HYDROGEOLOGY6
4.1	Site Geology
4.2	Site Hydrogeology6
5.0	NATURE AND EXTENT OF IMPACTS
5.1	Nature of Impacts
5.2	Extent of OHM in Soil
5.3	Extent of OHM in Groundwater8
6.0	IDENTIFICATION AND EVALUATION OF REMEDIAL ACTION ALTERNATIVES8
6.1	Natural Aftenuation
6.2	Oxygen Injection
6.3	Enhanced Passive Remediation 10
6.5	Injection of "Modified" Fenton's Reagent 11 Soil Excavation 11
6.6	Ex-situ Bioremediation
6.7	Groundwater Extraction and Treatment
6.8	Soil Vapor Extraction
6.9	Air Sparging
6.10	High Vacuum, Dual-Phase Extraction
6.11	LNAPL Removal
7.0	SELECTION OF REMEDIAL ALTERNATIVE15
3.0	SUMMARY OF FINDINGS

Page ii

October 5, 2009 Landgrove, Vermont CEA Project No.: RI-0011-06

TABLE OF CONTENTS (CONTINUED)

Figures

Figure 1 Site Locus Map

Figure 2 Site Layout with Groundwater Contours

Figure 3 Estimated Soil and Groundwater Impact Plan

Tables

Table 1 – Summary of Soil Analytical Results

Table 2 – Summary of Monitoring Well Gauging Data

Table 3 – Summary of Groundwater Laboratory Analytical Results

Table 4 – Summary of Air Analytical Results

Appendices

Appendix A Copy of Laboratory Analytical Reports

Appendix B Boring Logs and Monitoring Well Construction Details

October 5, 2009 Landgrove, Vermont CEA Project No.: RI-0011-06

1.0 INTRODUCTION

Corporate Environmental Advisors, Inc. (CEA) was retained to conduct environmental consulting services at the Jeffery residence located at 8 Nichols Road in Landgrove, Vermont (the Site). CEA has prepared this Corrective Action Feasibility Investigation (CAFI) Report at the request of the Vermont Department of Environmental Conservation (VTDEC). The CAFI and additional groundwater sampling detailed below were necessary to further evaluate environmental impacts to soil and groundwater following a release of No. 2 fuel oil from an underground storage tank (UST) in 2001.

2.0 GENERAL SITE INFORMATION

2.1 Site Description

The Site is located at 8 Nichols Road in a rural residential area in the town of Landgrove, Vermont. Over all, the property is sloped gently down to the northwest. Please refer to **Figure 1** which shows the Site with respect to surrounding topography. Additionally, **Figure 2** depicts the Site and locations of pertinent Site features including monitor wells, recovery wells, buildings, and other structures.

2.2 Site History

In the winter of 2001, a snow plow reportedly struck the fill pipe to the No. 2 fuel oil UST located approximately 20 feet southeast and hydraulically upgradient from the southern portion of the house. During subsequent fuel oil deliveries, an unknown volume of fuel oil was released from a break between the fill pipe and the UST. The released fuel oil flowed with groundwater under the southern portion of the house and migrated through the footing drain to a surface discharge point located approximately 80 feet west of the house. The footing drain discharge pipe and backfill were excavated and replaced. The fuel oil underground storage tank was removed. At a later date, surficial impacted soil from the former UST area was also removed. Soil borings have been performed through the basement floor and outside the residence. Some borings were completed as monitoring wells and some were completed as recovery wells. Fuel oil has been recovered from the recovery wells and from the terminus of the footing drain. Fuel oil has not been observed in the discharge from the footing drain in recent years. Analysis of drinking water samples have not detected target analytes at concentrations above the laboratory detection limits. Please note that the depth to bedrock was reported by others to be less than five feet below grade surface based on borings performed through the basement floor.

3.0 SUMMARY OF 2009 ASSESSMENT

3.1 Summary of June – August Assessment Activities

From June 8 to June 9, 2009, a total of four soil borings were advanced at the Site, identified as B(MW)-4 through B(MW)-7. The borings were advanced in the former UST grave, downgradient of the former UST grave, in the driveway (down/crossgradient of the basement

recovery wells) and north of the basement in the back yard. The borings were performed to better assess the horizontal and vertical extent of petroleum impact to the property. Soil borings were performed by Drilex Environmental of West Boylston, Massachusetts using a track-mounted CME-55 drill rig, equipped with an air hammer. Borings were completed under the observation of CEA. Borings were advanced to a maximum depth of approximately 22 feet bgs. Soil samples were collected, where applicable, during completion of the borings using ASTM Method 1586-84. During the advancement of the borings, soil samples were collected at a rate of two feet every five feet until the air hammer attachment was utilized to progress through cobbles and large boulders.

Soil samples collected during soil boring activities were screened for total volatile organic compounds (VOCs) using the headspace method and a photoionization detector (PID). The PID was calibrated with isobutylene at a concentration of 100 parts per million prior to the start of work each day. Headspace readings ranged from not detected above the instrument detection limit [(<1.0 ppmv) to 139 ppmv [B-(MW)-4 at 20-22 feet bgs]. Soil encountered during boring consisted of find sand and silt to approximately eight feet below grade. Fine sand and silt, recovered from 20 to 22 feet below grade in boring B(MW)-4, was interpreted to be glacial till.

Soil samples were collected from borings B(MW)-4 and B(MW)-5 and submitted to Spectrum Analytical, Inc. (Spectrum), a Vermont certified laboratory, located in Agawam, Massachusetts for analysis for VOC by EPA Method 8260 and for polynuclear aromatic hydrocarbons (PAH) by EPA Method 8270. Laboratory analysis of the soil samples collected from the borings detected numerous VOCs and PAHs. However, the reported concentrations were below the VTDEC Residential Preliminary Remediation Goals. Please refer to **Table 1** for a summary of the laboratory analytical data and **Appendix A** for copies of the soil laboratory analytical report. Soil samples were not collected from borings B(MW)-6 and B(MW)-7 because the air hammer attachment was utilized to drill through large boulders.

Soil borings B(MW)-4 through B(MW)-7 were completed as monitoring wells MW-4 through MW-7, respectively. These four monitoring wells were constructed of thread-coupled, 2-inch inside diameter Schedule 40 PVC well materials. The well screens were set across the water table. A sandpack was placed in the annular space between the well screens and the bore hole and a bentonite seal was placed above the sandpack. After the well installations were complete, the wells were developed using the surge and bail technique. During development, a light sheen was observed on the water purged from monitoring well MW-4 and a heavier sheen was observed in the water removed from MW-6. Please refer to **Appendix B** for a copy of the bore logs.

3.2 Survey

On June 24, 2009, the tops of the monitoring well casings were surveyed, using standard leveling and stadia techniques, relative to an arbitrary datum of 100.00 feet set at the left side of the right garage door. The survey was performed to determine the wellhead elevations for calculation of the groundwater table gradient.

3.3 Air Sampling and Analysis

On June 24, 2009, CEA performed indoor air sampling at the residence to evaluate potential indoor air impacts. The windows of the residence were closed in the first floor room above the basement and no windows or doors were open during sample collection. CEA also utilized a PID equipped with a 10.2 eV lamp, which is appropriate for petroleum screening prior to sample collection to determine if VOCs could be detected in ambient air. No PID readings above 0.0 ppmv were recorded on the first floor and 0.9 ppmv was recorded in the basement and petroleum odors were not noted.

3.3.1 Air Sample Collection

CEA set up three 6-liter summa air sampling canisters to evaluate airborne petroleum concentrations. One summa canister was set-up in the living/dining room on the first floor, one summa canister was set-up in the basement, and a third summa canister was set-up on the front porch to collect an ambient air sample for comparison purposes. These samples were collected to evaluate potential vapor intrusion into the residence as a result of the releases of fuel oil. The samples were collected over a 4-hour period and were submitted to Spectrum for analysis by EPA Method TO-15.

3.3.2 Laboratory Analytical Results

Laboratory analysis of the three air samples detected 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene in the basement at concentrations above the EPA Region III Regional Screening Levels for Indoor Air. Numerous other compounds, frequently present in cleaning agents and air fresheners, were detected in the basement sample, but at concentrations below the EPA Region III Regional Screening Levels for Indoor Air. Freon 11 and Freon 12 were both detected in the house and may indicate a refrigerant coolant leak. The concentrations of petroleum-related compounds detected in the sample from the first floor were below those detected in the basement sample and were all below the EPA Region III Regional Screening Levels for Indoor Air. Please refer to Table 4 for a summary of the air analytical results, and a copy of the laboratory analytical report is attached in Appendix A.

3.3.3 Basement Recovery Well PID Screening

Following air sample collection, CEA screened recovery wells (RW-4 through RW-7) with a calibrated PID via tubing inserted into a drilled hole in the well covers to determine the potential of vapors to infiltrate the basement and potentially the residence. Headspace readings within the recovery wells ranged from 17.7 ppmv in RW-6 to 237 ppmv in RW-7. Strong petroleum odors were noted in all recovery wells. As noted above, the ambient headspace reading in the basement prior to air sample collection was 0.9 ppmv. Prior to departure, the drilled holes in the recovery wells were plugged to minimize the potential for vapors to impact indoor air.

CEA Project No.: RI-0011-06

The correlation between indoor air PID readings, indoor air sample analytical results and the basement recovery wells PID readings demonstrates that minimal vapor intrusion is occurring from those monitoring points.

Page 4

3.4 Sheen on Pond Investigation

On August 5, 2009, a neighbor reported to Mr. Jeffery that a sheen was present on a pond downgradient of the house. That day, CEA visited the Site and investigated the sheen CEA determined that an organic based sheen was present on water at the edge of the pond and on standing water near the pond. This organic sheen was not petroleum based and not associated with the fuel oil release. A PID was utilized to screen ambient air and all readings were at the detection limit of the unit. No petroleum odors were detected on the water or in the ambient air.

3.5 Drain Line Discharge Investigation

Two four-inch PVC pipes terminate on the property near monitoring wells MW-1 and MW-2 and upgradient of the pond. These drains are for the footing or curtain drain that is believed to rap around the foundation and for grey water from the laundry room in the basement. Dead and stressed vegetation has been observed at and beyond the terminus and a slight petroleum odor has been noted in the past.

August 5, 2009, CEA hand excavated under the drain lines approximately one foot upgradient of the terminus to collect a soil sample. This sample was collected to determine if the material used as backfill around the lines was acting as a preferential migration pathway for petroleum when the groundwater elevation was high. The fine sand and silt, generally matching the native material nearby, was observed under the drain lines to a depth of one foot bgs. The soil sample from under the drain lines and a second soil sample collected from downgradient of the terminus in the dead vegetation were screened with a PID and the headspace method. The PID was calibrated with isobutylene prior to the start of work. Headspace readings from soil samples were not detected above the instrument detection limits (<1.0 ppmv).

No odor has been detected in the grey water line and the foundation drain line has historically been dry when CEA has been on Site. On August 5, 2009, CEA observed water trickling from the foundation drain line. A sample of the water discharging from the drain was collected, stored on ice, and transported under Chain-of-Custody protocol to Spectrum, for analysis for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Laboratory analysis of the groundwater samples collected from the foundation drain line did not detect VOCs or PAHs at concentrations at or above the laboratory detection limits. While in the vicinity of the drain terminus, a faint petroleum odor was intermittently noted. The source could not be identified.

The dead and stressed vegetation is located in an area impacted immediately after the release was discovered. A minimal amount of residual petroleum could be remaining in this area causing the dead and stressed vegetation or possibly bleach from laundering could be impacting the vegetation.

3.6 Summary of Recent Groundwater Sampling Events

3.6.1 June 2009 Groundwater Sampling Event

On June 24, 2009, monitoring wells MW-4 through MW-7 were gauged and sampled for VOC and PAH. Groundwater monitoring wells were gauged using an electronic interface probe, capable of measuring the depth to water and, if present, light non-aqueous phase liquid (LNAPL) to the nearest 0.01 foot. LNAPL was detected during the gauging event in RW-5 (estimated at 0.05 feet thick), RW-6 (estimated at 0.01 feet thick) and RW-7 (at 0.02 feet thick). Additionally, the absorbent pads previously set in recovery well RW-7 were completely saturated and yielded approximately ½-gallon of oil.

Following gauging, groundwater samples were collected from the newly installed monitoring wells. Prior to sampling, a minimum of three (3) well volumes of groundwater was purged from each monitoring well, using dedicated polyethylene bailers, to ensure representative groundwater sample collection. Groundwater samples were placed in pre-cleaned and preserved containers, stored on ice, and transported under Chain-of-Custody protocol to Spectrum, for analysis for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Please refer to **Table 2** for a summary of well gauging data and groundwater elevations.

Laboratory analysis of the groundwater sample collected from monitoring well MW-7 did not detect VOCs or PAHs at concentrations at or above the laboratory detection limits. Laboratory analysis of the groundwater samples collected from monitoring wells MW-4 and MW-5 detected naphthalene at concentrations above the VTDEC Enforcement Standards. Laboratory analysis of the groundwater sample collected from monitoring well MW-6 detected naphthalene, benzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene at concentrations above the VTDEC Enforcement Standards. Please refer to **Table 3** for a summary of groundwater analytical results and **Appendix A** for a copy of the laboratory analytical report for this sampling event.

3.6.2 August 2009 Groundwater Sampling Event

On August 25, 2009, monitoring wells MW-1 through MW-7, recovery well RW-7, the foundation drain line, and the private drinking water well (PDW-1) were gauged and/or sampled for PAH and/or VOC. Groundwater monitoring wells were gauged using an electronic interface probe, capable of measuring the depth to water and, if present, light non-aqueous phase liquid (LNAPL) to the nearest 0.01 foot. LNAPL was not detected during the gauging event. The wellhead survey and gauging data were coupled to compile **Figure 2** which depicts the groundwater elevations in the monitoring wells and hydraulic gradient. The hydraulic gradient appears to be down to the west from the former UST location to monitoring well MW-7. Then from monitoring well MW-7 to wells MW-2 and MW-3 it appears to slope down to the northwest.

Following gauging, groundwater samples were collected from each monitoring well. Prior to sampling, a minimum of three (3) well volumes of groundwater was purged from each monitoring well, using dedicated polyethylene bailers, to ensure representative groundwater

sample collection. In addition, the drinking water well (PDW-1) was purged for approximately 20-minutes prior to sample collection by running water from an outside spigot near the basement bulkhead and a sample of the water trickling from the foundation drain line was collected. Groundwater samples were collected, stored on ice, and transported under Chain-of-Custody protocol to Spectrum, for analysis for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Please refer to Table 2 for a summary of well gauging data and groundwater elevations.

Page 6

Laboratory analysis of the groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, MW-7, PDW-1 and the foundation drain line did not detect PAHs and/or VOCs at concentrations at or above the laboratory detection limits. Laboratory analysis of the groundwater sample collected from monitoring well MW-5 detected several VOCs at concentrations above the laboratory detection limits, but below the VTDEC Enforcement Standards. Laboratory analysis of the groundwater samples collected from monitoring wells MW-4, MW-6 and RW-7 detected benzene and/or naphthalene at concentrations above the VTDEC Enforcement Standards. Please refer to **Table 3** for a summary of groundwater analytical results and **Appendix A** for a copy of the laboratory analytical report for this sampling event.

4.0 SITE GEOLOGY AND HYDROGEOLOGY

4.1 Site Geology

During the June 2009 drilling activities by CEA, soil encountered beneath the Site was classified using ASTM D 2488 - 90, the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The native soil consisted of a heterogeneous mixture of tightly packed tan silt and fine sand underlain by glacial till. Bedrock which was historically reported to be present within 10 feet of grade surface was determined to be large cobbles and boulders measuring several feet to at least seven feet thick. Bedrock was not encountered to the maximum depth of 22 feet below grade surface (bgs).

4.2 Site Hydrogeology

On August 25, 2009, the groundwater monitoring wells, and recovery wells in the basement of the residence, were gauged using an electronic interface probe, capable of measuring the depth to water and, if present, light non-aqueous phase liquid (LNAPL) to the nearest 0.01 foot. LNAPL was not detected during this gauging event. During the gauging event, the depth to groundwater ranged from 0.46 feet below the top of the well (TOW) in recovery well RW-4 to 8.84 feet below the TOW in monitoring well MW-7. The wellhead survey and gauging data were coupled to compile the groundwater elevations and hydraulic gradient. Based on that data, the average hydraulic gradient across the Site is 0.04 feet per foot down to the northwest.

5.0 NATURE AND EXTENT OF IMPACTS

The nature and extent of OHM present at the Site were evaluated through the collection of soil, groundwater and air samples, and the review of historical data. The August 2009 groundwater data are considered representative of current Site conditions.

5.1 Nature of Impacts

No. 2 fuel oil constituents have impacted soil and groundwater. The concentrations detected in the soil are below the applicable VT Enforcement Standards. The concentrations detected in the groundwater in some monitoring wells do exceed the applicable standards. The petroleum concentrations detected in the air samples in the basement living space of the house are below the EPA Region II Screening levels.

5.2 Extent of OHM in Soil

During advancement of soil borings B(MW)-4 and B(MW)-5 in June, 2009, soil samples were collected from several locations and depths for laboratory analysis. Based on field PID screening data, impacts to soil are evident at and below the groundwater table. Soil screening results identified total VOCs at concentrations ranging from not detected above the instrument detection limits [(<1.0 ppmv) to 139 ppmv [B-(MW)-4 at 20-22 feet bgs]. Laboratory analysis did not detect petroleum at concentrations above the Residential Preliminary Remediation Goals in samples collected from between depths of 5 to 7 feet bgs to 22 feet bgs. The fact that petroleum is being observed in RWs below the basement floor indicates soil impact remains below the house. Based on observations made during soil boring, headspace screening performed during boring, and the periodic presence of LNAPL in the basement recovery wells, it appears that the oil impact to soil extends from the former UST area to beyond MW-6 and down to at least 22 feet bgs at MW-4. After the release, some fuel oil flowed into the footing drain, a preferential migration pathway, which likely reduced the extent of oil impact to soil. Please refer to Table 1 for a summary of soil laboratory analytical results, Figure 3 for the estimated impact to soil and Appendix B for a copy of the bore logs with PID readings.

5.3 Extent of OHM in Groundwater

Groundwater laboratory analytical results have identified several VOCs above the VTDEC Enforcement Standards in monitoring wells MW-4, MW-5, MW-6 and RW-7. Based on the laboratory results, impacted groundwater has been identified in the former UST area, under the southern portion of the house and as far downgradient as monitoring well MW-6. Impact to the potable water supply has not been detected and impacts to groundwater from and downgradient of MW-7, in samples from wells MW-1, MW-2 or MW-3, have not been detected. Monitoring wells MW-1, MW-2, and MW-3 are located hydraulically downgradient from the impacted area.

The petroleum impacts to groundwater are not anticipated to disperse extensively in the vertical dimension due to the nature of OHM released, the physical Site features, and the hydrogeologic Site characteristics. Please note that following the release, some fuel oil flowed into the footing drain, a preferential migration pathway, which likely reduced the extent of oil impact to groundwater. Please refer to **Table 3** for a summary of groundwater laboratory analytical results.

6.0 IDENTIFICATION AND EVALUATION OF REMEDIAL ACTION ALTERNATIVES

Potential remedial options were chosen for this Site based on the nature and extent of OHM, the media that are impacted and Site characteristics. The evaluation assumes that the Site will be used for residential purposes, although remedial options are evaluated in the event that the future use of the property is not restricted.

The objective of this CAFI is to consider remedial options based on Site data and currently available technologies, and to select an option which is most suited to the conditions at a the Site. An evaluation of remedial action alternatives is summarized below.

The following sections discuss various remedial alternatives that are reasonably likely to be feasible.

6.1 Natural Attenuation

Natural (or intrinsic) bioremediation is an innovative remedial approach that relies on natural attenuation to remediate contaminants. Natural attenuation processes include advection, dispersion, sorption, volatilization, and biodegradation. Numerous studies indicate that intrinsic bioremediation is the principle mechanism for the attenuation of petroleum hydrocarbons in the subsurface, and is the only attenuation process capable of degrading petroleum hydrocarbons to an innocuous by-product.

Intrinsic bioremediation will control the migration of contaminants from untreated or residual sources. The degree of effectiveness depends on the types and concentrations of contaminants, and the physical, chemical, and biological characteristics of the soil and groundwater. Where conditions are favorable, natural attenuation may reduce contaminant concentrations at sufficient

rates to achieve remediation objectives and adequately reduce the potential risks posed by hydrocarbon compounds.

When nutrients are present in the aquifer, biodegradation is accomplished by microbial activity of indigenous (native) subsurface microorganisms. The microorganisms consume nutrients for cell production and maintenance. At most sites, the rate of intrinsic bioremediation is governed by the availability of electron acceptors. The microorganisms metabolize these compounds through a series of oxidation-reduction (redox) reactions. This results in the oxidation of an electron donor and the reduction of an electron acceptor.

Common electron donors at sites contaminated with petroleum hydrocarbons are natural organic carbon and petroleum-related organic compounds (i.e. BTEX compounds). Common electron acceptors found in groundwater include dissolved oxygen (DO), nitrate (NO3-), and sulfate (SO4-). In addition, iron (III) is a common electron acceptor found in aquifer soils.

Generally, DO is utilized first as the primary electron acceptor (aerobic respiration). During aerobic respiration, oxygen is reduced to water and carbon dioxide, and microbial biomass is produced as a by-product. Dissolved oxygen depletion caused by increased levels of microbial respiration can eventually establish anaerobic conditions. Under anaerobic conditions, microorganisms typically use the other electron acceptors mentioned above. Depending on the electron acceptor, the by-products of anaerobic respiration can include nitrogen gas, hydrogen sulfide, reduced forms of metals, and methane. Environmental conditions and microbial competition will determine which process will dominate.

The use of intrinsic remediation requires monitoring and evaluation to determine that existing environmental conditions are sufficient for biodegradation to occur and that biodegradation is occurring. When indigenous microorganisms are active in reducing hydrocarbon compounds, changes in groundwater chemistry occur both temporally and spatially. Measurement of these changes can be used to demonstrate intrinsic bioremediation.

Biodegradation is indicated by the consumption of electron acceptors (oxygen) or the presence of respiration by-products (reduced iron, carbon dioxide). General indicators such as pH, dissolved oxygen, and redox potential can also be used as biodegradation indicators.

The Site hydrogeological conditions are favorable for stimulation of aerobic growth of soil microorganisms. Aerobic degradation of some VOCs in select wells is occurring at the Site.

Monitored natural attenuation (MNA) has been chosen as a potential active remedial monitoring program at the Site. After initial remedial actions have taken place, MNA can be used to monitor OHM degradation at the Site. Monitored natural attenuation has been shown to be effective when addressing petroleum-related contaminants.

6.2 Oxygen Injection

Oxygen Injection is a technique to remediate impacted soil and groundwater in-situ by injecting oxygen into subsurface soils and groundwater to stimulate microbial activity, thereby facilitating the degradation of petroleum hydrocarbons. Initial set-up requires the purchase or rental of a oxygen remediation system and advancement of oxygen injection wells and trenching for applicable tubing. This type of system works best in sandy overburden which allows oxygen to move relatively freely in the subsurface.

The majority of groundwater impacts appear to be limited to under the residence and may not be influenced by injection points which would be installed outside the building foundation. Large boulders in the subsurface impeded drilling efforts and would impede drilling to advance injection points to adequate depths. In addition, a subslab depressurization system would likely be required to minimize the potential of flow in to the basement. Oxygen injection has not been retained as a potential response action at the Site.

6.3 Enhanced Passive Remediation

Magnesium peroxide or calcium peroxide addition to groundwater is one method to promote biological degradation of hydrocarbons. The process provides a slow release of dissolved oxygen to groundwater, stimulating indigenous bacteria to biodegrade petroleum hydrocarbons in the subsurface. A commercially available magnesium peroxide oxygen source known as Oxygen Release Compound (ORC®), is manufactured as a powder. Magnesium or calcium peroxide can be injected as a slurry into on-site boreholes, mixed with soil to backfill an excavation, or placed in permeable socks and inserted into site wells. Oxygen is then released into the groundwater. Previous site-specific case studies have been compiled by the manufacturer of ORC® to demonstrate that magnesium peroxide additive is effective in the remediation of dissolved phase hydrocarbons.

This technology has several advantages when compared to traditional remedial approaches. Unlike aeration technologies such as air sparging where air is physically forced into groundwater, ORC® is a passive technology, which introduces oxygen to groundwater without volatilizing VOCs. ORC® thus removes the need for a separate soil vapor collection and treatment system, reducing overhead and O&M costs. In addition, existing monitoring wells can be used as ORC® injection points, minimizing both disruption of normal property usage and the aesthetic impact of the treatment system.

Due to the shallow depth to groundwater in the basement recovery wells and limited number application points, only a small volume of ORC® would be able to be applied each site visit. Additionally, a representative sample would not be able to be collected from the recovery and monitoring wells receiving an application until the ORC® has fully dissolved, sometimes months after application. Therefore, ORC® has not been retained as a potential response action at the Site.

6.4 Injection of "Modified" Fenton's Reagent

Hydrogen peroxide is a strong oxidant that can be injected into a impacted zone to destroy petroleum hydrocarbons. Hydrogen peroxide is particularly effective when it reacts with ferrous iron (Fe²⁺) to produce Fenton's Reagent. The ferrous iron may be naturally present in the subsurface soils and/or groundwater, or it may be added as a catalyst solution together with the hydrogen peroxide. Hydrogen peroxide in the presence of Fe²⁺ reacts to form hydroxyl radicals (OH•), ferric iron (Fe3+), and hydroxyl ions (OH). The hydroxyl ions are oxidizers and react with the petroleum hydrocarbon bonds. Fenton's Reagent requires soluble Fe2+ to form OH. The optimal reaction occurs under relatively low pH conditions (pH of 2-4). Due to the low pH range required for the optimal reaction conditions acidifying the subsurface soil or adding a chelating agent is often required. A "Modified" Fenton's Reagent system operates at relatively neutral pH conditions with hydrogen peroxides and a chelated metal catalysts. The reaction of the oxidants with the catalysts generates hydroxyl radicals, which react in nanoseconds with most organic contaminants encountered in the subsurface. The advantage to this approach is the ability to use the Fenton's Reagent under relatively neutral pH conditions, requiring little or no acidification of the subsurface. The modified Fenton reagent produces mixed oxidizing and reducing species including hydroxide radicals, superoxide radicals and hydrogen peroxide anions. These mixed radical species react synergistically with most contaminants in the subsurface to produce end products including carbon dioxide and water. The injected hydrogen peroxide may decompose to release oxygen, which stimulate the aerobic growths of indigenous microorganisms to degrade the contaminants and its byproducts after the oxidant injection.

Page 11

Due to the potential for interaction between the Fenton's Reagent and subject property subsurface utilities in the basement, the potential for heat and pressure build up below the house and limited application area, "Modified" Fenton Reagent system has not been retained as an applicable remedial action at the Site.

6.5 Soil Excavation

Soil excavation involves the removal of contaminated subsurface soils from their current location. Excavating impacted soils removes the contaminant source. After analysis, excavated soils are removed from the site and transported to a treatment or recycling facility.

Soil excavation with off-site recycling can be a cost-effective and efficient method of hydrocarbon mass removal. At sites where subsurface LNAPL is identified in limited or isolated areas, soil excavation presents an expedient method of source removal.

Much of the impacted soil is believed to be under or immediately adjacent to residence and basement. Soil excavation in the basement would severely disrupt the occupants of the house as the furnace, existing fuel oil aboveground storage tanks and laundry are present in the basement. The shallow groundwater in the basement would also require dewatering, groundwater treatment and discharge. Therefore soil excavation will not be carried forward as a potential remedial action at the Site.

October 5, 2009 Landgrove, Vermont CEA Project No.: RI-0011-06

6.6 Ex-situ Bioremediation

One form of ex-situ bioremediation of petroleum impacted soil, also known as land farming, involves the excavation and spreading of impacted soil into a thin layer across the ground surface. The material is periodically tilled and mixed with supplemental bacteria and nutrients. This aeration process promotes volatilization of volatile petroleum hydrocarbons while providing oxygen to stimulate indigenous aerobic biodegradation. To further enhance biodegradation, water is also added to maintain sufficient moisture content within the biocell.

Page 12

Although proven to be an effective method in remediating soils impacted with petroleum products such as gasoline and fuel oil, the feasibility of ex-situ bioremediation at this site is limited by the limitations listed for soil excavation and impacted water and sediment would need to be collected and controlled. Some impacted groundwater would be remediated using this option and the residual source of the oil would be removed..

Because of the limiting factors listed above, ex-situ bioremediation is not considered a viable option for the Site.

6.7 Groundwater Extraction and Treatment

Groundwater extraction and treatment is a proven technology for the recovery of impacted groundwater. This method is most effectively used to hydraulically contain groundwater via large diameter recovery wells. Hydraulic gradients are steepened by the removal of groundwater from saturated pore spaces, which in turn enhances gravity flow of floating hydrocarbons towards recovery points. Implementation of these systems involves the installation of multiple large diameter wells, purchase of dual pumping systems and treatment equipment, and a means to discharge treated effluent. These factors may represent significant capital costs prior to implementation.

The effectiveness of groundwater extraction and treatment systems is dependent on factors such as secondary groundwater quality (hardness, pH), soil type and permeability, and the chemical characteristics of the contaminants. High concentrations of elemental iron and manganese in groundwater tend to cause equipment fouling, thereby reducing well yields and increasing operation and maintenance (O&M) costs. Soil permeability directly influences well yields, and will determine whether the system will operate intermittently or continuously.

Contaminants exhibiting low solubility will display minimal mass transfer in a pump-and-treat system. The effectiveness of these systems is also limited in treating contaminants with a high organic carbon partition coefficient (Koc), as these contaminants will readily bind to organic matter in the soil.

Currently, samples from wells MW-4, MW-5, MW-6 and RW-7 have reported concentrations of contaminants of concern exceeding applicable VTDEC Enforcement Standards and three basement recovery wells have sporadic LNAPL. Based on historical analytical results of dissolved phase concentrations of petroleum hydrocarbons, groundwater extraction and treatment

is expected to be cost prohibitive in relation to the expected reduction in petroleum concentrations and has not been retained as an applicable remedial action at the Site.

6.8 Soil Vapor Extraction

SVE is a remedial technique used for the removal of contaminants adsorbed to vadose zone soils. For VOC applications, the technique relies heavily on the volatility of constituents of concern and on the permeability of unsaturated soil matrices to allow air movement across impacted areas. These two concepts allow for quick and efficient mass removal of contaminants from the subsurface. An additional benefit of SVE is the transport of oxygen to the indigenous microbiological community within the vadose zone, augmenting natural biodegradation processes.

SVE is performed by applying a vacuum to vertical or horizontal vapor extraction wells, which are screened in the area of maximum hydrocarbon concentrations. The resulting pressure gradient induces adsorbed hydrocarbon liquids with sufficiently high vapor pressures to volatilize and migrate through the soil pores toward the vapor extraction wells.

When operated efficiently, SVE can be one of the most cost-effective remediation processes for soil contaminated with moderately to highly volatile petroleum hydrocarbons. The components of soil venting systems are readily acquired. However, the accuracy of design parameters involving the number of wells, well spacing, well location, well construction, and off-gas treatment methods is critical to ensure overall system cost efficiency. SVE can also be an integral part of an air sparge system, helping to remove hydrocarbon vapors that have been mobilized from groundwater by air sparge wells. Air sparging can be used in conjunction with SVE to enhance removal from groundwater and saturated soils, and biodegradation.

An SVE system was operated at the Site in the past, but the shallow depth to groundwater below the floor prohibited effective operation of the system. The operation of an SVE system will not reduce concentrations of fuel oil constituents below the water table. SVE is expected to be ineffective and has not been retained as an applicable remedial action at the Site.

6.9 Air Sparging

Air sparging is the introduction of air below the groundwater table. Sparging is utilized to transfer volatile organics, semi-volatile organics and lighter hydrocarbon fractions from a liquid or dissolved phase into the vapor phase where they can be removed by an SVE system. Volatile organics with favorable vapor pressures and Henry's Law constants are treatable using air sparging.

Air sparging also enhances natural biodegradation by introducing an inexpensive oxygen source below the water table and is a practical enhancement to an SVE system, where dewatering would otherwise be needed to expose sediments containing contaminants below the water table to the SVE system. Air sparging is an alternative to removal and treatment of groundwater for dissolved-phase components.

One limitation to the effectiveness of air sparging is the formation of "channels," or preferential airflow passages, within the pore spaces of the aquifer. This adverse condition prevents sediments outside the channel from being exposed to airflow, thus minimizing the rapid volatilization of contaminants from those sediments. Channeling of the air stream in the pore spaces of the aquifer may be reduced by intermittent operation, or "pulsing" of the AS system, in which air injection is alternately turned on and off.

Soil vapor extraction is conducted in conjunction with air sparging to prevent potential migration of vapor phase contaminants, which are mobilized during the air sparging process. The installation of dedicated air sparge wells (screened within the saturated zone) is required to introduce air below the water table.

The air sparge wells and remedial system lines would have to be installed around the residence and in the basement, and trenching to the remedial system trailer would be required. Air sparging has been has not been retained as an applicable remedial action at the Site.

6.10 High Vacuum, Dual-Phase Extraction

High-vacuum dual-phase extraction (HVE), utilizes a high vacuum (greater than 36-inches of water column) to remove groundwater and hydrocarbon vapors simultaneously from impacted zones. Equipment typically used to apply vacuum includes combustion engines, liquid ring pumps, rotary lobe blowers and vacuum trucks. Groundwater and soil vapor are removed through a slotted PVC drop tube, which is lowered into the water table (through a groundwater monitoring or recovery well) under high vacuum. The vacuum induced in the well depresses the water table, promoting horizontal flow of impacted groundwater. Extraction of soil vapors in turn introduces oxygen to the subsurface and enhances aerobic bioremediation (bioventing).

Installation of recovery wells that extend deeper than the existing wells, would be required and difficult. This option has not been retained as a potential applicable remedial action at the Site.

6.11 LNAPL Removal

Periodically key monitoring wells will be gauged for depth to LNAPL and depth to water. If LNAPL is encountered, it will be hand bailed into an on site accumulation drum. To facilitate LNAPL removal in between site visits oil absorbent socks can be placed into the monitoring wells as needed. According to manufacture specifications, one liter of LNAPL can be absorbed by each sock when it is spent. NAPL Removal will be retained as an applicable remedial action at the site.

October 5, 2009

7.0 SELECTION OF REMEDIAL ALTERNATIVE

Based on the type and concentration of OHM present in groundwater at the Site, and the type of subsurface materials and physical Site conditions, natural attenuation with LNAPL recovery have been selected as the preferred remedial alternatives. Natural attenuation and degradation will be evaluated by periodic groundwater sampling and LNAPL recovery will be performed as necessary by deploying sorbent sox in to monitoring wells RW-5, RW-6 and RW-7.

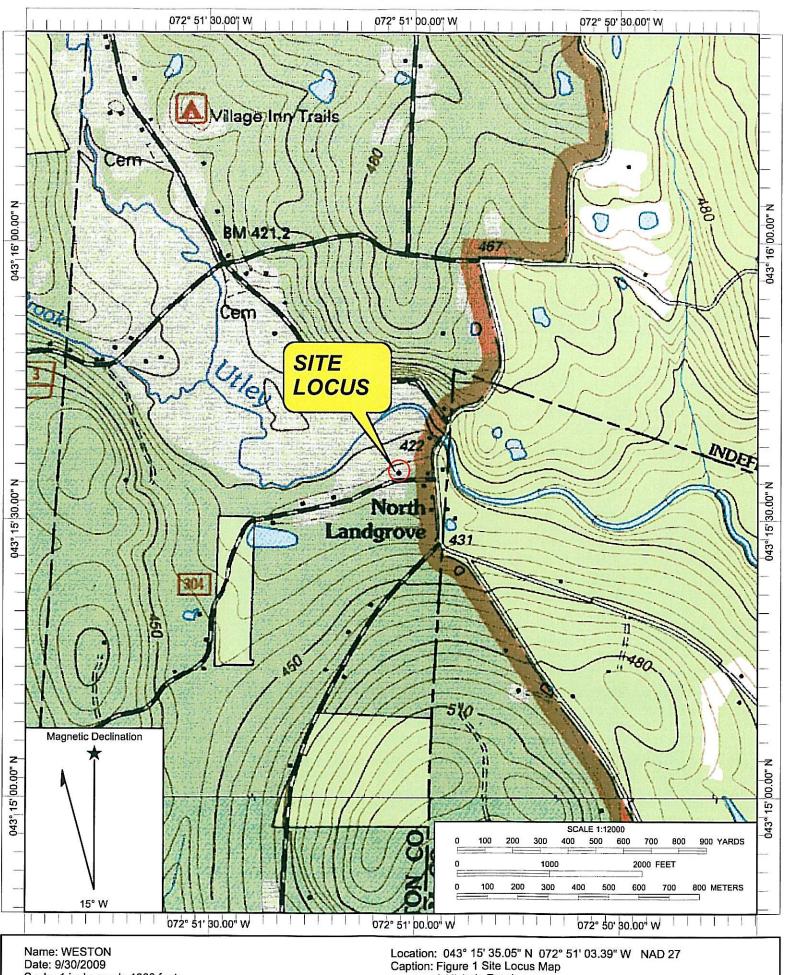
Page 15

The remedial action alternatives selected for this site (natural attenuation and LNAPL recovery) have been demonstrated to be adequate at petroleum-impacted sites with similar subsurface conditions throughout the region.

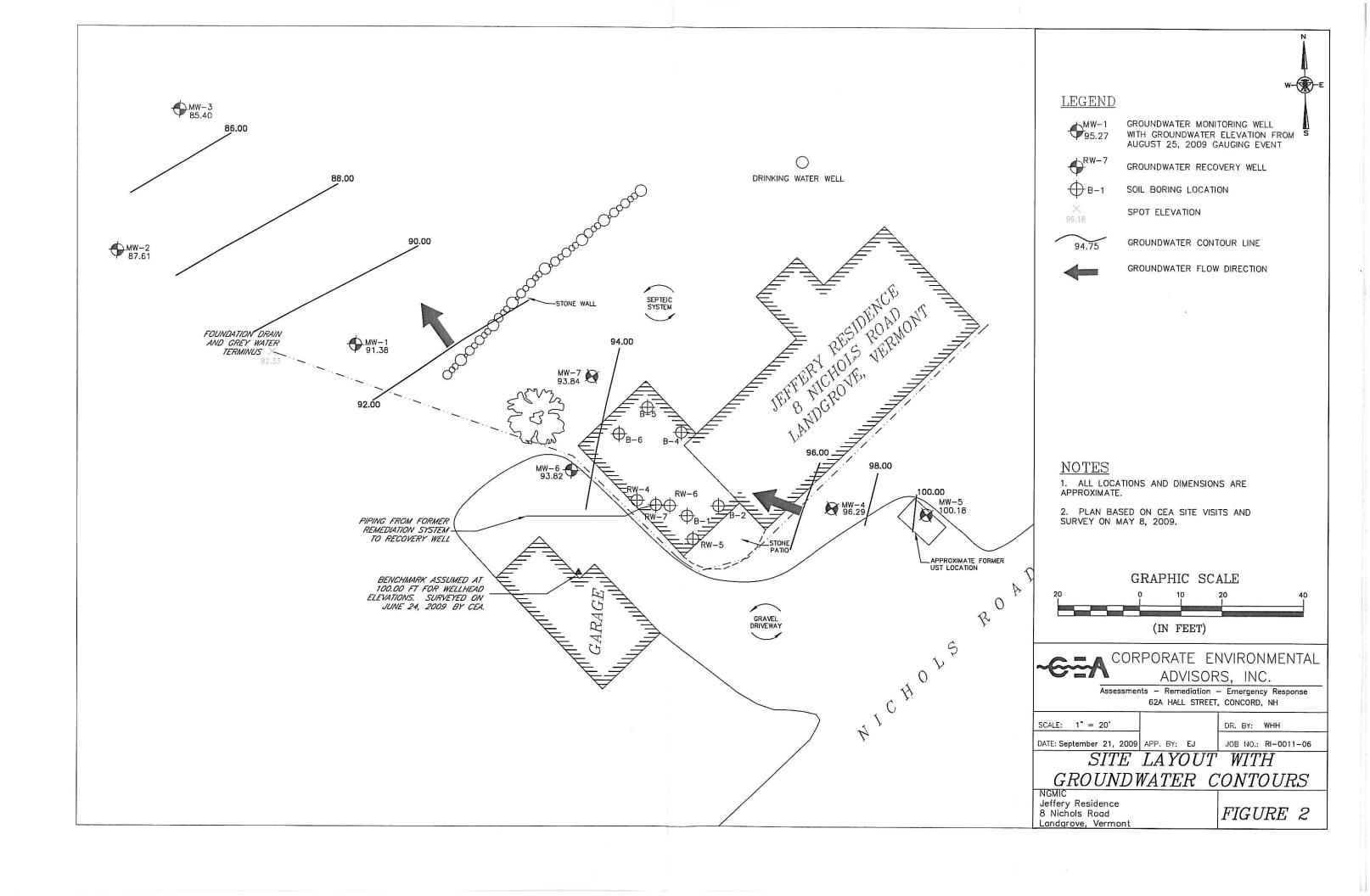
8.0 SUMMARY OF FINDINGS

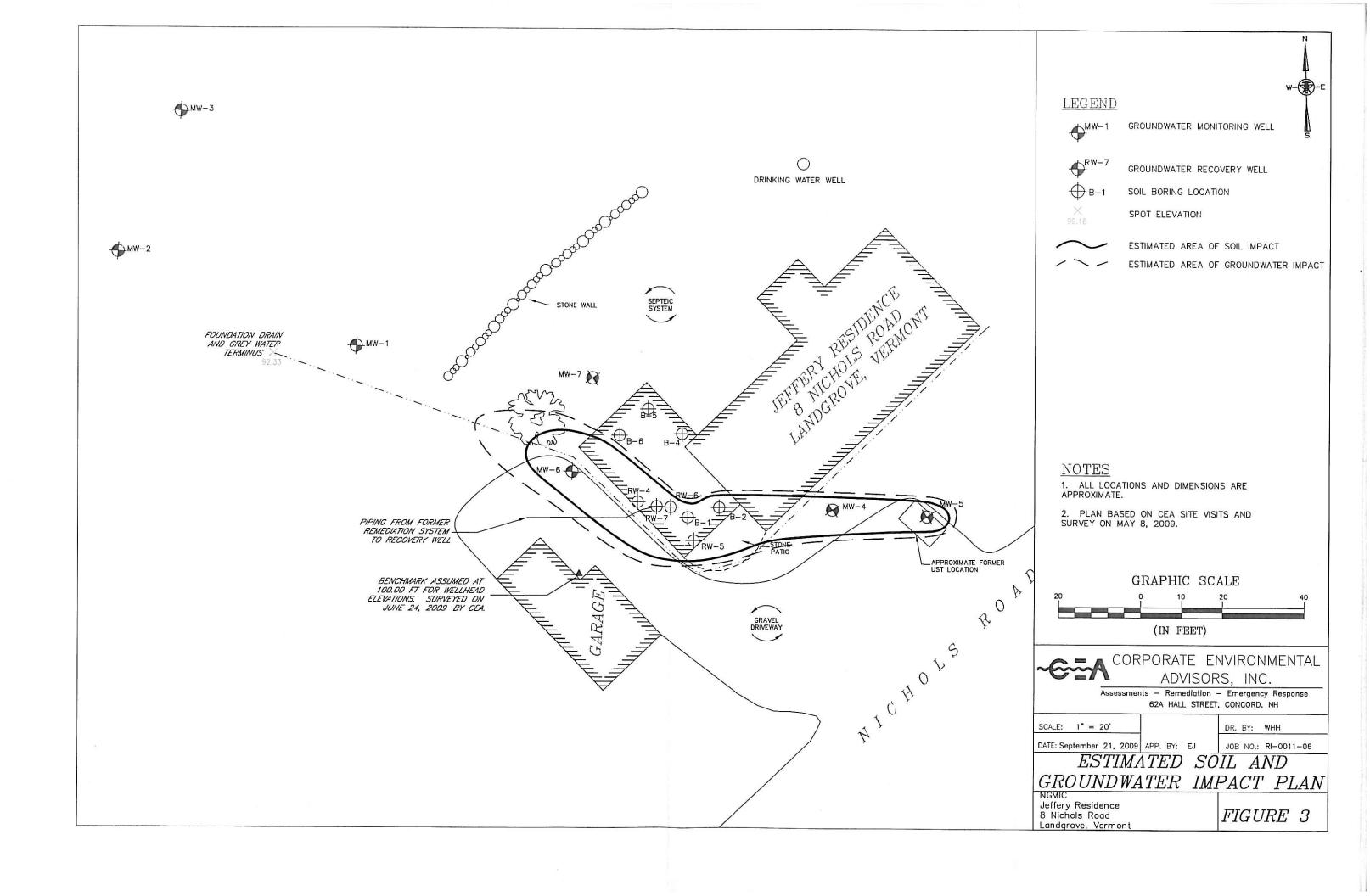
This CAFI has identified the following:

- Groundwater monitoring wells MW-4 through MW-7 were installed to better define the impacts to soil and groundwater. Soil encountered during soil boring consisted of a heterogeneous mixture of tightly packed tan silt and fine sand under lain by glacial till. Numerous large cobbles and boulders were also encountered. Two borings were advanced to depths of 20 and 22 feet bgs. Based on the elevations of these borings relative to the basement floor, the depth to bedrock is greater than the five feet below the basement floor as historically reported;
- The average hydraulic gradient across the Site is 0.04 feet per foot down to the west from the former UST location to monitoring well MW-7. Then from monitoring well MW-7 to wells MW-2 and MW-3 it appears to slope down to the northwest.
- Petroleum compounds were detected in soil at concentration below the VTDEC Residential Preliminary Remediation Goals. The horizontal and vertical extent of soil impact extends from the former UST area, under the southern portion of the house, to beyond MW-6 and down to at least 22 feet bgs.
- Petroleum impacts were not detected or observed in the pond, at or under the drain line terminus;
- Petroleum constituents were not detected in groundwater at concentrations above the VTDEC Enforcement Standards during the August 25, 2009 sampling event in monitoring wells MW-1, MW-2, MW-3, MW-7, PDW-1 and foundation drain line. At least one petroleum constituent was detected at a concentration exceeding the VTDEC Enforcement Standard in the samples analyzed from monitoring wells MW-4, MW-5, MW-6 and recovery well RW-7;
- The fact that oil constituents have not been detected in groundwater samples collected from monitoring well MW-7, MW-1 through MW-3 indicates that migration of oil has been attenuated by the soil and biodegradation is likely occurring;
- It appears that the footing drain had acted as a preferential migration pathway immediately following the release and likely reduced the extent of fuel oil impact to soil and groundwater below the house;



- Laboratory analysis of the air sample collected in the basement detected 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene at concentrations above the EPA Region III Screening Levels for Indoor Air. Analysis of an air sample collected from the first floor (living space) did not detected petroleum-related compounds at concentrations at or above the EPA Region III Screening Levels;
- Minimal vapor intrusion is occurring based on the comparison of indoor air PID readings, indoor air sample analytical results and the basement recovery wells PID readings; and
- Natural attenuation and LNAPL recovery have been selected as the most appropriate remedial technologies for the Site.


Figures
Figure 1 – Site Locus Map
Figure 2 – Site Layout with Groundwater Contours
Figure 3 – Estimated Soil and Groundwater Impact Plan



Scale: 1 inch equals 1000 feet

Caption: Figure 1 Site Locus Map 8 Nichols Road Landgrove, Vermont

Tables
Table 1 – Summary of Soil Analytical Results
Table 2 – Summary of Monitoring Well Gauging Data
Table 3 – Summary of Groundwater Laboratory Analytical Results
Table 4 – Summary of Air Analytical Results

Table 1 Summary of Soil Analytical Results

Jeffery Residence 8 Nichols Road Landgrove, Vermont

Sample ID Depth (Feet) Date	Residential Preliminary Remediation Goals	B(MW)-4 7-9 6/8/09	B(MW)-4 20-22 6/9/09	B(MW)-5 5-7 6/8/09
Volatile Organic Compounds (VOC) by EPA Method 8260B				
n-Butylbenzene	240	< 0.0864	1.350	8.590
sec-Butylbenzene	220	< 0.0864	1.140	7.330
tert-Butylbenzene	390	< 0.0864	< 0.330	1.770
Ethylbenzene	400	< 0.0864	0.373	<1.210
Isopropylbenzene	570	< 0.0864	0.564	2.990
4-Isopropyltoluene	NS	< 0.0864	0.587	5.850
Naphthalene	56	< 0.0864	2.160	3.330
n-Propylbenzene	240	< 0.0864	1.390	7.550
1,2,4-Trimethylbenzene	56	< 0.0864	2.670	7.600
1,3,5-Trimethylbenzene	56	< 0.0864	1.980	13.000
Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270				
Acenaphthene	3,700	< 0.160	< 0.172	0.830
Fluorene	2,700	< 0.160	<0.172	1.890
1-Methylnaphthalene	NS	<0.160	0.713	10.100
2-Methylnaphthalene	NS	<0.160	1.240	17.100
Naphthalene	56	< 0.160	0.352	4.850
Phenanthrene	NS	<0.160	0.396	4.820
Pyrene	NS	< 0.160	< 0.172	0.626

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

All other VOC and PAH concentrations not listed here were not detected above the laboratory detection limit.

< x.xx. indicates compound was below the laboratory reporting limit

NS - No standard available.

Table 2 Summary of Monitoring Well Gauging Data

Jeffrey Residence 8 Nichols Road Landgrove, Vermont

Well Number	Date Gauged	Casing Elevation (ft)	Depth to Water (ft)	Depth to Product	Product Thickness	Groundwater Elevation (ft)
MW-1	06/24/09	95.59	4.22			91.37
IVI W - 1	08/25/09	95.59	4.21			91.38
MW-2	06/24/09	88.51	1.69		228	86.82
IVI VV -2	08/25/09	88.51	0.90		49	87.61
-	05/08/08	86.25	1.86	:		84.39
	06/06/08	86.25	3.73		<u> </u>	82.52
MW-3	06/12/08	86.25	2.89	<u> </u>		83.36
	06/24/09	86.25	1.86			84.39
	08/25/09	86.25	0.85		9	85.40
MW-4	06/24/09	103.87	6.99			96.88
M w -4	08/25/09	103.87	7.58			96.29
MANUE	06/24/09	103.84	3.85			99.99
MW-5	08/25/09	103.84	3.66	==:	228	100.18
MULC	06/24/09	99.72	5.53			94.19
MW-6	08/25/09	99.72	5.90			93.82
MW	06/24/09	102.68	7.84			94.84
MW-7	08/25/09	102.68	8.84			93.84
	04/30/07		0.41			
	07/09/07		Dry @ 2.50			
	09/11/07		Dry @ 2.50			==
RW-4	04/14/08		0.45			
KW-4	05/08/08		0.67			
	06/06/08	0	Dry @ 2.50			
	06/24/09	-	<0.86			
	08/25/09		0.46			
	04/30/07		NR	NR	0.03	
	07/09/07		Dry @ 2.30			==
	09/11/07		Dry @ 2.30			
RW-5	04/14/08		0.38	(==)		
KW-3	05/08/08	g==	0.45			
	06/06/08		Dry @ 2.30			
	06/24/09		<0.86		0.05*	
	08/25/09		0.60			

Table 2 (Continued)

Summary of Monitoring Well Gauging Data

Well Number	Date Gauged	Casing Elevation (ft)	Depth to Water (ft)	Depth to Product	Product Thickness	Groundwater Elevation (ft)
	04/30/07		0.41			
	07/09/07		Dry @ 2.49			
	09/11/07		Dry @ 2.49			
RW-6	04/14/08		0.38			
KW-0	05/08/08		0.52			
	06/06/08		Dry @ 2.49			
	06/24/09		< 0.86		0.01*	
	08/25/09		1.43			
	04/30/07		0.37			
	07/09/07		Dry @ 3.35			
	09/11/07		Dry @ 3.35			
RW-7	04/14/08		0.42			
KW-/	05/08/08		0.35		==	
	06/06/08		Dry @ 3.35			
	06/24/09	.=-	0.92	0.90	0.02	
	08/25/09		1.80			

NR = Not Recorded

Elevations are measured in feet.

^{-- =} Not Applicable

^{* =} The liquid elevation was too close to the top of the wellhead to be gauged with an interface probe. Therefore the thickness was estimated.

Table 3 **Summary of Groundwater Laboratory Analytical Results**

Jeffery Residence 8 Nichols Road Landgrove, Vermont

Monitoring Well ID	Outlet/D	rain Line	MW-1	MW-2	M	W-3	M	N-4	M	N-5	M	W-6	I MY	W-7	RW-4	RW-5	RW-6	R	W-7		PD	W-1		VDEC Enforcement
Sampling Date	9/11/07	8/25/09	8/25/09	8/25/09	5/8/08	8/25/09	6/24/09	8/25/09	6/24/09	8/25/09	6/24/09	8/25/09	6/24/09	8/25/09	4/14/08	4/14/08		4/14/08		11/16/07	4/14/08	8/25/08	8/25/09	Standards
Polynuclear Aromatic Hydro	carbons (P.	AHs) by EP	A Method 82	270							G E DE TIE					SECTION AND						aras la	Part State State	
Acenaphthene	_	<6.67	< 5.95	<5.21	< 0.10	<5.26	<5.43	<5.26	<8.33	<6.49	11.0	<5.21	<5.56	<5.32	0.27	810	<0.10	<0.10	<83.3	_			Shirt Shirt and collection of	NS
Fluoranthene		<6.67	< 5.95	<5.21	< 0.10	<5.26	<5.43	<5.26	<8.33	<6.49	<5.43	<5.21	<5.56	<5.32	0.17	<400	< 0.10	< 0.10	<83.3					280.0
Fluorene		<6.67	< 5.95	<5.21	< 0.10	<5.26	<5.43	<5.26	<8.33	<6.49	13.6	6.00	<5.56	<5.32	0.72	1,200	<0.10	< 0.10	105		0249			280.0
1-Methylnaphthalene		<6.67	< 5.95	<5.21	< 0.10	<5.26	12.6	19.5	<8.33	<6.49	88.4	50.4	<5.56	<5.32	< 0.10	<400	< 0.10	< 0.10	517					NS
2-Methylnaphthalene	X-2	<6.67	<5.95	<5.21	< 0.10	<5.26	<5.43	15.9	<8.33	<6.49	96.7	60.0	<5.56	<5.32	4.6	11,000	10	45	812					NS
Naphthalene	-	<6.67	< 5.95	<5.21	< 0.10	<5.26	<5.43	15.1	<8.33	<6.49	83.0	64.2	<5.56	<5.32	1.8	3,200	< 0.10	71	240					20.0
Phenanthrene	//===	<6.67	<5.95	<5.21	<0.10	<5.26	<5.43	<5.26	<8.33	<6.49	21.6	5.40	<5.56	<5.32	1.1	2,200	<0.10	< 0.10	223	1			_	NS NS
Pyrene	_	<6.67	< 5.95	<5.21	< 0.10	<5.26	< 5.43	<5.26	<8.33	<6.49	<5.43	<5.21	<5.56	<5.32	0.68	400	< 0.10	< 0.10	<83.3					NS
Volatile Organic Compounds	(VOCs) by	EPA Metho	od 8260B or	524.2												CHANGE VIEW				OHIS ROLL			ANSIEMEN HEART	
Acetone		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<50.0	<50	<10.0	<10.0	<10.0	<100	210	<100	16.1	I - I	<5.0	<5.0	<10.0	700
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	1.2	<1.0	<1.0	18.3	17.6	<1.0	<1.0	<1.0	33	5.5	76	24.2	<1.0	<0.50	<0.50	<0.50	5
2-Butanone (MEK)		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<50.0	<50.0	<10.0	<10.0	<10.0	<100	53	<100	<10.0		<5.0	<0.50	<10.0	NS
n-Butylbenzene	_	<1.0	<1.0	<1.0	<2.0	<1.0	4.4	2.2	2.8	1.8	8.8	9.4	<1.0	<1.0	<2.0	<20	<2.0	<20	2.8		< 0.50	<0.50	<0.50	260
sec-Butylbenzene		<1.0	<1.0	<1.0	<2.0	<1.0	5.1	3.7	2.7	3.7	11.0	14.2	<1.0	<1.0	<2.0	<20	<2.0	<20	3.8		< 0.50	<0.50	<0.50	260
tert-Butylbenzene		<1.0	<1.0	<1.0	<2.0	<1.0	3.0	2.2	2.7	2.0	5.2	6.0	<1.0	<1.0	<2.0	<20	<2.0	<20	2.8		< 0.50	<0.50	<0.50	260
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	34.7	23.2	12.3	4.0	70.4	68.1	<1.0	<1.0	<2.0	74	2.8	81	39.1	<1.0	< 0.50	< 0.50	< 0.50	700
Isopropylbenzene		<1.0	<1.0	<1.0	<2.0	<1.0	11.7	8.2	4.9	4.4	22.7	26.4	<1.0	<1.0	<2.0	31	<2.0	20	10.6		< 0.50	< 0.50	< 0.50	NS
p-lsopropyltoluene		<1.0	<1.0	<1.0	<2.0	<1.0	3.3	1.8	4.0	3.2	9.2	9.8	<1.0	<1.0	<2.0	<20	<2.0	<20	3.0		<0.50	< 0.50	< 0.50	260
Naphthalene	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	78.2	59.6	52.0	18.4	225	155	<1.0	<1.0	<5.0	260	7.5	160	103	<1.0	< 0.50	< 0.50	< 0.50	20
n-Propylbenzene	-	<1.0	<1.0	<1.0	<2.0	<1.0	14.7	11.4	5.2	6.6	33.8	44.0	<1.0	<1.0	<2.0	52	2.2	25	13.0		< 0.50	< 0.50	< 0.50	NS
Styrene		<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<1.0	<1.0	<2.0	<2.0	<2.0	<2.0	1.0		< 0.50	< 0.50	< 0.50	100
Tetrahydrofuran (THF)		<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<50	<10	<10	<10	<10	<10	<10	32.4		<5.0	<2.5	<10	154
Toluene	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<1.0	<1.0	<2.0	<2.0	<2.0	<20	1.3	<1.0	< 0.50	< 0.50	< 0.50	1.000
1,2,4-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	87.9	46.5	24.9	4.4	278	245	<1.0	<1.0	<2.0	340	13	160	141	<1.0	< 0.50	< 0.50	< 0.50	Total for Both Counds
1,3,5-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	34.2	18.0	32.6	18.7	77.7	74.2	<1.0	<1.0	<2.0	110	4.3	43	45.6	<1.0	< 0.50	< 0.50	< 0.50	Greater than 350
Total Xylenes	<4.0	<3.0	<3.0	<3.0	<4.0	<3.0	65.3	37.3	14.2	5.3	249	176.3	<3.0	<3.0	<4.0	340	11.2	340	184.5	<4.0	<1.0	<1.0	<1.0	10.000

All concentrations are in micrograms per liter (ug/l).

Bold & Itallics indicates concentration is below laboratory reporting limit, but above the applicable Enforcement Standard.

Bold & Shaded indicates concentration exceeds the applicable Enforcement Standard.

<x.xx. indicates compound was below the laboratory reporting limit.</p>
NS - No standard available.

-- not analyzed.

Only compounds with results above the laboratory reporting limit are shown for clarity. All other results were below reporting limit.

Table 4 Summary of Air Analytical Results

Jeffery Residence 8 Nichols Road Landgrove, Vermont

Sample ID	Basement	First Floor	Ambient	EPA Region III Screening
Sample Date	6/24/09	6/24/09	6/24/09	Level for Indoor Air
Volatile Organic Compounds (VOC) by EPA Method TO-15				
Dichlorodifluoromethane (Freon 12)	25.27	6.92	2.92	200
Chloromethane	<1.03	1.07	1.05	90
Acetone	32.08	45.62	7.34	31,000
Trichlorofluoromethane (Freon 11)	6.52	9.22	<2.81	700
Ethanol	12.05	65.61	3.79	NS
Isopropyl alcohol	1.77	2.60	3.98	7,000
2-Butanone (MEK)	5.60	8.11	<1.47	5,000
Cyclohexane	4.16	4.75	<1.72	6,000
n-Heptane	7.75	4.47	< 2.05	NS
4-Methyl-2-pentanone (MIBK)	169.25	<2.05	<2.05	3,000
Toluene	42.14	16.67	<1.88	5,000
Tetrachloroethene	<3.39	196.65	<3.39	270
Ethylbenzene	11.36	<2.17	<2.17	1,000
Total Xylenes	78.81	2.51	<4.34	100
Isopropylbenzene	2.65	<2.46	<2.46	NS
1,3,5-Trimethylbenzene	9.24	<2.46	<2.46	6
4-Ethyltoluene	7.13	<2.46	<2.46	NS
1,2,4-Trimethylbenzene	17.75	<2.46	<2.46	7
4-Isopropyltoluene	3.38	<2.68	<2.68	NS
1,2-Dichlorobenzene	5.71	<2.74	<3.01	200
All other compounds	BRL	BRL	BRL	NS

Notes:

All concentrations are in micrograms per cubic meter (ug/m³).

< x.xx. indicates compound was below the laboratory reporting limit

NS - No standard available.

BRL indicates results were below the laboratory reporting limit.

APPENDIX ACopy of Laboratory Analytical Reports

Report Date: 25-Jun-09 16:23

\checkmark	Final Report
	Re-Issued Report
	Revised Report

HANIBAL TECHNOLOGY Laboratory Report

CEA, Inc 62B Hall Street Concord, NH 03301 Attn: Eric Johnson

Project: Jeffries Residence - Landgrove, VT

Project RI-0011-06

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA96169-01	B(MW)-4 7-9'	Soil	08-Jun-09 11:00	11-Jun-09 15:25
SA96169-02	B(MW)-4 20-22'	Soil	09-Jun-09 10:10	11-Jun-09 15:25
SA96169-03	B(MW)-5 5-7'	Soil	08-Jun-09 13:25	11-Jun-09 15:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 21 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is

Please note that this report contains 21 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 2.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 2.0 degrees Celsius was used immediately upon receipt of the samples.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260B

Blanks:

9061255-BLK1

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

Laboratory Control Samples:

9061255-BS1

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

9061255-BSD1

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

Samples:

S905601-CCV1

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

SA96169-01 B(MW)-4 7-9'

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

SA96169-02 B(MW)-4 20-22'

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

SA96169-03 B(MW)-5 5-7'

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane trans-1,3-Dichloropropene

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

SW846 8270C

Spikes:

9060992-MS1 Source: SA96078-12

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

Pyrene

9060992-MSD1 Source: SA96078-12

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

Pyrene

Duplicates:

9060992-DUP1 Source: SA96078-12

Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results

Acenaphthylene

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Anthracene

Benzo (a) anthracene

Benzo (a) pyrene

Benzo (g,h,i) perylene

Benzo (k) fluoranthene

Chrysene

Fluoranthene

Indeno (1,2,3-cd) pyrene

Phenanthrene

Pyrene

Client Project # RI-0011-06

Matrix Soil Collection Date/Time 08-Jun-09 11:00 Received 11-Jun-09

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile C	Organic Compounds										
	VOC Extraction	Field extra	acted	N/A		1	VOC Soil Extraction	11-Jun-09	11-Jun-09	9060995	
Volatile C	Organic Compounds				lnii	tial waight:	10 00 ~				
repared	l by method SW846 5030 Soil (hig	h level)			11111	tial weight:	12.20 g				
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred 113)	_i BRL		μg/kg dry	86.4	50	SW846 8260B	16-Jun-09	16-Jun-09	9061255	
67-64-1	Acetone	BRL		μg/kg dry	864	50	"	"	"	"	
07-13-1	Acrylonitrile	BRL		μg/kg dry	86.4	50	"	"	"	"	
1-43-2	Benzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
08-86-1	Bromobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
5-27-4	Bromodichloromethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
5-25-2	Bromoform	BRL		μg/kg dry	86.4	50	"	"	"	"	
4-83-9	Bromomethane	BRL		μg/kg dry	173	50	"	"	"	"	
8-93-3	2-Butanone (MEK)	BRL		μg/kg dry	864	50	"	"	"	"	
04-51-8	n-Butylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
35-98-8	sec-Butylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
8-06-6	tert-Butylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/kg dry	432	50	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/kg dry	86.4	50	"	"	"	"	
08-90-7	Chlorobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
5-00-3	Chloroethane	BRL		μg/kg dry	173	50	"	"	"	"	
7-66-3	Chloroform	BRL		μg/kg dry	86.4	50	"	"	"	"	
4-87-3	Chloromethane	BRL		μg/kg dry	173	50	"	"	"	"	
5-49-8	2-Chlorotoluene	BRL		μg/kg dry	86.4	50	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/kg dry	86.4	50	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL	CAL1	μg/kg dry	173	50	"	"	"	"	
24-48-1	Dibromochloromethane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/kg dry	86.4	50	u u	"	"	"	
4-95-3	Dibromomethane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
5-50-1	1,2-Dichlorobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
41-73-1	1,3-Dichlorobenzene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
06-46-7	1,4-Dichlorobenzene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/kg dry	173	50	"	"	"	"	
5-34-3	1,1-Dichloroethane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
07-06-2	1,2-Dichloroethane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
5-35-4	1,1-Dichloroethene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
56-59-2	cis-1,2-Dichloroethene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/kg dry	86.4	50	"	"	"	"	
8-87-5	1,2-Dichloropropane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
42-28-9	1,3-Dichloropropane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
94-20-7	2,2-Dichloropropane	BRL		μg/kg dry	86.4	50	u u	"	"	"	
63-58-6	1,1-Dichloropropene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/kg dry	86.4	50	u u	"	"	"	
0061-02-6	trans-1,3-Dichloropropene	BRL	CAL1	μg/kg dry	86.4	50	u u	"	"	"	
00-41-4	Ethylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
7-68-3	Hexachlorobutadiene	BRL		μg/kg dry	86.4	50	"	"	"	"	
91-78-6	2-Hexanone (MBK)	BRL		μg/kg dry	864	50	u u	"	"	"	
8-82-8	Isopropylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
9-87-6	4-Isopropyltoluene	BRL		μg/kg dry	86.4	50	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/kg dry	86.4	50	u u	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/kg dry	864	50	u u	"	"	"	
75-09-2	Methylene chloride	BRL		μg/kg dry	864	50	u u	"	"	"	
1-20-3	Naphthalene	BRL		μg/kg dry	86.4	50	"	"	"	"	

Client Project # RI-0011-06

Matrix Soil Collection Date/Time 08-Jun-09 11:00 Received 11-Jun-09

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
	Organic Compounds				Ini	tial weight:	12 28 a				
Prepared	I by method SW846 5030 Soil (hig	h level)				adi Wolgina	12.20 g				
103-65-1	n-Propylbenzene	BRL		μg/kg dry	86.4	50	SW846 8260B	16-Jun-09	16-Jun-09	9061255	
100-42-5	Styrene	BRL		μg/kg dry	86.4	50	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
127-18-4	Tetrachloroethene	BRL		μg/kg dry	86.4	50	"	"	"	"	
108-88-3	Toluene	BRL		μg/kg dry	86.4	50	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	BRL		μg/kg dry	86.4	50	"	"	"	"	
79-01-6	Trichloroethene	BRL		μg/kg dry	86.4	50	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)			μg/kg dry	86.4	50	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	BRL		μg/kg dry	86.4	50	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/kg dry	86.4	50	"	"	"	"	
75-01-4	Vinyl chloride	BRL		μg/kg dry	86.4	50	"	"	"	"	
179601-23-	¹ m,p-Xylene	BRL		μg/kg dry	173	50	"	"	"	"	
95-47-6	o-Xylene	BRL		μg/kg dry	86.4	50	"	"	"	"	
109-99-9	Tetrahydrofuran	BRL		μg/kg dry	864	50	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/kg dry	86.4	50	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/kg dry	86.4	50	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	BRL		μg/kg dry	86.4	50	"	"	"	"	
108-20-3	Di-isopropyl ether	BRL		μg/kg dry	86.4	50	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/kg dry	864	50	"	"	"	"	
123-91-1	1,4-Dioxane	BRL		μg/kg dry	1730	50	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/kg dry	432	50	"	"	"	"	
64-17-5	Ethanol	BRL		μg/kg dry	34500	50	"	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	105		70-13	0 %		"	"	"	"	
2037-26-5	Toluene-d8	99		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	94		70-13	0 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	92		70-13	0 %		"	"	"	"	
	tile Organic Compounds by GCMS										
PAHs by	SW846 8270C										
Prepared	by method SW846 3545A										
83-32-9	Acenaphthene	BRL		μg/kg dry	160	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
208-96-8	Acenaphthylene	BRL		μg/kg dry	160	1	"	"	"	"	
120-12-7	Anthracene	BRL		μg/kg dry	160	1	"	"	"	"	
56-55-3	Benzo (a) anthracene	BRL		μg/kg dry	160	1	"	"	"	"	
50-32-8	Benzo (a) pyrene	BRL		μg/kg dry	160	1	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	BRL		μg/kg dry	160	1	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	BRL		μg/kg dry	160	1	"	II	"	"	
207-08-9	Benzo (k) fluoranthene	BRL		μg/kg dry	160	1	"	"	"	"	
218-01-9	Chrysene	BRL		μg/kg dry	160	1	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	BRL		μg/kg dry	160	1	"	"	"	"	
206-44-0	Fluoranthene	BRL		μg/kg dry	160	1	"	"	"	"	
86-73-7	Fluorene	BRL		μg/kg dry	160	1	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/kg dry	160	1	"	"	"	"	
90-12-0	1-Methylnaphthalene	BRL		μg/kg dry	160	1	"	"	"	"	

Sample Identification B(MW)-4 7-9' SA96169-01

Client Project # RI-0011-06

Matrix Soil Collection Date/Time 08-Jun-09 11:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS									
PAHs by	SW846 8270C										
Prepared	by method SW846 3545A										
91-57-6	2-Methylnaphthalene	BRL		μg/kg dry	160	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
91-20-3	Naphthalene	BRL		μg/kg dry	160	1	"	"	"	"	
85-01-8	Phenanthrene	BRL		μg/kg dry	160	1	"	"	"	"	
129-00-0	Pyrene	BRL		μg/kg dry	160	1	"	"	"	"	
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	73		30-13	0 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	62		30-13	0 %		"	"	"	"	
General (Chemistry Parameters										
	% Solids	81.4		%		1	SM2540 G Mod.	19-Jun-09	19-Jun-09	9061583	

Matrix Soil Collection Date/Time 09-Jun-09 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile C	Organic Compounds										
	VOC Extraction	Field extra	cted	N/A		1	VOC Soil Extraction	11-Jun-09	11-Jun-09	9060995	
Volatile C	Organic Compounds		R05		الما	ial waisht.	11.02 ~				
repared	l by method SW846 5030 Soil (hig	gh level)			inii	ial weight:	11.02 g				
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred 113)	_{OI} BRL		μg/kg dry	330	200	SW846 8260B	16-Jun-09	17-Jun-09	9061255	
67-64-1	Acetone	BRL		μg/kg dry	3300	200	"	"	"	"	
07-13-1	Acrylonitrile	BRL		μg/kg dry	330	200	"	"	"	"	
1-43-2	Benzene	BRL		μg/kg dry	330	200	"	"	"	"	
08-86-1	Bromobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/kg dry	330	200	"	"	"	"	
5-27-4	Bromodichloromethane	BRL		μg/kg dry	330	200	"	"	"	"	
5-25-2	Bromoform	BRL		μg/kg dry	330	200	"	"	"	"	
4-83-9	Bromomethane	BRL		μg/kg dry	660	200	"	"	"	"	
8-93-3	2-Butanone (MEK)	BRL		μg/kg dry	3300	200	"	"	"	"	
04-51-8	n-Butylbenzene	1,350		μg/kg dry	330	200	n .	"	"	"	
35-98-8	sec-Butylbenzene	1,140		μg/kg dry	330	200	"	"	"	"	
3-06-6	tert-Butylbenzene	BRL		μg/kg dry	330	200	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/kg dry	1650	200	II .	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/kg dry	330	200	"	"	"	"	
08-90-7	Chlorobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
5-00-3	Chloroethane	BRL		μg/kg dry	660	200	"	"	"	"	
'-66-3	Chloroform	BRL		μg/kg dry	330	200	"	"	"	"	
1-87-3	Chloromethane	BRL		μg/kg dry	660	200	"	"	"	"	
5-49-8	2-Chlorotoluene	BRL		μg/kg dry	330	200	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/kg dry	330	200	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL	CAL1	μg/kg dry	660	200	n .	"	"	"	
24-48-1	Dibromochloromethane	BRL		μg/kg dry	330	200	"	"	"	"	
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/kg dry	330	200	"	"	"	"	
1-95-3	Dibromomethane	BRL		μg/kg dry	330	200	"	"	"	"	
5-50-1	1,2-Dichlorobenzene	BRL		μg/kg dry	330	200	n .	"	"	"	
11-73-1	1,3-Dichlorobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
06-46-7	1,4-Dichlorobenzene	BRL		μg/kg dry	330	200	n .	"	"	"	
5-71-8	Dichlorodifluoromethane (Freon12) BRL		μg/kg dry	660	200	u u	"	"	"	
5-34-3	1,1-Dichloroethane	BRL		μg/kg dry	330	200	u u	"	"	"	
07-06-2	1,2-Dichloroethane	BRL		μg/kg dry	330	200	n .	"	"	"	
5-35-4	1,1-Dichloroethene	BRL		μg/kg dry	330	200	n .	"	"	"	
56-59-2	cis-1,2-Dichloroethene	BRL		μg/kg dry	330	200	n .	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/kg dry	330	200	n .	"	"	"	
3-87-5	1,2-Dichloropropane	BRL		μg/kg dry	330	200	n .	"	"	"	
12-28-9	1,3-Dichloropropane	BRL		μg/kg dry	330	200	u u	"	"	"	
94-20-7	2,2-Dichloropropane	BRL		μg/kg dry	330	200	u u	"	"	"	
63-58-6	1,1-Dichloropropene	BRL		μg/kg dry	330	200	n .	"	"	"	
	cis-1,3-Dichloropropene	BRL		μg/kg dry	330	200	"	"	"	"	
	trans-1,3-Dichloropropene	BRL	CAL1	μg/kg dry	330	200	u u	"	"	"	
00-41-4	Ethylbenzene	373		μg/kg dry	330	200	u u	"	"	"	
7-68-3	Hexachlorobutadiene	BRL		μg/kg dry	330	200	u u	"	"	"	
91-78-6	2-Hexanone (MBK)	BRL		μg/kg dry	3300	200	u u	"	"	"	
8-82-8	Isopropylbenzene	564		μg/kg dry	330	200	u u	"	"	"	
9-87-6	4-Isopropyltoluene	587		μg/kg dry	330	200	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/kg dry	330	200	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/kg dry	3300	200	"	"	"	"	
5-09-2	Methylene chloride	BRL		μg/kg dry	3300	200	w.	"	"	"	
1-20-3	Naphthalene	2,160		μg/kg dry	330	200	"	"	"		

Matrix Soil Collection Date/Time 09-Jun-09 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile C	Organic Compounds		R05		lnit	ial walahti	11.02 ~				
Prepared	by method SW846 5030 Soil (hig	ıh level)			init	ial weight:	11.02 g				
103-65-1	n-Propylbenzene	1,390		μg/kg dry	330	200	SW846 8260B	16-Jun-09	17-Jun-09	9061255	
100-42-5	Styrene	BRL		μg/kg dry	330	200	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/kg dry	330	200	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/kg dry	330	200	"	"	"	"	
127-18-4	Tetrachloroethene	BRL		μg/kg dry	330	200	"	"	"	"	
108-88-3	Toluene	BRL		μg/kg dry	330	200	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/kg dry	330	200	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/kg dry	330	200	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	BRL		μg/kg dry	330	200	"	"	"	"	
79-01-6	Trichloroethene	BRL		μg/kg dry	330	200	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/kg dry	330	200	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	BRL		μg/kg dry	330	200	n.	"	u u	"	
95-63-6	1,2,4-Trimethylbenzene	2,670		μg/kg dry	330	200	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	1,980		μg/kg dry	330	200	"	"	"	"	
75-01-4	Vinyl chloride	BRL		μg/kg dry	330	200	n.	"	u u	"	
179601-23-	¹ m,p-Xylene	BRL		μg/kg dry	660	200	n.	"	u u	"	
95-47-6	o-Xylene	BRL		μg/kg dry	330	200	"	"	"	"	
109-99-9	Tetrahydrofuran	BRL		μg/kg dry	3300	200	n.	"	u u	"	
60-29-7	Ethyl ether	BRL		μg/kg dry	330	200	n.	"	u u	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/kg dry	330	200	п	"	"	"	
637-92-3	Ethyl tert-butyl ether	BRL		μg/kg dry	330	200	"	"	"	"	
108-20-3	Di-isopropyl ether	BRL		μg/kg dry	330	200	n.	"	u u	"	
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/kg dry	3300	200	n.	"	u u	"	
123-91-1	1,4-Dioxane	BRL		μg/kg dry	6600	200	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/kg dry	1650	200	n.	"	u u	"	
64-17-5	Ethanol	BRL		μg/kg dry	132000	200	"	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	102		70-13	0 %		"	"	"	"	
2037-26-5	Toluene-d8	103		70-13	0 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	98		70-13	0 %		п	"	"	"	
1868-53-7	Dibromofluoromethane	100		70-13	0 %		II.	"	"	"	
Semivola	tile Organic Compounds by GCMS										
PAHs by	SW846 8270C										
Prepared	by method SW846 3545A										
83-32-9	Acenaphthene	BRL		μg/kg dry	172	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
208-96-8	Acenaphthylene	BRL		μg/kg dry	172	1	u	"	"	"	
120-12-7	Anthracene	BRL		μg/kg dry	172	1	п	"	"	"	
56-55-3	Benzo (a) anthracene	BRL		μg/kg dry	172	1	п	"	"	"	
50-32-8	Benzo (a) pyrene	BRL		μg/kg dry	172	1	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	BRL		μg/kg dry	172	1	u	"	"	"	
191-24-2	Benzo (g,h,i) perylene	BRL		μg/kg dry	172	1	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	BRL		μg/kg dry	172	1	u	"	"	"	
218-01-9	Chrysene	BRL		μg/kg dry	172	1	"	"	"		
53-70-3	Dibenzo (a,h) anthracene	BRL		μg/kg dry	172	1	"	"	"		
206-44-0	Fluoranthene	BRL		μg/kg dry	172	1	"	"	u u	"	
86-73-7	Fluorene	BRL		μg/kg dry	172	1	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/kg dry	172	1					

Sample Identification B(MW)-4 20-22' SA96169-02

Client Project # RI-0011-06

Matrix Soil Collection Date/Time 09-Jun-09 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivola	tile Organic Compounds by Ge	CMS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3545A										
91-57-6	2-Methylnaphthalene	1,240		μg/kg dry	172	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
91-20-3	Naphthalene	352		μg/kg dry	172	1	"	"	"	"	
85-01-8	Phenanthrene	396		μg/kg dry	172	1	"	"	"	"	
129-00-0	Pyrene	BRL		μg/kg dry	172	1	"	"	"	"	
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	74		30-13	0 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	63		30-13	0 %		"	"	"	"	
General (Chemistry Parameters										
	% Solids	89.1		%		1	SM2540 G Mod.	19-Jun-09	19-Jun-09	9061583	

Matrix Soil Collection Date/Time 08-Jun-09 13:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
	VOC Extraction	Field extra	icted	N/A		1	VOC Soil Extraction	11-Jun-09	11-Jun-09	9060995	
Volatile (<u> Organic Compounds</u>		R05		Init	ial woight:	9 20 a				
Prepared	by method SW846 5030 Soil (h	igh level)			11111	ial weight:	6.29 g				
76-13-1	1,1,2-Trichlorotrifluoroethane (Fre	_{eor} BRL		μg/kg dry	1210	500	SW846 8260B	16-Jun-09	17-Jun-09	9061255	
67-64-1	Acetone	BRL		μg/kg dry	12100	500	"	"	"	"	
107-13-1	Acrylonitrile	BRL		μg/kg dry	1210	500	"	"	"	"	
71-43-2	Benzene	BRL		μg/kg dry	1210	500	"	"	"	"	
108-86-1	Bromobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
74-97-5	Bromochloromethane	BRL		μg/kg dry	1210	500	"	"	"	"	
75-27-4	Bromodichloromethane	BRL		μg/kg dry	1210	500	"	"	"	"	
75-25-2	Bromoform	BRL		μg/kg dry	1210	500	"	"	"	"	
74-83-9	Bromomethane	BRL		μg/kg dry	2420	500	"	"	"	"	
78-93-3	2-Butanone (MEK)	BRL		μg/kg dry	12100	500	"	"	"	"	
104-51-8	n-Butylbenzene	8,590		μg/kg dry	1210	500	"	"	"	"	
135-98-8	sec-Butylbenzene	7,330		μg/kg dry	1210	500	"	"	"	"	
98-06-6	tert-Butylbenzene	1,770		μg/kg dry	1210	500	"	"	"	"	
75-15-0	Carbon disulfide	BRL		μg/kg dry	6050	500	"	"	"	"	
56-23-5	Carbon tetrachloride	BRL		μg/kg dry	1210	500	"	"	"	"	
108-90-7	Chlorobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
75-00-3	Chloroethane	BRL		μg/kg dry	2420	500	"	"	"	"	
67-66-3	Chloroform	BRL		μg/kg dry	1210	500	"	"	"	"	
74-87-3	Chloromethane	BRL		μg/kg dry	2420	500	"	"	"	"	
95-49-8	2-Chlorotoluene	BRL		μg/kg dry	1210	500	"	"	"	"	
106-43-4	4-Chlorotoluene	BRL		μg/kg dry	1210	500	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BRL	CAL1	μg/kg dry	2420	500	"	"	"	"	
124-48-1	Dibromochloromethane	BRL		μg/kg dry	1210	500	u u	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/kg dry	1210	500	u u	"	"	"	
74-95-3	Dibromomethane	BRL		μg/kg dry	1210	500	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	BRL		μg/kg dry	1210	500	u u	"	"	"	
106-46-7	1,4-Dichlorobenzene	BRL		μg/kg dry	1210	500	u u	"	"	"	
75-71-8	Dichlorodifluoromethane (Freon1	2) BRL		μg/kg dry	2420	500	"	"	"	"	
75-34-3	1,1-Dichloroethane	BRL		μg/kg dry	1210	500	u u	"	"	"	
107-06-2	1,2-Dichloroethane	BRL		μg/kg dry	1210	500	u u	"	"	"	
75-35-4	1,1-Dichloroethene	BRL		μg/kg dry	1210	500	u u	"	"	"	
156-59-2	cis-1,2-Dichloroethene	BRL		μg/kg dry	1210	500	u u	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		μg/kg dry	1210	500	"	"	"	"	
78-87-5	1,2-Dichloropropane	BRL		μg/kg dry	1210	500	u u	"	"	"	
142-28-9	1,3-Dichloropropane	BRL		μg/kg dry	1210	500	"	"	"	"	
594-20-7	2,2-Dichloropropane	BRL		μg/kg dry	1210	500	"	"	"	"	
563-58-6	1,1-Dichloropropene	BRL		μg/kg dry	1210	500	u u	"	"	"	
10061-01-5	cis-1,3-Dichloropropene	BRL		μg/kg dry	1210	500	u u	"	"	"	
10061-02-6	trans-1,3-Dichloropropene	BRL	CAL1	μg/kg dry	1210	500	u u	"	"	"	
100-41-4	Ethylbenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
87-68-3	Hexachlorobutadiene	BRL		μg/kg dry	1210	500	"	"	"	"	
591-78-6	2-Hexanone (MBK)	BRL		μg/kg dry	12100	500	u u	"	"	"	
98-82-8	Isopropylbenzene	2,990		μg/kg dry	1210	500	u u	"	"	"	
99-87-6	4-Isopropyltoluene	5,850		μg/kg dry	1210	500	u u	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		μg/kg dry	1210	500	u u	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/kg dry	12100	500	u u	"	"	"	
75-09-2	Methylene chloride	BRL		μg/kg dry	12100	500	"	"	"	"	
91-20-3	Naphthalene	3,330		μg/kg dry	1210	500	"	"	"	"	

Matrix Soil Collection Date/Time 08-Jun-09 13:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile C	Organic Compounds		R05		الما	المحاسات والما	0.00 ~				
Prepared	by method SW846 5030 Soil (hig	ıh level)			inii	ial weight:	8.29 g				
103-65-1	n-Propylbenzene	7,550		μg/kg dry	1210	500	SW846 8260B	16-Jun-09	17-Jun-09	9061255	
100-42-5	Styrene	BRL		μg/kg dry	1210	500	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/kg dry	1210	500	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/kg dry	1210	500	"	"	"	"	
127-18-4	Tetrachloroethene	BRL		μg/kg dry	1210	500	"	"	"	"	
108-88-3	Toluene	BRL		μg/kg dry	1210	500	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/kg dry	1210	500	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/kg dry	1210	500	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	BRL		μg/kg dry	1210	500	"	"	"	"	
79-01-6	Trichloroethene	BRL		μg/kg dry	1210	500	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/kg dry	1210	500	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	BRL		μg/kg dry	1210	500	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	7,600		μg/kg dry	1210	500	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	13,000		μg/kg dry	1210	500	"	"	"	"	
75-01-4	Vinyl chloride	BRL		μg/kg dry	1210	500	"	"	"	"	
179601-23-	¹ m,p-Xylene	BRL		μg/kg dry	2420	500	"	"	"	"	
95-47-6	o-Xylene	BRL		μg/kg dry	1210	500	"	"	"	"	
109-99-9	Tetrahydrofuran	BRL		μg/kg dry	12100	500	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/kg dry	1210	500	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/kg dry	1210	500	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	BRL		μg/kg dry	1210	500	"	"	"	"	
108-20-3	Di-isopropyl ether	BRL		μg/kg dry	1210	500	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/kg dry	12100	500	"	"	"	"	
123-91-1	1,4-Dioxane	BRL		μg/kg dry	24200	500	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/kg dry	6050	500	"	"	"	"	
64-17-5	Ethanol	BRL		μg/kg dry	484000	500	u u	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	101		70-13	0 %		п	"	"	"	
2037-26-5	Toluene-d8	101		70-13	0 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	99		70-13	0 %		п	"	"	"	
1868-53-7	Dibromofluoromethane	96		70-13	0 %		II .	"	"	"	
Semivola	tile Organic Compounds by GCMS										
PAHs by	SW846 8270C										
Prepared	by method SW846 3545A										
83-32-9	Acenaphthene	830		μg/kg dry	194	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
208-96-8	Acenaphthylene	BRL		μg/kg dry	194	1	"	"	"	"	
120-12-7	Anthracene	BRL		μg/kg dry	194	1	п	"	"	"	
56-55-3	Benzo (a) anthracene	BRL		μg/kg dry	194	1	п	"	"	"	
50-32-8	Benzo (a) pyrene	BRL		μg/kg dry	194	1	u	"	"	"	
205-99-2	Benzo (b) fluoranthene	BRL		μg/kg dry	194	1	п	"	"	"	
191-24-2	Benzo (g,h,i) perylene	BRL		μg/kg dry	194	1	n .	"	"	"	
207-08-9	Benzo (k) fluoranthene	BRL		μg/kg dry	194	1	u	"	"	"	
218-01-9	Chrysene	BRL		μg/kg dry	194	1	u	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	BRL		μg/kg dry	194	1	"	"	"		
206-44-0	Fluoranthene	BRL		μg/kg dry	194	1	"	"	"	"	
86-73-7	Fluorene	1,890		μg/kg dry	194	1	"	"	"	"	
		BRL		μg/kg dry	194	1	n.		"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	DILL									

Sample Identification B(MW)-5 5-7' SA96169-03

Client Project # RI-0011-06

Matrix Soil Collection Date/Time 08-Jun-09 13:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	s									
PAHs by	SW846 8270C										
Prepared	by method SW846 3545A										
91-57-6	2-Methylnaphthalene	17,100		μg/kg dry	194	1	SW846 8270C	12-Jun-09	22-Jun-09	9060992	
91-20-3	Naphthalene	4,850		μg/kg dry	194	1	"	"	"	"	
35-01-8	Phenanthrene	4,280		μg/kg dry	194	1	"	"	"	"	
129-00-0	Pyrene	626		μg/kg dry	194	1	"	"	"	"	
 Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	72		30-13	0 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	63		30-13	0 %		"	"	"	"	
General (Chemistry Parameters										
	% Solids	82.1		%		1	SM2540 G Mod.	19-Jun-09	19-Jun-09	9061583	

Batch 9061255 - SW846 5030 Soil (high level) Blank (9061255-BLK1) Prepared & Analyzed: 16-Jun-09 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL	Flag	μg/kg wet	*RDL 1.0 10.0 1.0 1.0	Result		
Blank (9061255-BLK1) Prepared & Analyzed: 16-Jun-09 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL BRL		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	10.0 1.0			
Prepared & Analyzed: 16-Jun-09 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL BRL		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	10.0 1.0			
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL BRL		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	10.0 1.0			
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL BRL		μg/kg wet μg/kg wet μg/kg wet μg/kg wet μg/kg wet	10.0 1.0			
Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL		µg/kg wet µg/kg wet µg/kg wet µg/kg wet	1.0			
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL		µg/kg wet µg/kg wet µg/kg wet				
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL		μg/kg wet μg/kg wet				
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL		μg/kg wet	1.0			
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL			1.0			
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	BRL BRL BRL BRL		μg/kg wet	1.0			
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	BRL BRL BRL		μg/kg wet	1.0			
2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL		μg/kg wet	2.0			
n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL		μg/kg wet	10.0			
sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform			μg/kg wet	1.0			
tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL		µg/kg wet	1.0			
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL		μg/kg wet	1.0			
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL		μg/kg wet	5.0			
Chlorobenzene Chloroethane Chloroform	BRL		μg/kg wet	1.0			
Chloroethane Chloroform	BRL		μg/kg wet	1.0			
Chloroform	BRL		μg/kg wet	2.0			
	BRL		μg/kg wet	1.0			
Chloromethane	BRL		μg/kg wet	2.0			
2-Chlorotoluene	BRL		μg/kg wet	1.0			
4-Chlorotoluene	BRL		μg/kg wet	1.0			
1,2-Dibromo-3-chloropropane	BRL	CAL1	μg/kg wet	2.0			
Dibromochloromethane	BRL	07.12.	μg/kg wet	1.0			
1,2-Dibromoethane (EDB)	BRL		μg/kg wet	1.0			
Dibromomethane	BRL		μg/kg wet	1.0			
1,2-Dichlorobenzene	BRL		μg/kg wet	1.0			
1,3-Dichlorobenzene	BRL		μg/kg wet	1.0			
1,4-Dichlorobenzene	BRL		μg/kg wet	1.0			
Dichlorodifluoromethane (Freon12)	BRL		μg/kg wet	2.0			
1,1-Dichloroethane	BRL		μg/kg wet	1.0			
1,2-Dichloroethane	BRL		μg/kg wet	1.0			
1,1-Dichloroethene	BRL		μg/kg wet	1.0			
cis-1,2-Dichloroethene	BRL		μg/kg wet	1.0			
trans-1,2-Dichloroethene	BRL		μg/kg wet μg/kg wet	1.0			
1,2-Dichloropropane	BRL		μg/kg wet	1.0			
1,3-Dichloropropane	BRL		μg/kg wet μg/kg wet	1.0			
2,2-Dichloropropane	BRL		μg/kg wet μg/kg wet	1.0			
1,1-Dichloropropene	BRL		μg/kg wet μg/kg wet	1.0			
cis-1,3-Dichloropropene	BRL		μg/kg wet μg/kg wet	1.0			
trans-1,3-Dichloropropene	BRL	CAL1	μg/kg wet μg/kg wet	1.0			
Ethylbenzene	BRL	OALI	μg/kg wet μg/kg wet	1.0			
Hexachlorobutadiene	BRL			1.0			
2-Hexanone (MBK)	BRL		μg/kg wet μg/kg wet	1.0			
Isopropylbenzene	BRL			1.0			
4-Isopropyltoluene	BRL		μg/kg wet	1.0			
			μg/kg wet				
Methyl 2 pentanone (MIRK)	BRL BRL		μg/kg wet	1.0			
4-Methylopo oblorido	DIGI		μg/kg wet	10.0			
Methylene chloride Naphthalene	BRL		μg/kg wet	10.0			

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9061255 - SW846 5030 Soil (high lev	vel)									
Blank (9061255-BLK1)										
Prepared & Analyzed: 16-Jun-09										
n-Propylbenzene	BRL		μg/kg wet	1.0						
Styrene	BRL		μg/kg wet	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/kg wet	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/kg wet	1.0						
Tetrachloroethene	BRL		μg/kg wet	1.0						
Toluene	BRL		μg/kg wet	1.0						
1,2,3-Trichlorobenzene	BRL		μg/kg wet	1.0						
1,2,4-Trichlorobenzene	BRL		μg/kg wet	1.0						
1,3,5-Trichlorobenzene	BRL		μg/kg wet	1.0						
1,1,1-Trichloroethane	BRL		μg/kg wet	1.0						
1,1,2-Trichloroethane	BRL		μg/kg wet	1.0						
Trichloroethene	BRL		μg/kg wet	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/kg wet	1.0						
1,2,3-Trichloropropane	BRL		μg/kg wet	1.0						
1,2,4-Trimethylbenzene	BRL		μg/kg wet	1.0						
1,3,5-Trimethylbenzene	BRL		μg/kg wet	1.0						
Vinyl chloride	BRL		μg/kg wet	1.0						
m,p-Xylene	BRL		μg/kg wet	2.0						
o-Xylene	BRL		μg/kg wet	1.0						
Tetrahydrofuran	BRL		μg/kg wet	10.0						
Ethyl ether	BRL		μg/kg wet	1.0						
Tert-amyl methyl ether	BRL		μg/kg wet	1.0						
Ethyl tert-butyl ether	BRL		μg/kg wet	1.0						
Di-isopropyl ether	BRL		μg/kg wet	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/kg wet	10.0						
1,4-Dioxane	BRL		μg/kg wet	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/kg wet	5.0						
Ethanol	BRL		μg/kg wet	400						
Surrogate: 4-Bromofluorobenzene	29.7		μg/kg wet		30.0		99	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	31.1 30.7		µg/kg wet µg/kg wet		30.0 30.0		104 102	70-130 70-130		
Surrogate: Dibromofluoromethane	30.4		μg/kg wet		30.0		101	70-130		
LCS (9061255-BS1)										
Prepared & Analyzed: 16-Jun-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.0		μg/kg wet		20.0		125	70-130		
Acetone	18.0		μg/kg wet		20.0		90	40-193		
Acrylonitrile	17.2		μg/kg wet		20.0		86	70-130		
Benzene	19.9		μg/kg wet		20.0		99	70-130		
Bromobenzene	19.2		μg/kg wet		20.0		96	70-130		
Bromochloromethane	19.3		μg/kg wet		20.0		97	70-130		
Bromodichloromethane	20.5		μg/kg wet		20.0		102	70-130		
Bromoform	20.6		μg/kg wet		20.0		103	70-130		
Bromomethane	19.0		μg/kg wet		20.0		95	62.9-131		
2-Butanone (MEK)	16.2		μg/kg wet		20.0		81	47-163		
n-Butylbenzene	19.8		μg/kg wet		20.0		99	70-130		
sec-Butylbenzene	20.1		μg/kg wet		20.0		100	70-130		
tert-Butylbenzene	20.5		μg/kg wet		20.0		103	70-130		
Carbon disulfide	18.7		μg/kg wet		20.0		94	70-130		
Carbon tetrachloride	23.2		μg/kg wet		20.0		116	70-130		
Chlorobenzene	19.7		μg/kg wet		20.0		99	70-130		

A 1.77	D 1	E1	TT '4	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9061255 - SW846 5030 Soil (high	level)									
LCS (9061255-BS1)										
Prepared & Analyzed: 16-Jun-09										
Chloroethane	18.9		μg/kg wet		20.0		94	64.2-130		
Chloroform	20.5		μg/kg wet		20.0		103	70-130		
Chloromethane	18.4		μg/kg wet		20.0		92	70-130		
2-Chlorotoluene	19.8		μg/kg wet		20.0		99	70-130		
4-Chlorotoluene	19.8		μg/kg wet		20.0		99	70-130		
1,2-Dibromo-3-chloropropane	17.4	CAL1	μg/kg wet		20.0		87	70-130		
Dibromochloromethane	21.5		μg/kg wet		20.0		108	70-130		
1,2-Dibromoethane (EDB)	19.9		μg/kg wet		20.0		99	70-130		
Dibromomethane	19.2		μg/kg wet		20.0		96	70-130		
1,2-Dichlorobenzene	17.7		μg/kg wet		20.0		89	70-130		
1,3-Dichlorobenzene	19.0		μg/kg wet		20.0		95	70-130		
1,4-Dichlorobenzene	17.5		μg/kg wet		20.0		87	70-130		
Dichlorodifluoromethane (Freon12)	19.2		μg/kg wet		20.0		96	62.6-136		
1,1-Dichloroethane	20.8		μg/kg wet		20.0		104	70-130		
1,2-Dichloroethane	19.8		μg/kg wet		20.0		99	70-130		
1,1-Dichloroethene	20.0		μg/kg wet		20.0		100	70-130		
cis-1,2-Dichloroethene	20.4		μg/kg wet		20.0		102	70-130		
trans-1,2-Dichloroethene	19.0		μg/kg wet		20.0		95	70-130		
1,2-Dichloropropane	20.8		μg/kg wet		20.0		104	70-130		
1,3-Dichloropropane	19.6		μg/kg wet		20.0		98	70-130		
2,2-Dichloropropane	23.5		μg/kg wet		20.0		118	70-130		
1,1-Dichloropropene	21.2		μg/kg wet		20.0		106	70-130		
cis-1,3-Dichloropropene	20.2		μg/kg wet		20.0		101	70-130		
trans-1,3-Dichloropropene	22.0	CAL1	μg/kg wet		20.0		110	70-130		
Ethylbenzene	19.4		μg/kg wet		20.0		97	70-130		
Hexachlorobutadiene	17.4		μg/kg wet		20.0		87	70-130		
2-Hexanone (MBK)	17.3		μg/kg wet		20.0		86	70-130		
Isopropylbenzene	17.5		μg/kg wet		20.0		88	70-130		
4-Isopropyltoluene	19.7		μg/kg wet		20.0		98	70-130		
Methyl tert-butyl ether	20.6		μg/kg wet		20.0		103	70-130		
4-Methyl-2-pentanone (MIBK)	17.8		μg/kg wet		20.0		89	70-130		
Methylene chloride	18.0		μg/kg wet		20.0		90	70-130		
Naphthalene	17.2		μg/kg wet		20.0		86	70-130		
n-Propylbenzene	20.5		μg/kg wet		20.0		102	70-130		
Styrene	20.0		μg/kg wet		20.0		100	70-130		
1,1,1,2-Tetrachloroethane	21.5		μg/kg wet		20.0		107	70-130		
1,1,2,2-Tetrachloroethane	18.9		μg/kg wet		20.0		95	70-130		
Tetrachloroethene	21.6		μg/kg wet		20.0		108	70-130		
Toluene	20.2		μg/kg wet		20.0		101	70-130		
1,2,3-Trichlorobenzene	18.4		μg/kg wet		20.0		92	70-130		
1,2,4-Trichlorobenzene	17.3		μg/kg wet		20.0		87	70-130		
1,3,5-Trichlorobenzene	17.8		μg/kg wet		20.0		89	70-130		
1,1,1-Trichloroethane	22.3		μg/kg wet		20.0		112	70-130		
1,1,2-Trichloroethane	20.8		μg/kg wet		20.0		104	70-130		
Trichloroethene	20.8		μg/kg wet		20.0		104	70-130		
Trichlorofluoromethane (Freon 11)	22.7		μg/kg wet		20.0		114	70-140		
1,2,3-Trichloropropane	18.9		μg/kg wet		20.0		94	70-130		
1,2,4-Trimethylbenzene	19.2		μg/kg wet		20.0		96	70-130		
1,3,5-Trimethylbenzene	19.7		μg/kg wet		20.0		98	70-130		

A 1.70	D. Iv	Pl	TT :	*DDI	Spike	Source	A/DEG	%REC	nnn	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9061255 - SW846 5030 Soil (high lev	vel)									
LCS (9061255-BS1)										
Prepared & Analyzed: 16-Jun-09										
Vinyl chloride	25.4		μg/kg wet		20.0		127	70-130		
m,p-Xylene	39.1		μg/kg wet		40.0		98	70-130		
o-Xylene	19.7		μg/kg wet		20.0		99	70-130		
Tetrahydrofuran	17.6		μg/kg wet		20.0		88	70-130		
Ethyl ether	18.8		μg/kg wet		20.0		94	70-132		
Tert-amyl methyl ether	21.5		μg/kg wet		20.0		108	70-130		
Ethyl tert-butyl ether	21.6		μg/kg wet		20.0		108	70-130		
Di-isopropyl ether	17.9		μg/kg wet		20.0		90	70-130		
Tert-Butanol / butyl alcohol	189		μg/kg wet		200		94	70-130		
1,4-Dioxane	223		μg/kg wet		200		111	59.1-148		
trans-1,4-Dichloro-2-butene	21.0		μg/kg wet		20.0		105	70-130		
Ethanol	375		μg/kg wet		400		94	70-130		
Surrogate: 4-Bromofluorobenzene	30.8		μg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	31.6		μg/kg wet		30.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	30.2 30.0		μg/kg wet μg/kg wet		30.0 30.0		101 100	70-130 70-130		
5	00.0		pg/kg wot		00.0		700	70 700		
LCS Dup (9061255-BSD1) Prepared & Analyzed: 16-Jun-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.1		μg/kg wet		20.0		115	70-130	8	25
Acetone	17.8		μg/kg wet		20.0		89	40-193	1	50
Acrylonitrile	17.6		μg/kg wet		20.0		88	70-130	3	25
Benzene	18.8		μg/kg wet		20.0		94	70-130	5	25
Bromobenzene	18.6		μg/kg wet		20.0		93	70-130	3	25
Bromochloromethane	18.3		μg/kg wet		20.0		92	70-130	5	25
Bromodichloromethane	19.6		μg/kg wet		20.0		98	70-130	5	25
Bromoform	20.7		μg/kg wet		20.0		104	70-130	0.9	25
Bromomethane	17.9		μg/kg wet		20.0		90	62.9-131	6	50
2-Butanone (MEK)	17.6		μg/kg wet		20.0		88	47-163	8	50
n-Butylbenzene	20.3		μg/kg wet		20.0		102	70-130	2	25
sec-Butylbenzene	21.4		μg/kg wet		20.0		107	70-130	6	25
tert-Butylbenzene	21.0		μg/kg wet		20.0		105	70-130	2	25
Carbon disulfide	18.1		μg/kg wet		20.0		91	70-130	3	25
Carbon tetrachloride	21.8		μg/kg wet		20.0		109	70-130	6	25
Chlorobenzene	20.3		μg/kg wet μg/kg wet		20.0		101	70-130	3	25 25
Chloroethane	17.6		μg/kg wet μg/kg wet		20.0		88	64.2-130	7	50
Chloroform	20.0		μg/kg wet μg/kg wet		20.0		100	70-130	2	25
Chloromethane	17.3		μg/kg wet μg/kg wet		20.0		87	70-130	6	25
2-Chlorotoluene	20.0		μg/kg wet μg/kg wet		20.0		100	70-130	0.9	25
4-Chlorotoluene	20.3		μg/kg wet μg/kg wet		20.0		101	70-130	2	25
1,2-Dibromo-3-chloropropane	21.0	CAL1	μg/kg wet		20.0		105	70-130	18	25
Dibromochloromethane	20.0		μg/kg wet μg/kg wet		20.0		100	70-130	7	50
1,2-Dibromoethane (EDB)	20.2		μg/kg wet		20.0		101	70-130	2	25
Dibromomethane	18.2		μg/kg wet		20.0		91	70-130	6	25
1,2-Dichlorobenzene	19.1		μg/kg wet		20.0		96	70-130	8	25
1,3-Dichlorobenzene	20.4		μg/kg wet		20.0		102	70-130	7	25
1,4-Dichlorobenzene	18.7		μg/kg wet		20.0		93	70-130	7	25
Dichlorodifluoromethane (Freon12)	16.3		μg/kg wet		20.0		81	62.6-136	17	50
1,1-Dichloroethane	19.6		μg/kg wet		20.0		98	70-130	6	25
1,2-Dichloroethane	19.1		μg/kg wet		20.0		96	70-130	4	25
1,1-Dichloroethene	18.6		μg/kg wet μg/kg wet		20.0		93	70-130	7	25 25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9061255 - SW846 5030 Soil (high le	evel)									
.CS Dup (9061255-BSD1)										
Prepared & Analyzed: 16-Jun-09										
cis-1,2-Dichloroethene	19.9		μg/kg wet		20.0		100	70-130	2	25
trans-1,2-Dichloroethene	18.4		μg/kg wet		20.0		92	70-130	3	25
1,2-Dichloropropane	19.9		μg/kg wet		20.0		99	70-130	5	25
1,3-Dichloropropane	19.2		μg/kg wet		20.0		96	70-130	2	25
2,2-Dichloropropane	22.8		μg/kg wet		20.0		114	70-130	3	25
1,1-Dichloropropene	19.3		μg/kg wet		20.0		96	70-130	9	25
cis-1,3-Dichloropropene	19.0		μg/kg wet		20.0		95	70-130	6	25
trans-1,3-Dichloropropene	20.9	CAL1	μg/kg wet		20.0		104	70-130	5	25
Ethylbenzene	19.4		μg/kg wet		20.0		97	70-130	0.1	25
Hexachlorobutadiene	18.9		μg/kg wet		20.0		94	70-130	8	50
2-Hexanone (MBK)	19.0		μg/kg wet		20.0		95	70-130	9	25
Isopropylbenzene	17.4		μg/kg wet		20.0		87	70-130	1	25
4-Isopropyltoluene	20.2		μg/kg wet		20.0		101	70-130	3	25
Methyl tert-butyl ether	20.1		μg/kg wet		20.0		100	70-130	3	25
4-Methyl-2-pentanone (MIBK)	17.2		μg/kg wet		20.0		86	70-130	3	50
Methylene chloride	17.8		μg/kg wet		20.0		89	70-130	0.7	25
Naphthalene	18.9		μg/kg wet		20.0		95	70-130	10	25
n-Propylbenzene	19.9		μg/kg wet		20.0		100	70-130	3	25
Styrene	19.8		μg/kg wet		20.0		99	70-130	1	25
1,1,1,2-Tetrachloroethane	22.2		μg/kg wet		20.0		111	70-130	3	25
1,1,2,2-Tetrachloroethane	20.3		μg/kg wet		20.0		102	70-130	7	25
Tetrachloroethene	19.3		μg/kg wet		20.0		96	70-130	11	25
Foluene	19.1		μg/kg wet		20.0		96	70-130	5	25
1,2,3-Trichlorobenzene	19.8		μg/kg wet		20.0		99	70-130	7	25
1,2,4-Trichlorobenzene	19.0		μg/kg wet		20.0		95	70-130	9	25
1,3,5-Trichlorobenzene	18.8		μg/kg wet		20.0		94	70-130	5	25
1,1,1-Trichloroethane	21.6		μg/kg wet		20.0		108	70-130	4	25
1,1,2-Trichloroethane	19.9		μg/kg wet		20.0		99	70-130	4	25
Trichloroethene	20.0		μg/kg wet		20.0		100	70-130	4	25
Trichlorofluoromethane (Freon 11)	21.4		μg/kg wet		20.0		107	70-140	6	50
1,2,3-Trichloropropane	20.8		μg/kg wet		20.0		104	70-130	9	25
1,2,4-Trimethylbenzene	19.2		μg/kg wet		20.0		96	70-130	0.2	25
1,3,5-Trimethylbenzene	19.9		μg/kg wet		20.0		100	70-130	1	25
Vinyl chloride	23.5		μg/kg wet		20.0		117	70-130	8	25
n,p-Xylene	39.8		μg/kg wet		40.0		100	70-130	2	25
o-Xylene	18.8		μg/kg wet		20.0		94	70-130	5	25
Tetrahydrofuran	18.3		μg/kg wet		20.0		91	70-130	4	25
Ethyl ether	18.9		μg/kg wet		20.0		94	70-132	0.5	50
Tert-amyl methyl ether	21.4		μg/kg wet		20.0		107	70-130	0.6	25
Ethyl tert-butyl ether	22.2		μg/kg wet		20.0		111	70-130	2	25
Di-isopropyl ether	17.5		μg/kg wet		20.0		88	70-130	2	25
Tert-Butanol / butyl alcohol	197		μg/kg wet		200		98	70-130	4	25
1,4-Dioxane	203		μg/kg wet		200		101	59.1-148	9	25
trans-1,4-Dichloro-2-butene	21.6		μg/kg wet		20.0		108	70-130	3	25
Ethanol	383		μg/kg wet		400		96	70-130	2	30
Surrogate: 4-Bromofluorobenzene	30.5		μg/kg wet		30.0		102	70-130	-	
Surrogate: Toluene-d8	30.7		μg/kg wet		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.2		μg/kg wet		30.0		101	70-130		
Surrogate: Dibromofluoromethane	30.0		μg/kg wet		30.0		100	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9061255 - SW846 5030 Soil (I	high level)									
Matrix Spike (9061255-MS1)	Source: SA9616	9-01								
Prepared: 16-Jun-09 Analyzed: 17-Jun	n-09									
Benzene	20.8		μg/kg dry		20.0	BRL	104	70-130		
Chlorobenzene	24.3		μg/kg dry		20.0	BRL	122	70-130		
1,1-Dichloroethene	19.1		μg/kg dry		20.0	BRL	96	70-130		
Toluene	22.1		μg/kg dry		20.0	BRL	111	70-130		
Trichloroethene	22.9		μg/kg dry		20.0	BRL	115	70-130		
Surrogate: 4-Bromofluorobenzene	30.8		μg/kg dry		30.0		103	70-130		
Surrogate: Toluene-d8	30.7		μg/kg dry		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.4		μg/kg dry		30.0		98	70-130		
Surrogate: Dibromofluoromethane	30.4		μg/kg dry		30.0		101	70-130		
Matrix Spike Dup (9061255-MSD1)	Source: SA9616	9-01								
Prepared: 16-Jun-09 Analyzed: 17-Jun	n-09									
Benzene	19.7		μg/kg dry		20.0	BRL	98	70-130	5	30
Chlorobenzene	23.7		μg/kg dry		20.0	BRL	118	70-130	3	30
1,1-Dichloroethene	20.4		μg/kg dry		20.0	BRL	102	70-130	6	30
Toluene	21.0		μg/kg dry		20.0	BRL	105	70-130	5	30
Trichloroethene	22.7		μg/kg dry		20.0	BRL	113	70-130	1	30
Surrogate: 4-Bromofluorobenzene	29.9		μg/kg dry		30.0		100	70-130		
Surrogate: Toluene-d8	29.5		μg/kg dry		30.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.8		μg/kg dry		30.0		93	70-130		
Surrogate: Dibromofluoromethane	29.5		μg/kg dry		30.0		98	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 lug	Oma	KDL	Level	resuit	70KEC	Limits	IG D	Limit
Satch 9060992 - SW846 3545A										
Blank (9060992-BLK1)										
Prepared: 12-Jun-09 Analyzed: 23-Jun-09										
Acenaphthene	BRL		μg/kg wet	33.2						
Acenaphthylene	BRL		μg/kg wet	33.2						
Anthracene	BRL		μg/kg wet	33.2						
Benzo (a) anthracene	BRL		μg/kg wet	33.2						
Benzo (a) pyrene	BRL		μg/kg wet	33.2						
Benzo (b) fluoranthene	BRL		μg/kg wet	33.2						
Benzo (g,h,i) perylene	BRL		μg/kg wet	33.2						
Benzo (k) fluoranthene	BRL		μg/kg wet	33.2						
Chrysene	BRL		μg/kg wet	33.2						
Dibenzo (a,h) anthracene	BRL		μg/kg wet	33.2						
Fluoranthene 	BRL		μg/kg wet	33.2						
Fluorene	BRL		μg/kg wet	33.2						
Indeno (1,2,3-cd) pyrene	BRL		μg/kg wet	33.2						
1-Methylnaphthalene	BRL		μg/kg wet	33.2						
2-Methylnaphthalene	BRL		μg/kg wet	33.2						
Naphthalene	BRL		μg/kg wet	33.2						
Phenanthrene -	BRL		μg/kg wet	33.2						
Pyrene	BRL		μg/kg wet	33.2				/		
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	1190 1080		μg/kg wet μg/kg wet		1670 1670		72 65	30-130 30-130		
			P33							
<u>.CS (9060992-BS1)</u>										
Prepared: 12-Jun-09 Analyzed: 23-Jun-09										
Acenaphthene	1230		μg/kg wet	33.2	1670		74	40-140		
Acenaphthylene	1260		μg/kg wet	33.2	1670		76	40-140		
Anthracene	1360		μg/kg wet	33.2	1670		81	40-140		
Benzo (a) anthracene	1260		μg/kg wet	33.2	1670		76	40-140		
Benzo (a) pyrene	1370		μg/kg wet	33.2	1670		82	40-140		
Benzo (b) fluoranthene	1160		μg/kg wet	33.2	1670		70	40-140		
Benzo (g,h,i) perylene	1380		μg/kg wet	33.2	1670		83	40-140		
Benzo (k) fluoranthene	1520		μg/kg wet	33.2	1670		91	40-140		
Chrysene	1240		μg/kg wet	33.2	1670		74	40-140		
Dibenzo (a,h) anthracene	1440		μg/kg wet	33.2	1670		86	40-140		
	1450		μg/kg wet	33.2	1670		87	40-140		
Fluorene	1290		μg/kg wet	33.2	1670		77	40-140		
Fluorene Indeno (1,2,3-cd) pyrene	1290 1370		μg/kg wet μg/kg wet	33.2 33.2	1670 1670		77 82	40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene	1290 1370 1230		µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2	1670 1670 1670		77 82 74	40-140 40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene	1290 1370 1230 1610		µg/kg wet µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2 33.2	1670 1670 1670 1670		77 82 74 97	40-140 40-140 40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	1290 1370 1230 1610 1340		µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670		77 82 74 97 80	40-140 40-140 40-140 40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	1290 1370 1230 1610 1340 1310		µg/kg wet µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670		77 82 74 97 80 79	40-140 40-140 40-140 40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	1290 1370 1230 1610 1340 1310		µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670		77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140		
Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	1290 1370 1230 1610 1340 1310		µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670		77 82 74 97 80 79	40-140 40-140 40-140 40-140 40-140		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	1290 1370 1230 1610 1340 1310 1150	8-12	μg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670 1670		77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Duplicate (9060992-DUP1)	1290 1370 1230 1610 1340 1310 1150 1160 1030 Source: SA9607	8-12	μg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670 1670		77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130		
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	1290 1370 1230 1610 1340 1310 1150 1160 1030 Source: SA9607	8-12	μg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670 1670	BRL	77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130		50
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Duplicate (9060992-DUP1) Prepared: 12-Jun-09 Analyzed: 23-Jun-09 Acenaphthene	1290 1370 1230 1610 1340 1310 1150 1160 1030 Source: SA9607	8-12 J,QR4	μg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670 1670	BRL 427	77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130	60	50 50
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Duplicate (9060992-DUP1) Prepared: 12-Jun-09 Analyzed: 23-Jun-08 Acenaphthene Acenaphthylene	1290 1370 1230 1610 1340 1310 1150 1160 1030 Source: SA9607		μg/kg wet μg/kg dry μg/kg dry	33.2 33.2 33.2 33.2 33.2 33.2 33.2	1670 1670 1670 1670 1670 1670 1670		77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130	60 82	
Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Duplicate (9060992-DUP1) Prepared: 12-Jun-09 Analyzed: 23-Jun-09	1290 1370 1230 1610 1340 1310 1150 1160 1030 Source: SA9607	J,QR4	μg/kg wet	33.2 33.2 33.2 33.2 33.2 33.2 33.2 35.9	1670 1670 1670 1670 1670 1670 1670	427	77 82 74 97 80 79 69	40-140 40-140 40-140 40-140 40-140 40-140 30-130		50

Semivolatile Organic Compounds by GCMS - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
satch 9060992 - SW846 3545A										
Ouplicate (9060992-DUP1)	Source: SA96078	3-12								
repared: 12-Jun-09 Analyzed: 23-Ju	n-09									
Benzo (b) fluoranthene	1850		μg/kg dry	359		2770			40	50
Benzo (g,h,i) perylene	627	QM4	μg/kg dry	359		1320			71	50
Benzo (k) fluoranthene	1450	QM4	μg/kg dry	359		3300			78	50
Chrysene	1770	QM4	μg/kg dry	359		3240			59	50
Dibenzo (a,h) anthracene	BRL		μg/kg dry	359		302				50
Fluoranthene	3660	QM4	μg/kg dry	359		7610			70	50
Fluorene	BRL		μg/kg dry	359		BRL				50
ndeno (1,2,3-cd) pyrene	710	QM4	μg/kg dry	359		1410			66	50
1-Methylnaphthalene	BRL		μg/kg dry	359		BRL				50
2-Methylnaphthalene	BRL		μg/kg dry	359		BRL				50
Naphthalene	BRL		μg/kg dry	359		BRL				50
Phenanthrene	1200	QM4	μg/kg dry	359		2830			81	50
Pyrene	3230	QM4	μg/kg dry	359		5970			59	50
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	2530 2490		μg/kg dry μg/kg dry		3600 3600		70 69	30-130 30-130		
Matrix Spike (9060992-MS1)	Source: SA96078	3-12								
Matrix Spike (9060992-MS1) Prepared: 12-Jun-09 Analyzed: 24-Ju		3-12								
Prepared: 12-Jun-09 Analyzed: 24-Ju	n-09	3-12	ua/ka drv	365	3660	BRL	88	40-140		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene	n-09 3220	3-12 QR2	µg/kg dry ua/ka dry	365 365	3660 3660	BRL 5970	88 -0.3	40-140 40-140		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene	n-09 3220 5960		μg/kg dry	365 365	3660	BRL 5970	-0.3	40-140		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl	n-09 3220									
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	n-09 3220 5960 3000 2810	QR2	μg/kg dry μg/kg dry		3660 3660		-0.3 82	40-140 30-130		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1)	3220 5960 3000 2810 Source: SA96078	QR2	μg/kg dry μg/kg dry		3660 3660		-0.3 82	40-140 30-130		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju	3220 5960 3000 2810 Source: SA96078	QR2	µg/kg dry µg/kg dry µg/kg dry	365	3660 3660 3660	5970	-0.3 82 77	40-140 30-130 30-130	2	30
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene	3220 5960 3000 2810 Source: SA96078 n-09	QR2 3-12	µg/kg dry µg/kg dry µg/kg dry µg/kg dry	365 356	3660 3660 3660 3570	5970 BRL	-0.3 82 77 87	40-140 30-130 30-130 40-140	2 NP	30
Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyz	3220 5960 3000 2810 Source: SA96078 n-09 3100 6560	QR2	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	365	3660 3660 3660 3570	5970	-0.3 82 77 87 16	40-140 30-130 30-130 40-140 40-140	2 NR	30 30
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene	3220 5960 3000 2810 Source: SA96078 n-09	QR2 3-12	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	365 356	3660 3660 3660 3570	5970 BRL	-0.3 82 77 87	40-140 30-130 30-130 40-140		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene	3220 5960 3000 2810 Source: SA96078 n-09 3100 6560 2840 2600	QR2 3-12 QR2	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	365 356 356	3660 3660 3660 3570 3570 3570 3570	5970 BRL 5970	-0.3 82 77 87 16 79	40-140 30-130 30-130 40-140 40-140 30-130		
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene	3220 5960 3000 2810 Source: SA96078 n-09 3100 6560 2840 2600	QR2 3-12 QR2	μg/kg dry	365 356 356	3660 3660 3660 3570 3570 3570 3570	5970 BRL 5970	-0.3 82 77 87 16 79	40-140 30-130 30-130 40-140 40-140 30-130		
Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyz	3220 5960 3000 2810 Source: SA96078 n-09 3100 6560 2840 2600	QR2 3-12 QR2	μg/kg dry	365 356 356	3660 3660 3660 3570 3570 3570 3570 Quality Co	5970 BRL 5970	-0.3 82 77 87 16 79	40-140 30-130 30-130 40-140 40-140 30-130 30-130		30
Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Ju Acenaphthene Pyrene	3220 5960 3000 2810 Source: SA96070 n-09 3100 6560 2840 2600 General	QR2 3-12 QR2 ral Che	µg/kg dry	356 356 356	3660 3660 3660 3570 3570 3570 3570 Quality Co	BRL 5970 Introl	-0.3 82 77 87 16 79 73	40-140 30-130 30-130 40-140 40-140 30-130 30-130 %REC	NR	30
Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Analyte(s)	3220 5960 3000 2810 Source: SA96070 n-09 3100 6560 2840 2600 General	QR2 3-12 QR2 Tal Check	µg/kg dry	356 356 356	3660 3660 3660 3570 3570 3570 3570 Quality Co	BRL 5970 Introl	-0.3 82 77 87 16 79 73	40-140 30-130 30-130 40-140 40-140 30-130 30-130 %REC	NR	30
Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Matrix Spike Dup (9060992-MSD1) Prepared: 12-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 24-Jun-09 Analyzed: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Analyte(s) Batch 9061583 - General Preparation	3220 5960 3000 2810 Source: SA96078 100 6560 2840 2600 General	QR2 3-12 QR2 Tal Check	µg/kg dry	356 356 356	3660 3660 3660 3570 3570 3570 3570 Quality Co	BRL 5970 Introl	-0.3 82 77 87 16 79 73	40-140 30-130 30-130 40-140 40-140 30-130 30-130 %REC	NR	30

Notes and Definitions

CAL1 Analyte quantified by quadratic equation type calibration.

QM4 Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

QR4 Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted

based on LCS and/or LCSD QC results

R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Kim Wisk Nicole Leja

Report To: CEA

Concod, NH

CHAIN OF CUSTODY RECORI

Special Handling:
Special Handling:
Special Handling:
Special Handling:
A Standard TAT - 7 to 10 busin

ECORD	Rush TAT - Date Needed:
ECUND	· All TATs subject to laboratory approval.
	Min. 24-hour notification needed for rushes.
	 Samples disposed of after 60 days unless

west Beylston, wit	well 5T	Invoice To: CEA	Pageof
Location: Lundgrove State: UT	Site Name: Jeffices Residence	Project No.: RI-001-06	 Samples disposed of after 60 days unless otherwise instructed.

Water GW=Groundwater WW=Wastewater Surface Water SO=Soil SL=Sludge A=Air X2= G=Grab C=Composite G=Grab C=Composite Sample Id: Date: Time: Type Matrix Preservative H of VOA Vials H of Amber Glass # of Clear Glass # of Plastic Voc. 824 c Att 9370	Relinquished by: Relinquished	Date: Time: Type Matrix Preservative	Project Mgr.: Er.C	P.O. No.: P.O. N	HNO, 5=Na	P.O. No.: OH 6=Ascorbic	No.:			RQN: Conta	RQN:	25		<u>'</u>	Sampler(s): _ Ana	ler(s)	Analyses:	ss: Oil	170	- Taller		OA Reporting Notes:
Date: Time: C/8/67 1/200 Type	Composite Comp	Composite Date: Date: Time: Composite Comp	Drinking SW=	Water GW=Ground Surface Water SO= X2=	dwater WW Soil SL=Sh X3=	=Wastewater idge A=Air		ive			Glass	c	60	170						1		Derovide CT DPH RCP Report QA/QC Reporting Level
Date: Time: Type	Date: Time: Type	C/8/67 1/200 Type			omposite		45 F 85	1 6 5 5		7 61	lear	lastic	820	82					,	7		Other
6/8/67 11:00 6 50 MAR. 2-11 6/8/67 10:10 1 1 1 1 6/8/67 13:25 1 1 1 1	6/8/67 11:00 6 50 MAR 2-11 V C C 6/8/67 13:25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6/8/67 11:00 6 So MAR 2-11 V C C/8/67 13:25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample Id:	Date:	Time:	Section 1	1			# of C	# of P	VOC	PAH		2 2	-					State specific reporting standards:
6/8/07 13:25	6/8/67 13:25 1 1 1 2 2 V V V V V V V V V V V V V V V	6/8/67 13:25 1 1 1 2 2 V	0	B(mw)-4 7-9"	6/8/09	11:00				-			7	1			1 1					
6/8/07 13:25 1 1 1 1	6/8/67 13:25 V V V I I I I I I I I I I I I I I I I	6/8/67 13:25 V V V III	100	B(mes) - 4 20-221	6/9/07	10:10	_		2	4			1	1	2 7		300	1000				
	Relinquished by:	Relinquished by:	13	B(ww) -5-5-7'	6/8/07	13:25	-	+	-	-			1	1								
	Relinquished by:	Relinquished by: White Community of the Mark (3,6)															1 1 1					
	Relinquished by:	Relinquished by: Relinquished by: April 3,6								Ž.		22		2 ·								
	Relinquished by:	Relinquished by: Will \$690 (3,6)													, 'a,							
	Relinquished by:	e-Inc. com with the first (3,6)																				
	when available to ()	when available to ()						Rel	inqu	ished l	oy:					-	~	Lecive	Received by:	epeived by:	epeived by:	epeived by: Date:
Relinquished by:	100	PDF + Excel (1) (3,6)		when available to (· lwc .com		1	}	1	7					1	3	1-	3	3	1	1	61109

Report Date: 09-Sep-09 10:56

\checkmark	Final Report
_	Re-Issued Report
	Revised Report

HANIBAL TECHNOLOGY Laboratory Report

CEA, Inc 62B Hall Street Concord, NH 03301 Attn: Eric Johnson

Project: Jeffries Residence - Landgrove, VT

Project #: RI-0011-06

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA99960-01	MW-1	Ground Water	25-Aug-09 10:20	27-Aug-09 14:45
SA99960-02	MW-2	Ground Water	25-Aug-09 10:10	27-Aug-09 14:45
SA99960-03	MW-3	Ground Water	25-Aug-09 09:40	27-Aug-09 14:45
SA99960-04	MW-4	Ground Water	25-Aug-09 10:40	27-Aug-09 14:45
SA99960-05	MW-5	Ground Water	25-Aug-09 11:05	27-Aug-09 14:45
SA99960-06	MW-6	Ground Water	25-Aug-09 11:20	27-Aug-09 14:45
SA99960-07	MW-7	Ground Water	25-Aug-09 12:45	27-Aug-09 14:45
SA99960-08	RW-7	Ground Water	25-Aug-09 11:40	27-Aug-09 14:45
SA99960-09	PDW-1	Drinking Water	25-Aug-09 12:50	27-Aug-09 14:45
SA99960-10	Drain Line	Ground Water	25-Aug-09 08:15	27-Aug-09 14:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 58 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 2.3 degrees Celsius. The condition of these samples was further noted as refrigerated. The samples were transported on ice to the laboratory facility and the temperature was recorded at 1.8 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 524.2

Blanks:

9082038-BLK1

Analyte quantified by quadratic equation type calibration.

Naphthalene

Laboratory Control Samples:

9082038 LCS/LCSD

sec-Butylbenzene recoveries (124%/121%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

PDW-1

9082038-BS1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

sec-Butylbenzene

Analyte quantified by quadratic equation type calibration.

Naphthalene

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

1,1,2-Trichlorotrifluoroethane (Freon 113)

4-Isopropyltoluene

Bromoform

o-Xylene

tert-Butylbenzene

9082038-BSD1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

sec-Butylbenzene

Analyte quantified by quadratic equation type calibration.

Naphthalene

EPA 524.2

Samples:

S908236-CCV1

Analyte quantified by quadratic equation type calibration.

Naphthalene

SA99960-09

PDW-1

Analyte quantified by quadratic equation type calibration.

Naphthalene

SW846 8260B

SW846 8260B

Laboratory Control Samples:

9082064 LCS/LCSD

1,2-Dibromo-3-chloropropane recoveries (58%/46%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias: MW-1 MW-2 MW-3 MW-4
1,3-Dichlorobenzene recoveries (139%/138%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-1 MW-2 MW-3 MW-4
Bromobenzene recoveries (140%/142%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-1 MW-2 MW-3 MW-4
trans-1,3-Dichloropropene recoveries (68%/69%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias: MW-1 MW-2 MW-3 MW-4
trans-1,4-Dichloro-2-butene recoveries (66%/64%) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias: MW-1 MW-2 MW-3 MW-4
9082064-BS1
Analyte out of acceptance range in QC spike but no reportable concentration present in sample. 1,2-Dibromo-3-chloropropane 1,3-Dichlorobenzene Bromobenzene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene
The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits. Bromochloromethane

SW846 8260B

Laboratory Control Samples:

9082064-BSD1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

1,2-Dibromo-3-chloropropane

1,3-Dichlorobenzene

Bromobenzene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

9090031-BS1

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

1,1,2-Trichlorotrifluoroethane (Freon 113)

1,2-Dibromo-3-chloropropane

2-Butanone (MEK)

Acetone

Ethanol

Samples:

S908292-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

1,2-Dibromo-3-chloropropane

1,3-Dichlorobenzene

Bromobenzene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

This affected the following samples:

MW-1

MW-2

MW-3

MW-4

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	d by method SW846 5030 Water	MS									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fr 113)	eoiBRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Χ
67-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	X
107-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
74-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	X
75-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	X
75-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	X
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	X
104-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
135-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
98-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
75-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	X
56-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	X
108-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
75-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	X
67-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	X
74-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	X
95-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	X
124-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	X
74-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	X
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
75-71-8	Dichlorodifluoromethane (Freon1	12) BRL		μg/l	2.0	1	"	"	"	"	X
75-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
107-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
75-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
78-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
142-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
594-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
563-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	X
10061-01-5		BRL		μg/l	0.5	1	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	X
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
87-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	X
591-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	u u	"	Χ
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	u u	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	II .	"	"	Χ
91-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	u u	"	Χ
103-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
	Organic Compounds										
Prepared	d by method SW846 5030 Water M	1S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	u u	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	u u	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	u u	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	u u	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	u u	"	"	"	Χ
179601-23-	-1m,p-Xylene	BRL		μg/l	2.0	1	u u	u u	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	u u	u	"	"	Х
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	u u	u u	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	u u	u	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	u u	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	u u	u	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	u u	"	"	Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:										
160-00-4	4-Bromofluorobenzene	104		70-13	30 %		"	"	"	"	
2037-26-5	Toluene-d8	95		70-13	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	89		70-13	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	97		70-13	30 %		"	"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
	d by method SW846 3510C										
33-32-9	Acenaphthene	BRL		μg/l	5.95	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
208-96-8	Acenaphthylene	BRL		μg/l	5.95	1	"		"	"	Х
120-12-7	Anthracene	BRL		μg/l	5.95	1	"	"	"	"	X
56-55-3	Benzo (a) anthracene	BRL		μg/l	5.95	1	"	"	"		X
50-32-8	Benzo (a) pyrene	BRL		μg/l	5.95	1	"	"	"	"	X
205-99-2	Benzo (b) fluoranthene	BRL		μg/l	5.95	1	"	u u	"	"	Х
191-24-2	, ,	BRL		μg/l	5.95	1	"		"		X
207-08-9	Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL		μg/l	5.95	1	"	"	"	"	X
218-01-9	Chrysene	BRL		μg/l	5.95	1	"	"	"	"	X
53-70-3	•	BRL		μg/l	5.95	1	"	"	"		X
206-44-0	Dibenzo (a,h) anthracene	BRL		μg/l	5.95	1	"	"	"		X
36-73-7	Fluoranthene	BRL		μg/l	5.95	1		"	"		X
193-39-5	Fluorene	BRL		μg/l	5.95	1	"		"		X
90-12-0	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.95	1	"		"		^
	1-Methylnaphthalene								"		V
91-57-6	2-Methylnaphthalene	BRL		μg/l	5.95	1		•			Χ

Sample Identification MW-1 SA99960-01

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	S									
PAHs by	SW846 8270C										
Prepared	by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	5.95	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.95	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.95	1	"	"	"	"	Х
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	68		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	53		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	l by method SW846 5030 Water N	1S									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	X
7-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	>
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	>
-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	>
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	>
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1		"	"	"	>
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0	1	"	"	"	"	>
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1		"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	n n	"	"	"	>
12-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1		"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	n .	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	n .	"	"	"	>
0-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
'-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	>
1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	"	>
34-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	>
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	>
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	X
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	п	"	"		>

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:10

Volatile O			Flag		*RDL	Dilution	Method Ref.	Prepared		Duten	Cert
	rganic Compounds										
Volatile O	rganic Compounds										
Prepared	by method SW846 5030 Water M	1S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Χ
630-20-6	1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
179601-23-1	m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
64-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
Surrogate	recoveries:										
160-00-4	4-Bromofluorobenzene	101		70-13	30 %		"	"	"	"	
	Toluene-d8	97		70-13	30 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	102		70-13	30 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	100		70-13	30 %		"	"	"	"	
Semivolat	ile Organic Compounds by GCMS										
	SW846 8270C										
-	by method SW846 3510C										
33-32-9	Acenaphthene	BRL		μg/l	5.21	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
208-96-8	Acenaphthylene	BRL		μg/l	5.21	1	"	zo nag oo	"	"	Х
120-12-7	Anthracene	BRL		μg/l	5.21	1		"	"	"	Х
56-55-3	Benzo (a) anthracene	BRL		μg/l	5.21	1	"				Х
50-33-8	Benzo (a) pyrene	BRL		μg/l	5.21	1		"	"	"	X
205-99-2	Benzo (b) fluoranthene	BRL		μg/l	5.21	1		"	"	"	Х
91-24-2	, ,	BRL		μg/l	5.21	1	"				Х
207-08-9	Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL		μg/l	5.21	1	"	"	"	"	X
218-01-9	Chrysene	BRL		μg/l	5.21	1	"	II.	"		X
53-70-3	•	BRL		μg/l	5.21	1	"	II.	"		X
206-44-0	Dibenzo (a,h) anthracene	BRL		μg/l	5.21	1	"	"			X
.00 -1-1-0	Fluoranthene	BRL		μg/l μg/l	5.21	1	"	"			X
86 73 7	Fluorene				5.21				"		
	Indone (1.2.2 ad) numero	RRI									
36-73-7 193-39-5 90-12-0	Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene	BRL BRL		μg/l μg/l	5.21	1 1					Х

Sample Identification MW-2 SA99960-02

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	5.21	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
85-01-8	Phenanthrene	BRL		μg/l	5.21	1	"	"	"	"	Х
129-00-0	Pyrene	BRL		μg/l	5.21	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	59		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	44		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cei
olatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	d by method SW846 5030 Water M	1S									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Х
7-64-1	113) Acetone	BRL		μg/l	10.0	1	п	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	>
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	>
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	>
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	")
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	")
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	")
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	")
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	")
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	")
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	")
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	")
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	")
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	")
0-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	")
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	")
1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	")
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	")
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	")
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"		>
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	п	"	"	"	,
1-20-3	Naphthalene	BRL		μg/l	1.0	1	n .	"	"	"	>
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	n n		"		>

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds										
/olatile (Organic Compounds										
Prepared	l by method SW846 5030 Water M	IS									
00-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Х
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	X
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	X
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	п	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
5-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
)-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	u u	"	Х
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	u u	"	Х
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	u u	"	Х
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	u u	"	Х
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	H .	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	u u	"	Х
4-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	104		70-13	80 %		"	"	"	"	
037-26-5	Toluene-d8	98		70-13	80 %		"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	102		70-13	80 %		"	"	"	"	
868-53-7	Dibromofluoromethane	101		70-13	80 %		"	"	u u	"	
emivola	tile Organic Compounds by GCMS										
AHs by	SW846 8270C										
	by method SW846 3510C										
3-32-9	Acenaphthene	BRL		μg/l	5.26	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
08-96-8	Acenaphthylene	BRL		μg/l	5.26	1		"	"	"	Х
20-12-7	Anthracene	BRL		μg/l	5.26	1	п		"	"	Х
6-55-3	Benzo (a) anthracene	BRL		μg/l	5.26	1		"	"	"	Х
0-32-8	Benzo (a) pyrene	BRL		μg/l	5.26	1	"	п	"		X
05-99-2	Benzo (a) pyrene Benzo (b) fluoranthene	BRL		μg/l	5.26	1	"	u u	"		X
91-24-2	` '	BRL		μg/l	5.26	1	"	"	"		X
07-08-9	Benzo (g,h,i) perylene	BRL		μg/l μg/l	5.26	1	"	"	"		X
	Benzo (k) fluoranthene	BRL			5.26	1	п		"		X
18-01-9	Chrysene			µg/l				"	"		
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	5.26	1	"				X
06-44-0	Fluoranthene	BRL		µg/l	5.26	1	u				X
6-73-7	Fluorene	BRL		µg/l	5.26	1					X
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l "	5.26	1					Х
0-12-0	1-Methylnaphthalene	BRL		μg/l	5.26	1	"	"			
1-57-6	2-Methylnaphthalene	BRL		μg/l	5.26	1	"	"	"	"	>

Sample Identification MW-3 SA99960-03

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	y GCMS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3510	С									
91-20-3	Naphthalene	BRL		μg/l	5.26	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.26	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.26	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	59		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	47		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cei
olatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	l by method SW846 5030 Water N	1S									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Х
7-64-1	113) Acetone	BRL		μg/l	10.0	1	п	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	>
1-43-2	Benzene	1.2		μg/l	1.0	1	"	"	"	"	>
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	")
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	")
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	2.2		μg/l	1.0	1	"	"	"	"	>
35-98-8	sec-Butylbenzene	3.7		μg/l	1.0	1	"	"	"	"	>
3-06-6	tert-Butylbenzene	2.2		μg/l	1.0	1	"	"	"	")
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	")
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	")
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	,
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	")
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	")
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	")
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	")
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	")
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1		"	"	")
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	")
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	,
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1		"	"	")
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	,
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	")
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	n n	"	"	")
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1		"	"	")
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	")
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	п	"	"	")
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	n .	"	"	")
00-41-4	Ethylbenzene	23.2		μg/l	1.0	1	"	"	"	")
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	")
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	")
3-82-8	Isopropylbenzene	8.2		μg/l	1.0	1	"	"	"	")
9-87-6	4-Isopropyltoluene	1.8		μg/l	1.0	1	"	"	"	")
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	")
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	")
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	")
1-20-3	Naphthalene	59.6		μg/l	1.0	1	"	"	"	"	>
03-65-1	n-Propylbenzene	11.4		μg/l	1.0	1	п	"	"	"	>

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	d by method SW846 5030 Water M	1S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	28-Aug-09	29-Aug-09	9082064	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	X
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	n n	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	46.5		μg/l	1.0	1	"	n n	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	18.0		μg/l	1.0	1	"	n n	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	u u	"	"	"	Χ
79601-23-	-1m,p-Xylene	12.5		μg/l	2.0	1		"	"	"	Χ
5-47-6	o-Xylene	24.8		μg/l	1.0	1	"	"	"	"	Χ
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1		"	"	"	
0-29-7	Ethyl ether	BRL		μg/l	1.0	1		"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	u u	"	"	"	Χ
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1		"	"	"	Х
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1		"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1		"	"	"	Х
4-17-5	Ethanol	BRL		μg/l	400	1	u u	"	"	"	Х
Surrogate	recoveries:										
160-00-4	4-Bromofluorobenzene	109		70-13	30 %			"	"	"	
	Toluene-d8	98		70-13				"	"	"	
	1,2-Dichloroethane-d4	104		70-13			u u	"	"	"	
	Dibromofluoromethane	101		70-13				"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
-	d by method SW846 3510C										
3-32-9	•	BRL		μg/l	5.26	1	SW846 8270C	28_Aug_00	30-Aug-09	9082016	Х
	Acenaphthene	BRL		μg/l	5.26	1	"	20-Aug-03	"	"	X
08-96-8 20-12-7	Acenaphthylene	BRL			5.26	1	"	"			X
20-12-7	Anthracene	BRL		μg/l	5.26	1	"	"	"		X
6-55-3	Benzo (a) anthracene	BRL		μg/l μg/l	5.26	1	"		"		X
0-32-8	Benzo (a) pyrene	BRL			5.26	1	"	"	"		X
05-99-2	Benzo (b) fluoranthene	BRL		μg/l	5.26	1	"	"	"		X
91-24-2	Benzo (g,h,i) perylene			μg/l	5.26	1	"		"		X
07-08-9	Benzo (k) fluoranthene	BRL		μg/l			"	"	"		
18-01-9	Chrysene	BRL		μg/l	5.26	1					X
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	5.26	1		"			X
06-44-0	Fluoranthene	BRL		μg/l	5.26	1					X
6-73-7	Fluorene	BRL		μg/l	5.26	1				"	X
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.26	1		"		"	Х
0-12-0	1-Methylnaphthalene	19.5		μg/l	5.26	1	"				
1-57-6	2-Methylnaphthalene	15.9		μg/l	5.26	1	"	"	"	"	Χ

Sample Identification MW-4 SA99960-04

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 10:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	y GCMS									
PAHs by	/ SW846 8270C										
Prepared	d by method SW846 3510	C									
91-20-3	Naphthalene	15.1		μg/l	5.26	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.26	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.26	1	"	"	"	"	Χ
Surrogate	e recoveries:										
321-60-8	2-Fluorobiphenyl	67		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	53		30-13	30 %		u	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	l by method SW846 5030 Water M	1S									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	X
7-64-1	113) Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	u u	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	u u	"	"	"	X
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	u u	"	"	"	X
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	u u	"	"	"	X
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	1.8		μg/l	1.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	3.7		μg/l	1.0	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	2.0		μg/l	1.0	1	u u	"	"	"	>
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	u u	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	u u	"	"	"	>
7-66-3	Chloroform	BRL		μg/l	1.0	1	u u	"	"	"	>
-87-3	Chloromethane	BRL		μg/l	2.0	1	u u	"	"	"	>
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	u u	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	u u	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	u u	"	"	"	>
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	u u	"	"	"	>
1-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	>
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	>
5-71-8	Dichlorodifluoromethane (Freon12)			μg/l	2.0	1	u u	"	"	"	>
5-34-3	1,1-Dichloroethane	, BRL		μg/l	1.0	1	u u	"	"	"	>
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
12-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
3-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	u u	"	"	"	>
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	>
0-41-4	Ethylbenzene	4.0		μg/l	1.0	1	"	"	"	"	>
'-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	>
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"		>
3-82-8	Isopropylbenzene	4.4		μg/l	1.0	1	"	"	"	"	X
9-87-6	4-Isopropyltoluene	3.2		μg/l	1.0	1	u u	"	"	"	>
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	u u	"	"	"	Х
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	u u	"	"	"	>
1-20-3	Naphthalene	18.4		μg/l	1.0	1	"	"	"	"	>
03-65-1	n-Propylbenzene	6.6		μg/l	1.0	1			"		Х

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	d by method SW846 5030 Water N	/IS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	4.4		μg/l	1.0	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	18.7		μg/l	1.0	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
179601-23-	-1m,p-Xylene	5.3		μg/l	2.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BRL		μg/l	1.0	1		"	"	u u	Х
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	u u	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1		"	"	u u	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	"	II .	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	107		70-13	30 %			"	"	"	
	Toluene-d8	101		70-13				"	"	"	
	1,2-Dichloroethane-d4	89		70-13			u u	"	"	"	
	Dibromofluoromethane	97		70-13				"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
-	d by method SW846 3510C										
33-32-9	•	BRL		μg/l	6.49	1	SW846 8270C	28_Aug_00	30-Aug-09	9082016	Х
208-96-8	Acenaphthene	BRL		μg/l	6.49	1	"	20-Aug-03	"	"	X
	Acenaphthylene	BRL			6.49	1	"	"	"		X
120-12-7	Anthracene			μg/l		1	"		"		X
56-55-3 50 22 9	Benzo (a) anthracene	BRL BRL		μg/l μg/l	6.49 6.49	1	"	"	"		X
50-32-8 205-99-2	Benzo (a) pyrene	BRL			6.49	1	"	"	"		X
	Benzo (b) fluoranthene			μg/l		1	"		"		
191-24-2	Benzo (g,h,i) perylene	BRL		μg/l	6.49		"		"		X
207-08-9	Benzo (k) fluoranthene	BRL		μg/l	6.49	1					X
218-01-9	Chrysene	BRL		μg/l	6.49	1					X
53-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	6.49	1		"		"	X
206-44-0	Fluoranthene	BRL		μg/l	6.49	1		"	"	"	X
36-73-7	Fluorene	BRL		μg/l	6.49	1		"		"	X
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	6.49	1		"	"	"	Х
90-12-0	1-Methylnaphthalene	BRL		μg/l	6.49	1	"				
91-57-6	2-Methylnaphthalene	BRL		μg/l	6.49	1	"	"	"	"	Χ

Sample Identification MW-5 SA99960-05

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS									
PAHs by	SW846 8270C										
Prepared	by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	6.49	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
85-01-8	Phenanthrene	BRL		μg/l	6.49	1	"	"	"	"	Х
129-00-0	Pyrene	BRL		μg/l	6.49	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	67		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	47		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	l by method SW846 5030 Water M	1S									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	5.0	5	SW846 8260B	01-Sep-09	01-Sep-09	9090031	Х
7-64-1	113) Acetone	BRL		μg/l	50.0	5	"	"	"		Х
07-13-1	Acrylonitrile	BRL		μg/l	2.5	5	"	"	"		X
1-43-2	Benzene	17.6		μg/l	5.0	5	"	"	"		X
08-86-1	Bromobenzene	BRL		μg/l	5.0	5	"	"	"	"	,
4-97-5	Bromochloromethane	BRL		μg/l	5.0	5	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	2.5	5					X
5-25-2	Bromoform	BRL		μg/l	5.0	5	"	"	"	"	>
1-83-9	Bromomethane	BRL		μg/l	10.0	5					X
3-93-3	2-Butanone (MEK)	BRL		μg/l	50.0	5					X
04-51-8	n-Butylbenzene	9.4		μg/l	5.0	5					Х
35-98-8	sec-Butylbenzene	14.2		μg/l	5.0	5	"	"	"	"	Х
3-06-6	tert-Butylbenzene	6.0		μg/l	5.0	5					X
5-15-0	Carbon disulfide	BRL		μg/l	25.0	5					>
6-23-5	Carbon tetrachloride	BRL		μg/l	5.0	5					>
08-90-7	Chlorobenzene	BRL		μg/l	5.0	5	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	10.0	5					>
7-66-3	Chloroform	BRL		μg/l	5.0	5					>
-87-3	Chloromethane	BRL		μg/l	10.0	5					>
-49-8	2-Chlorotoluene	BRL		μg/l	5.0	5	п		"	"	
6-43-4	4-Chlorotoluene	BRL		μg/l	5.0	5					
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	10.0	5	п	"	"	"	>
24-48-1	Dibromochloromethane	BRL		μg/l	2.5	5					>
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	2.5	5	п	"	"	"	>
-95-3	Dibromomethane	BRL		μg/l	5.0	5	п	"	"	"	>
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	5.0	5	п	"	"	"	>
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	5.0	5					>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	5.0	5	п		"	"	>
5-71-8	Dichlorodifluoromethane (Freon12)			μg/l	10.0	5					>
5-34-3	1,1-Dichloroethane	BRL		μg/l	5.0	5					>
7-06-2	1,2-Dichloroethane	BRL		μg/l	5.0	5					>
5-35-4	1,1-Dichloroethene	BRL		μg/l	5.0	5	п	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	5.0	5	п		"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	5.0	5	п	"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	5.0	5	"	"	"	"	>
12-28-9	1,3-Dichloropropane	BRL		μg/l	5.0	5	"	"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	5.0	5	п	"	"	"	>
3-58-6	1,1-Dichloropropene	BRL		μg/l	5.0	5	п		"	"	>
	cis-1,3-Dichloropropene	BRL		μg/l	2.5	5	"	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	2.5	5	"	"	"		>
0-41-4	Ethylbenzene	68.1		μg/l	5.0	5	"	"	"		>
'-68-3	Hexachlorobutadiene	BRL		μg/l	2.5	5	п	"	"		>
1-78-6	2-Hexanone (MBK)	BRL		μg/l	50.0	5		"	"		>
3-82-8	Isopropylbenzene	26.4		μg/l	5.0	5		"	"		X
9-87-6	4-Isopropyltoluene	9.8		μg/l	5.0	5	п	"	"		>
34-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	5	п	"	"		>
8-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	50.0	5	п	"	"		>
5-09-2	Methylene chloride	BRL		μg/l	25.0	5		"			>
-20-3	Naphthalene	155		μg/l	5.0	5	"	"	"	"	>
	TABLETTE			r-3′'	5.0	-					,

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
/olatile (Organic Compounds										
repared	d by method SW846 5030 Water M	1S									
00-42-5	Styrene	BRL		μg/l	5.0	5	SW846 8260B	01-Sep-09	01-Sep-09	9090031	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	5.0	5	m .	"	"	"	X
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	2.5	5	"	"	"	"	Χ
27-18-4	Tetrachloroethene	BRL		μg/l	5.0	5	m .	"	"	"	Χ
08-88-3	Toluene	BRL		μg/l	5.0	5	m .	"	"	"	Χ
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	5.0	5	m .	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	5.0	5	m .	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	5.0	5	m .	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	5.0	5	"	"	"	"	Χ
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	5.0	5	"	"	"	"	Χ
9-01-6	Trichloroethene	BRL		μg/l	5.0	5	m .	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	5.0	5	"	"	"	"	Χ
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	5.0	5	"	u u	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	245		μg/l	5.0	5	"	u u	u u	"	Χ
08-67-8	1,3,5-Trimethylbenzene	74.2		μg/l	5.0	5	"	"	"	"	Χ
5-01-4	Vinyl chloride	BRL		μg/l	5.0	5	"	u u	"	"	Χ
79601-23-	¹ m,p-Xylene	97.4		μg/l	10.0	5	"	u u	u u	"	Χ
5-47-6	o-Xylene	78.9		μg/l	5.0	5	"	u u	u u	"	Χ
09-99-9	Tetrahydrofuran	BRL		μg/l	50.0	5	"	u u	"	"	
0-29-7	Ethyl ether	BRL		μg/l	5.0	5	"	u u	u u	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	5.0	5	u u	u u	"	"	Χ
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	5.0	5	u u	u u	"	"	Χ
08-20-3	Di-isopropyl ether	BRL		μg/l	5.0	5	"	u u	u u	"	Χ
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	50.0	5	"	"	"	"	Χ
23-91-1	1,4-Dioxane	BRL		μg/l	100	5	"	"	"	"	Χ
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	25.0	5	"	u u	u u	"	Χ
4-17-5	Ethanol	BRL		μg/l	2000	5	"	u u	u u	"	Х
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	100		70-13	30 %		"	"	"	"	
	Toluene-d8	101		70-13	30 %		"	"	"	"	
	1,2-Dichloroethane-d4	87		70-13			"	"	"	"	
	Dibromofluoromethane	100		70-13	30 %		"	"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
-	by method SW846 3510C										
•	•	BRL		μg/l	5.21	1	SW846 8270C	28_Aug_00	30-Aug-09	9082016	Х
3-32-9 na-96-a	Acenaphthylana	BRL		μg/l	5.21	1	30040 62700	20-Aug-09	"	"	X
08-96-8	Acenaphthylene	BRL			5.21	1	"		"	"	X
20-12-7	Anthracene	BRL		μg/l	5.21	1	"	"	"	"	X
6-55-3	Benzo (a) anthracene	BRL		μg/l μg/l	5.21	1	"		"	"	X
0-32-8	Benzo (a) pyrene	BRL			5.21	1	"		"	"	X
05-99-2	Benzo (b) fluoranthene			μg/l	5.21	1	"	"	"	"	X
91-24-2	Benzo (g,h,i) perylene	BRL		μg/l	5.21	1	"	"			X
07-08-9	Benzo (k) fluoranthene	BRL		μg/l			"	"	"	"	
18-01-9	Chrysene	BRL		μg/l	5.21	1					X
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	5.21	1					X
06-44-0	Fluoranthene	BRL		μg/l	5.21	1					X
6-73-7	Fluorene	6.00		μg/l	5.21	1					X
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.21	1					Х
0-12-0	1-Methylnaphthalene	50.4		μg/l 	5.21	1					
1-57-6	2-Methylnaphthalene	60.0		μg/l	5.21	1	"	"	"	"	Х

Sample Identification MW-6 SA99960-06

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	ntile Organic Compounds by	y GCMS									
PAHs by	/ SW846 8270C										
Prepare	d by method SW846 3510	C									
91-20-3	Naphthalene	64.2		μg/l	5.21	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
85-01-8	Phenanthrene	5.40		μg/l	5.21	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.21	1	"	H .	"	"	Χ
Surrogate	e recoveries:										
321-60-8	2-Fluorobiphenyl	63		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	46		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 12:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
/olatile C	Organic Compounds										
Prepared	l by method SW846 5030 Water M	1S									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	Χ
7.04.4	113)	DDI		ua/l	10.0	1	"	"			Х
67-64-1 107-13-1	Acetone	BRL BRL		μg/l	10.0 0.5	1	"	"			X
	Acrylonitrile	BRL		μg/l	1.0	1		"	"		X
1-43-2	Benzene	BRL		μg/l μg/l	1.0	1	п				^
08-86-1 4-97-5	Bromobenzene	BRL		μg/l	1.0	1	п				Х
5-27-4	Bromochloromethane	BRL		μg/l	0.5	1	п				X
5-25-2	Bromodichloromethane	BRL		μg/l	1.0	1	п				X
4-83-9	Bromoform	BRL		μg/l	2.0	1	"				X
8-93-3	Bromomethane	BRL		μg/l	10.0	1	"				X
04-51-8	2-Butanone (MEK)	BRL		μg/l	1.0	1	"	"	"	"	X
35-98-8	n-Butylbenzene	BRL		μg/l	1.0	1	"				X
8-06-6	sec-Butylbenzene tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"		X
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"		X
6-23-5	Carbon distillide Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"		X
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"		X
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	X
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	X
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1			"		
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"		"		
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1			"		Х
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1			"		Х
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	п	"	"		Х
4-95-3	Dibromomethane	BRL		μg/l	1.0	1	п	"	"		Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1			"		Х
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1			"		Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	"		Х
5-71-8	Dichlorodifluoromethane (Freon12)			μg/l	2.0	1	п	"	"		Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	п	"	"	"	X
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	п	"	"	"	X
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	n .	u u	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	n .	u u	"	"	Х
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	n .	u u	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	n n	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	"	Х
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	n n	"	"	Х
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	Х
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1					Х

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 12:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile C	Organic Compounds										
	Organic Compounds										
repared	d by method SW846 5030 Water M	1S									
00-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	Х
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	u u	"	"	Х
9-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	u u	"	"	
)-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
)8-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
1-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	104		70-13	30 %		"		"		
	Toluene-d8	99		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	87		70-13			"	"	"	"	
	Dibromofluoromethane	97		70-13			"	"	"	"	
	tile Organic Compounds by GCMS	3 7		70 70	70						
	0 1										
	SW846 8270C										
	d by method SW846 3510C	DDI			F 20	4	CIMO 4C 0070C	20 4 00	20 4 00	0000040	V
3-32-9	Acenaphthene	BRL		μg/l	5.32	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	X
08-96-8	Acenaphthylene	BRL		μg/l 	5.32	1					X
20-12-7	Anthracene	BRL		μg/l 	5.32	1	"				X
6-55-3	Benzo (a) anthracene	BRL		μg/l 	5.32	1					X
0-32-8	Benzo (a) pyrene	BRL		μg/l	5.32	1	"	"			X
05-99-2	Benzo (b) fluoranthene	BRL		μg/l	5.32	1	"	"	"	"	Х
91-24-2	Benzo (g,h,i) perylene	BRL		μg/l	5.32	1	"	"	"	"	Х
07-08-9	Benzo (k) fluoranthene	BRL		μg/l	5.32	1	"	"	"	"	Х
18-01-9	Chrysene	BRL		μg/l	5.32	1	"	"	"	"	Х
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	5.32	1	"	"	"	"	X
06-44-0	Fluoranthene	BRL		μg/l	5.32	1	"	"	"	"	Х
6-73-7	Fluorene	BRL		μg/l	5.32	1	"	"	"	"	Х
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.32	1	"	"	"	"	Х
0-12-0	1-Methylnaphthalene	BRL		μg/l	5.32	1	"	"	"	"	
1-57-6	2-Methylnaphthalene	BRL		μg/l	5.32	1					Х

Sample Identification MW-7 SA99960-07

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 12:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	y GCMS									
PAHs by	/ SW846 8270C										
Prepared	d by method SW846 3510	С									
91-20-3	Naphthalene	BRL		μg/l	5.32	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.32	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.32	1	u	"	"	"	Χ
Surrogate	e recoveries:										
321-60-8	2-Fluorobiphenyl	63		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	55		30-13	30 %		n n	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds										
Volatile C	Organic Compounds										
Prepared	by method SW846 5030 Water M	1S									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_{of} BRL		μg/l	1.0	1	SW846 8260B	02-Sep-09	03-Sep-09	9090025	Х
67-64-1	Acetone	16.1		μg/l	10.0	1	"	"	"	"	Χ
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	u u	"	"	Χ
71-43-2	Benzene	24.2		μg/l	1.0	1	"	u	"	"	Χ
108-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Χ
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	2.8		μg/l	1.0	1	"	"	"	"	Х
135-98-8	sec-Butylbenzene	3.8		μg/l	1.0	1	"	"	"	"	Х
98-06-6	tert-Butylbenzene	2.8		μg/l	1.0	1	"	"	"	"	Х
75-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
108-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Χ
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	Х
4-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0	1	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	Х
00-41-4	Ethylbenzene	39.1		μg/l	1.0	1	"	"	"	"	Χ
37-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
98-82-8	Isopropylbenzene	10.6		μg/l	1.0	1	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	3.0		μg/l	1.0	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	Х
91-20-3	Naphthalene	103		μg/l	1.0	1	"	"	"	"	Х
103-65-1	n-Propylbenzene	13.0		μg/l	1.0	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
/olatile (Organic Compounds										
repared	by method SW846 5030 Water M	1S									
00-42-5	Styrene	1.0		μg/l	1.0	1	SW846 8260B	02-Sep-09	03-Sep-09	9090025	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-88-3	Toluene	1.3		μg/l	1.0	1	"	"	"	"	Χ
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-63-6	1,2,4-Trimethylbenzene	141		μg/l	1.0	1	"	"	"	"	Χ
08-67-8	1,3,5-Trimethylbenzene	45.6		μg/l	1.0	1	"	"	"	"	Χ
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
79601-23-	¹ m,p-Xylene	69.5		μg/l	2.0	1	"	"	"	"	Χ
5-47-6	o-Xylene	115		μg/l	1.0	1	"	"	"	"	Χ
09-99-9	Tetrahydrofuran	32.4		μg/l	10.0	1	"	"	"	"	
0-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	u u	"	"	"	Χ
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	u u	"	"	"	Χ
4-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	110		70-13	30 %		"	"	"	"	
037-26-5	Toluene-d8	104		70-13	30 %		"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	102		70-13	30 %		"	"	"	"	
868-53-7	Dibromofluoromethane	108		70-13	30 %		"	"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
	by method SW846 3510C										
3-32-9	•	BRL		μg/l	83.3	5	SW846 8270C	28-Aug-09	31-Aug-09	9082016	Х
08-96-8	Acenaphthene	BRL		μg/l	83.3	5	"	20-Aug-03	"	"	X
20-12-7	Acenaphthylene	BRL		μg/l	83.3	5	"	"	"	"	X
6-55-3	Anthracene	BRL			83.3	5		"	"		X
	Benzo (a) anthracene	BRL		μg/l μg/l	83.3	5	"	"	"	"	X
0-32-8 05-99-2	Benzo (a) pyrene	BRL			83.3	5		"	"		X
	Benzo (b) fluoranthene			μg/l				"	"		X
91-24-2	Benzo (g,h,i) perylene	BRL		μg/l	83.3 83.3	5 5	"		"		X
07-08-9	Benzo (k) fluoranthene	BRL BRL		μg/l	83.3	5	"	"	"		X
18-01-9	Chrysene			μg/l			"	"	"		X
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	83.3	5	"				
06-44-0	Fluoranthene	BRL		μg/l	83.3	5		"	"	"	X
6-73-7	Fluorene	105 DDI		μg/l	83.3	5					X
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	83.3	5		"	"	"	Х
0-12-0	1-Methylnaphthalene	517		μg/l	83.3	5	"				
1-57-6	2-Methylnaphthalene	812		μg/l	83.3	5	"	"	"	"	Х

Sample Identification RW-7 SA99960-08

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 25-Aug-09 11:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	GCMS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3510	С									
91-20-3	Naphthalene	240		μg/l	83.3	5	SW846 8270C	28-Aug-09	31-Aug-09	9082016	X
85-01-8	Phenanthrene	223		μg/l	83.3	5	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	83.3	5	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	60		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	48		30-13	30 %		n n	"	"	"	

Matrix Drinking Water Collection Date/Time 25-Aug-09 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
	rgeable Organic Compounds										
Prepared	d by method SW846 5030 Water M	1S									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred 113)	_{II} BRL		μg/l	0.5	1	EPA 524.2	28-Aug-09	29-Aug-09	9082038	
67-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	
107-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	
71-43-2	Benzene	BRL		μg/l	0.5	1	"	"	"	"	
08-86-1	Bromobenzene	BRL		μg/l	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	
5-25-2	Bromoform	BRL		μg/l	0.5	1	"	"	"	"	
4-83-9	Bromomethane	BRL		μg/l	0.5	1	"	"	"	"	
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
04-51-8	n-Butylbenzene	BRL		μg/l	0.5	1	"	"	"	"	
35-98-8	sec-Butylbenzene	BRL		μg/l	0.5	1	"	"	"	"	
8-06-6	tert-Butylbenzene	BRL		μg/l	0.5	1	"	"	"	"	
5-15-0	Carbon disulfide	BRL		μg/l	0.5	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	0.5	1	"	"	"	"	
08-90-7	Chlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
5-00-3	Chloroethane	BRL		μg/l	0.5	1	"	"	"	"	
7-66-3	Chloroform	BRL		μg/l	0.5	1	"	"	"	"	
4-87-3	Chloromethane	BRL		μg/l	0.5	1	"	"	"	"	
5-49-8	2-Chlorotoluene	BRL		μg/l	0.5	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	0.5	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5	1	"	"	"	"	
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	
4-95-3	Dibromomethane	BRL		μg/l	0.5	1	"	"	"	"	
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
5-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	0.5	1	"	"	"	"	
5-34-3	1,1-Dichloroethane	BRL		μg/l	0.5	1	"	"	"	"	
07-06-2	1,2-Dichloroethane	BRL		μg/l	0.5	1	"	"	"	"	
5-35-4	1,1-Dichloroethene	BRL		μg/l	0.5	1	"	"	"	"	
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	0.5	1	"	"			
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	0.5	1			"		
8-87-5	1,2-Dichloropropane	BRL		μg/l 	0.5	1					
42-28-9	1,3-Dichloropropane	BRL		μg/l 	0.5	1					
94-20-7	2,2-Dichloropropane	BRL		μg/l 	0.5	1					
63-58-6	1,1-Dichloropropene	BRL		μg/l	0.5	1					
	cis-1,3-Dichloropropene	BRL		μg/l "	0.5	1					
	trans-1,3-Dichloropropene	BRL		μg/l 	0.5	1					
00-41-4	Ethylbenzene	BRL		μg/l "	0.5	1				"	
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1		"			
91-78-6	2-Hexanone (MBK)	BRL		μg/l "	10.0	1					
8-82-8	Isopropylbenzene	BRL		μg/l "	0.5	1					
9-87-6	4-Isopropyltoluene	BRL		μg/l 	0.5	1					
634-04-4	Methyl tert-butyl ether	BRL		μg/l 	0.5	1			"		
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1					
5-09-2	Methylene chloride	BRL		μg/l	0.5	1	"	"			
91-20-3	Naphthalene	BRL	CAL1	μg/l	0.5	1	"	"	"	"	
03-65-1	n-Propylbenzene	BRL		μg/l	0.5	1	"	"	"	"	

Sample Identification PDW-1 SA99960-09

Client Project # RI-0011-06

Matrix Drinking Water Collection Date/Time 25-Aug-09 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
524.2 Pu	urgeable Organic Compounds										
Prepared	d by method SW846 5030 Water N	ИS									
100-42-5	Styrene	BRL		μg/l	0.5	1	EPA 524.2	28-Aug-09	29-Aug-09	9082038	
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5	1		"	u u	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1		"	u u	"	
127-18-4	Tetrachloroethene	BRL		μg/l	0.5	1	"	"	"	"	
108-88-3	Toluene	BRL		μg/l	0.5	1	"	"	"	"	
37-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	0.5	1	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	0.5	1	"	"	"	"	
79-01-6	Trichloroethene	BRL		μg/l	0.5	1	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5	1	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	0.5	1	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	0.5	1	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	0.5	1	"	"	"	"	
75-01-4	Vinyl chloride	BRL		μg/l	0.5	1	"	"	"	"	
179601-23	-1m,p-Xylene	BRL		μg/l	0.5	1	"	"	"	"	
95-47-6	o-Xylene	BRL		μg/l	0.5	1	"	"	"	"	
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	0.5	1	"	"	"	"	
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	0.5	1	"	"	"	"	
108-20-3	Di-isopropyl ether	BRL		μg/l	0.5	1	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	
Surrogate	recoveries:										
160-00-4	4-Bromofluorobenzene	95		80-12	20 %		"	"	"	"	
2037-26-5	Toluene-d8	100		80-12	20 %		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	98		80-12	20 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	100		80-12	20 %		"	"	"	"	

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds										
repared	d by method SW846 5030 Water M	/IS									
6-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_{DI} BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	X
7-64-1	113) Acetone	BRL		μg/l	10.0	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
4-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	>
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	>
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	>
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	>
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	>
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	>
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	>
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	>
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	>
24-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	>
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	>
4-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	>
5-71-8	Dichlorodifluoromethane (Freon12)			μg/l	2.0	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	")
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"		>
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	>
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	>
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"		>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"		>
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	"	"	"	>
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"		>
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	")
1-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	>
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"	"	"		>

Matrix Ground Water Collection Date/Time 25-Aug-09 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds										
/olatile C	Organic Compounds										
Prepared	l by method SW846 5030 Water M	1S									
00-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	01-Sep-09	01-Sep-09	9090031	X
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	X
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	u u	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	· ·	"	u u	"	Х
9-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	u u	"	"	"	
)-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
8-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Х
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	u u	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Х
1-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	100		70-13	30 %		u u	"	"	"	
	Toluene-d8	97		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	87		70-13			u u	"	"	"	
	Dibromofluoromethane	94		70-13	30 %		"	"	"	"	
	tile Organic Compounds by GCMS										
	SW846 8270C										
	by method SW846 3510C										
3-32-9	Acenaphthene	BRL		μg/l	6.67	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
08-96-8	•	BRL		μg/l	6.67	1	"	zo nag oo	"	"	X
20-12-7	Anthracena	BRL		μg/l	6.67	1	"	"	"		X
6-55-3	Anthracene	BRL			6.67	1	"	"	"		×
	Benzo (a) anthracene	BRL		μg/l	6.67	1	"	"	"		X
)-32-8	Benzo (a) pyrene	BRL		μg/l	6.67	1	"	"	"	"	X
05-99-2	Benzo (b) fluoranthene			μg/l			"				
91-24-2	Benzo (g,h,i) perylene	BRL		μg/l	6.67	1	"				X
07-08-9	Benzo (k) fluoranthene	BRL		μg/l	6.67	1					X
18-01-9	Chrysene	BRL		μg/l	6.67	1		"			X
3-70-3	Dibenzo (a,h) anthracene	BRL		μg/l "	6.67	1	-	"			X
06-44-0	Fluoranthene	BRL		μg/l	6.67	1					X
6-73-7	Fluorene	BRL		μg/l 	6.67	1					X
93-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	6.67	1	"	"	"	"	Х
0-12-0	1-Methylnaphthalene	BRL		μg/l	6.67	1	"	"	"	"	
1-57-6	2-Methylnaphthalene	BRL		μg/l	6.67	1	"	"	"	"	Х

Sample Identification
Drain Line
SA99960-10

Client Project # RI-0011-06

Matrix Ground Water Collection Date/Time 25-Aug-09 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	GCMS									
PAHs by	/ SW846 8270C										
Prepare	d by method SW846 3510	С									
91-20-3	Naphthalene	BRL		μg/l	6.67	1	SW846 8270C	28-Aug-09	30-Aug-09	9082016	Х
85-01-8	Phenanthrene	BRL		μg/l	6.67	1	"	"	"	"	Х
129-00-0	Pyrene	BRL		μg/l	6.67	1	"	"	"	"	Χ
Surrogate	e recoveries:										
321-60-8	2-Fluorobiphenyl	60		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	54		30-13	30 %		u	"	"	"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9082038 - SW846 5030 Water MS										
Blank (9082038-BLK1)										
Prepared & Analyzed: 28-Aug-09										
· · · · · · · · · · · · · · · · · · ·	DDI		//	0.5						
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	BRL BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	0.5						
Bromobenzene	BRL		μg/l	0.5						
Bromochloromethane	BRL		μg/l	0.5						
	BRL		μg/l	0.5						
Bromodichloromethane Bromoform	BRL		μg/l	0.5						
			μg/l							
Bromomethane	BRL		μg/l	0.5						
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	0.5						
sec-Butylbenzene	BRL		μg/l	0.5						
tert-Butylbenzene	BRL		μg/l	0.5						
Carbon disulfide	BRL		μg/l	0.5						
Carbon tetrachloride	BRL		μg/l	0.5						
Chlorosthana	BRL		μg/l	0.5						
Chloroftane	BRL		μg/l	0.5						
Chloroform	BRL		μg/l	0.5						
Chloromethane	BRL		μg/l	0.5						
2-Chlorotoluene	BRL		μg/l	0.5						
4-Chlorotoluene	BRL		μg/l	0.5						
1,2-Dibromo-3-chloropropane	BRL		μg/l	0.5						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	0.5						
1,2-Dichlorobenzene	BRL		μg/l	0.5						
1,3-Dichlorobenzene	BRL		μg/l	0.5						
1,4-Dichlorobenzene	BRL		μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	0.5						
1,1-Dichloroethane	BRL		μg/l	0.5						
1,2-Dichloroethane	BRL		μg/l	0.5						
1,1-Dichloroethene	BRL		μg/l	0.5						
cis-1,2-Dichloroethene	BRL		μg/l	0.5						
trans-1,2-Dichloroethene	BRL		μg/l	0.5						
1,2-Dichloropropane	BRL		μg/l	0.5						
1,3-Dichloropropane	BRL		μg/l	0.5						
2,2-Dichloropropane	BRL		μg/l	0.5						
1,1-Dichloropropene	BRL		μg/l	0.5						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	0.5						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	0.5						
4-Isopropyltoluene	BRL		μg/l	0.5						
Methyl tert-butyl ether	BRL		μg/l	0.5						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	0.5						
Naphthalene	BRL	CAL1	μg/l	0.5						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9082038 - SW846 5030 Water MS										
Blank (9082038-BLK1)										
Prepared & Analyzed: 28-Aug-09										
n-Propylbenzene	BRL		μg/l	0.5						
Styrene	BRL		μg/l	0.5						
1,1,1,2-Tetrachloroethane	BRL		μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	0.5						
Toluene	BRL		μg/l	0.5						
1,2,3-Trichlorobenzene	BRL		μg/l	0.5						
1,2,4-Trichlorobenzene	BRL		μg/l	0.5						
1,1,1-Trichloroethane	BRL		μg/l	0.5						
1,1,2-Trichloroethane	BRL		μg/l	0.5						
Trichloroethene	BRL		μg/l	0.5						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	0.5						
1,2,3-Trichloropropane	BRL		μg/l	0.5						
1,2,4-Trimethylbenzene	BRL		μg/l	0.5						
1,3,5-Trimethylbenzene	BRL		μg/l	0.5						
Vinyl chloride	BRL		μg/l	0.5						
m,p-Xylene	BRL		μg/l	0.5						
o-Xylene	BRL		μg/l	0.5						
Tetrahydrofuran	BRL		μg/l	10.0						
Tert-amyl methyl ether	BRL		μg/l	0.5						
Ethyl tert-butyl ether	BRL		μg/l	0.5						
Di-isopropyl ether	BRL		μg/l	0.5						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
Surrogate: 4-Bromofluorobenzene	47.9		μg/l	10.0	50.0		96	80-120		
Surrogate: Toluene-d8	49.7		μg/l		50.0		99	80-120		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		100	80-120		
Surrogate: Dibromofluoromethane	50.3		μg/l		50.0		101	80-120		
LCS (9082038-BS1)										
Prepared & Analyzed: 28-Aug-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.2	QM9	μg/l		20.0		121	80-120		
Acetone	17.6		μg/l		20.0		88	70-130		
Acrylonitrile	18.8		μg/l		20.0		94	70-130		
Benzene	21.5		μg/l		20.0		108	80-120		
Bromobenzene	21.9		μg/l		20.0		109	80-120		
Bromochloromethane	21.1		μg/l		20.0		106	80-120		
Bromodichloromethane	23.0		μg/l		20.0		115	80-120		
Bromoform	24.6	QM9	μg/l		20.0		123	80-120		
Bromomethane	18.9		μg/l		20.0		95	80-120		
2-Butanone (MEK)	20.4		μg/l		20.0		102	70-130		
n-Butylbenzene	22.2		μg/l		20.0		111	80-120		
sec-Butylbenzene	24.7	QC2	μg/l		20.0		124	80-120		
tert-Butylbenzene	24.6	QM9	μg/l		20.0		123	80-120		
Carbon disulfide	19.6		μg/l		20.0		98	70-130		
Carbon tetrachloride	23.3		μg/l		20.0		116	80-120		
Chlorobenzene	21.8		μg/l		20.0		109	80-120		
Chloroethane	18.9		μg/l		20.0		94	80-120		
Chloroform	20.9		μg/l		20.0		104	80-120		
Chloromethane	18.3		μg/l		20.0		92	80-120		
2-Chlorotoluene	23.3		μg/l		20.0		117	80-120		
4-Chlorotoluene	23.1		μg/l		20.0		115	80-120		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082038 - SW846 5030 Water MS										
LCS (9082038-BS1)										
Prepared & Analyzed: 28-Aug-09										
1,2-Dibromo-3-chloropropane	20.8		μg/l		20.0		104	80-120		
Dibromochloromethane	22.0		μg/l		20.0		110	80-120		
1,2-Dibromoethane (EDB)	21.3		μg/l		20.0		106	80-120		
Dibromomethane	20.5		μg/l		20.0		103	80-120		
1,2-Dichlorobenzene	22.6		μg/l		20.0		113	80-120		
1,3-Dichlorobenzene	23.1		μg/l		20.0		116	80-120		
1,4-Dichlorobenzene	21.0		μg/l		20.0		105	80-120		
Dichlorodifluoromethane (Freon12)	17.4		μg/l		20.0		87	80-120		
1,1-Dichloroethane	21.8		μg/l		20.0		109	80-120		
1,2-Dichloroethane	19.7		μg/l		20.0		99	80-120		
1,1-Dichloroethene	20.6		μg/l		20.0		103	80-120		
cis-1,2-Dichloroethene	22.7		μg/l		20.0		114	80-120		
trans-1,2-Dichloroethene	19.5		μg/l		20.0		97	80-120		
1,2-Dichloropropane	21.9		μg/l		20.0		110	80-120		
1,3-Dichloropropane	21.0		μg/l		20.0		105	80-120		
2,2-Dichloropropane	24.0		μg/l		20.0		120	80-120		
1,1-Dichloropropene	22.6		μg/l		20.0		113	80-120		
cis-1,3-Dichloropropene	23.1		μg/l		20.0		115	80-120		
trans-1,3-Dichloropropene	22.8		μg/l		20.0		114	80-120		
Ethylbenzene	22.8		μg/l		20.0		114	80-120		
Hexachlorobutadiene	22.8		μg/l		20.0		114	80-120		
2-Hexanone (MBK)	20.0		μg/l		20.0		100	70-130		
Isopropylbenzene	19.1		μg/l		20.0		96	80-120		
4-Isopropyltoluene	24.4	QM9	μg/l		20.0		122	80-120		
Methyl tert-butyl ether	21.2		μg/l		20.0		106	80-120		
4-Methyl-2-pentanone (MIBK)	19.9		μg/l		20.0		100	70-130		
Methylene chloride	18.8		μg/l		20.0		94	80-120		
Naphthalene	22.6	CAL1	μg/l		20.0		113	80-120		
n-Propylbenzene	22.9		μg/l		20.0		115	80-120		
Styrene	23.6		μg/l		20.0		118	80-120		
1,1,1,2-Tetrachloroethane	23.6		μg/l		20.0		118	80-120		
1,1,2,2-Tetrachloroethane	21.9		μg/l		20.0		109	80-120		
Tetrachloroethene	21.5		μg/l		20.0		108	80-120		
Toluene	21.3		μg/l		20.0		106	80-120		
1,2,3-Trichlorobenzene	19.6		μg/l		20.0		98	80-120		
1,2,4-Trichlorobenzene	19.3		μg/l		20.0		96	80-120		
1,1,1-Trichloroethane	22.0		μg/l		20.0		110	80-120		
1,1,2-Trichloroethane	21.4		μg/l		20.0		107	80-120		
Trichloroethene	22.3		μg/l		20.0		112	80-120		
Trichlorofluoromethane (Freon 11)	21.5		μg/l		20.0		107	80-120		
1,2,3-Trichloropropane	23.4		μg/l		20.0		117	80-120		
1,2,4-Trimethylbenzene	24.0		μg/l		20.0		120	80-120		
1,3,5-Trimethylbenzene	23.8		μg/l		20.0		119	80-120		
Vinyl chloride	18.8		μg/l		20.0		94	80-120		
m,p-Xylene	47.1		μg/l		40.0		118	80-120		
o-Xylene	24.2	QM9	μg/l		20.0		121	80-120		
Tetrahydrofuran	19.7		μg/l		20.0		99	70-130		
Tert-amyl methyl ether	20.8		μg/l		20.0		104	70-130		
Ethyl tert-butyl ether	21.3		μg/l		20.0		106	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082038 - SW846 5030 Water MS										
LCS (9082038-BS1)										
Prepared & Analyzed: 28-Aug-09										
Di-isopropyl ether	21.4		μg/l		20.0		107	70-130		
Tert-Butanol / butyl alcohol	176		μg/l		200		88	70-130		
Surrogate: 4-Bromofluorobenzene	50.9		μg/l		50.0		102	80-120		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	80-120		
Surrogate: 1,2-Dichloroethane-d4	47.6		μg/l		50.0		95 400	80-120		
Surrogate: Dibromofluoromethane	49.8		μg/l		50.0		100	80-120		
LCS Dup (9082038-BSD1) Prepared & Analyzed: 28-Aug-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.2		ua/l		20.0		116	80-120	4	20
Acetone	17.3		µg/l		20.0		86	70-130	2	30
	18.7		µg/l		20.0		94	70-130	0.2	30
Acrylonitrile Benzene	21.0		µg/l		20.0		9 4 105	70-130 80-120	3	20
Bromobenzene	21.0		µg/l		20.0		105	80-120 80-120	3	20
Bromochloromethane	20.7		µg/l		20.0		106	80-120	3 2	20
Bromodichloromethane	20.7		μg/l μg/l		20.0		104	80-120	4	20
Bromoform	24.0		μg/l		20.0		120	80-120	3	20
Bromomethane	18.4		μg/l		20.0		92	80-120	3	20
2-Butanone (MEK)	20.5		μg/l		20.0		103	70-130	0.6	30
n-Butylbenzene	21.6		μg/l		20.0		108	80-120	3	20
sec-Butylbenzene	24.2	QC2	μg/l		20.0		121	80-120	2	20
tert-Butylbenzene	23.8	402	μg/l		20.0		119	80-120	3	20
Carbon disulfide	18.8		μg/l		20.0		94	70-130	4	30
Carbon tetrachloride	22.4		μg/l		20.0		112	80-120	4	20
Chlorobenzene	21.1		μg/l		20.0		106	80-120	3	20
Chloroethane	18.4		μg/l		20.0		92	80-120	2	20
Chloroform	20.4		μg/l		20.0		102	80-120	2	20
Chloromethane	17.9		μg/l		20.0		89	80-120	2	20
2-Chlorotoluene	22.6		μg/l		20.0		113	80-120	3	20
4-Chlorotoluene	22.6		μg/l		20.0		113	80-120	2	20
1,2-Dibromo-3-chloropropane	20.4		μg/l		20.0		102	80-120	2	20
Dibromochloromethane	21.3		μg/l		20.0		106	80-120	3	20
1,2-Dibromoethane (EDB)	20.7		μg/l		20.0		104	80-120	3	20
Dibromomethane	20.2		μg/l		20.0		101	80-120	1	20
1.2-Dichlorobenzene	22.2		μg/l		20.0		111	80-120	2	20
1,3-Dichlorobenzene	22.6		μg/l		20.0		113	80-120	2	20
1,4-Dichlorobenzene	20.6		μg/l		20.0		103	80-120	2	20
Dichlorodifluoromethane (Freon12)	17.0		μg/l		20.0		85	80-120	3	20
1,1-Dichloroethane	21.2		μg/l		20.0		106	80-120	3	20
1,2-Dichloroethane	19.3		μg/l		20.0		96	80-120	2	20
1,1-Dichloroethene	20.0		μg/l		20.0		100	80-120	3	20
cis-1,2-Dichloroethene	22.2		μg/l		20.0		111	80-120	2	20
trans-1,2-Dichloroethene	18.9		μg/l		20.0		95	80-120	3	20
1,2-Dichloropropane	21.4		μg/l		20.0		107	80-120	3	20
1,3-Dichloropropane	20.5		μg/l		20.0		102	80-120	2	20
2,2-Dichloropropane	22.8		μg/l		20.0		114	80-120	5	20
1,1-Dichloropropene	21.7		μg/l		20.0		109	80-120	4	20
cis-1,3-Dichloropropene	22.2		μg/l		20.0		111	80-120	4	20
trans-1,3-Dichloropropene	22.1		μg/l		20.0		110	80-120	3	20
Ethylbenzene	22.1		μg/l		20.0		110	80-120	3	20
Hexachlorobutadiene	22.1		μg/l		20.0		110	80-120	3	20

Analyta(a)	Dagult	Elac	Linita	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082038 - SW846 5030 Water MS										
LCS Dup (9082038-BSD1)										
Prepared & Analyzed: 28-Aug-09			_							
2-Hexanone (MBK)	19.4		μg/l 		20.0		97	70-130	3	30
Isopropylbenzene	18.6		μg/l		20.0		93	80-120	3	20
4-Isopropyltoluene	23.8		μg/l 		20.0		119	80-120	3	20
Methyl tert-butyl ether	20.6		μg/l 		20.0		103	80-120	2	20
4-Methyl-2-pentanone (MIBK)	19.5		μg/l		20.0		97	70-130	2	30
Methylene chloride	18.3	041.4	μg/l "		20.0		91	80-120	3	20
Naphthalene	21.6	CAL1	μg/l		20.0		108	80-120	5	20
n-Propylbenzene	22.2		μg/l 		20.0		111	80-120	3	20
Styrene	22.8		μg/l 		20.0		114	80-120	3	20
1,1,1,2-Tetrachloroethane	23.1		μg/l 		20.0		116	80-120	2	20
1,1,2,2-Tetrachloroethane	21.4		μg/l 		20.0		107	80-120	2	20
Tetrachloroethene	20.7		μg/l 		20.0		104	80-120	4	20
Toluene	20.6		μg/l "		20.0		103	80-120	3	20
1,2,3-Trichlorobenzene	19.0		μg/l		20.0		95	80-120	3	20
1,2,4-Trichlorobenzene	18.5		μg/l 		20.0		92	80-120	4	20
1,1,1-Trichloroethane	21.3		μg/l 		20.0		106	80-120	3	20
1,1,2-Trichloroethane	21.3		μg/l 		20.0		106	80-120	0.6	20
Trichloroethene	21.2		μg/l 		20.0		106	80-120	5	20
Trichlorofluoromethane (Freon 11)	20.9		μg/l 		20.0		104	80-120	3	20
1,2,3-Trichloropropane	22.8		μg/l 		20.0		114	80-120	3	20
1,2,4-Trimethylbenzene	23.4		μg/l 		20.0		117	80-120	3	20
1,3,5-Trimethylbenzene	23.1		μg/l 		20.0		115	80-120	3	20
Vinyl chloride	18.3		μg/l		20.0		91	80-120	3	20
m,p-Xylene	45.9		μg/l		40.0		115	80-120	2	20
o-Xylene	23.8		μg/l		20.0		119	80-120	2	20
Tetrahydrofuran	19.3		μg/l		20.0		97	70-130	2	30
Tert-amyl methyl ether	20.4		μg/l		20.0		102	70-130	2	30
Ethyl tert-butyl ether	20.8		μg/l		20.0		104	70-130	3	30
Di-isopropyl ether	20.9		μg/l		20.0		105	70-130	2	30
Tert-Butanol / butyl alcohol	173		μg/l		200		87	70-130	1	30
Surrogate: 4-Bromofluorobenzene	50.8		μg/l		50.0		102	80-120		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	49.2 47.7		µg/l µg/l		50.0 50.0		98 95	80-120 80-120		
Surrogate: Dibromofluoromethane	49.5		μg/l		50.0		99	80-120		
Batch 9082064 - SW846 5030 Water MS										
Blank (9082064-BLK1)										
Prepared & Analyzed: 28-Aug-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	0.5						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						

Analyta(a)	Pagult	Eloa	Unita	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD Limit
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082064 - SW846 5030 Water MS										
Blank (9082064-BLK1)										
Prepared & Analyzed: 28-Aug-09										
tert-Butylbenzene	BRL		μg/l	1.0						
Carbon disulfide	BRL		μg/l	5.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene	BRL		μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	1.0						
n-Propylbenzene	BRL		μg/l	1.0						
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9082064 - SW846 5030 Water MS										
Blank (9082064-BLK1)										
Prepared & Analyzed: 28-Aug-09										
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l	400						
Surrogate: 4-Bromofluorobenzene	30.3		μg/l		30.0		101	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.1 28.1		μg/l μg/l		30.0 30.0		97 94	70-130 70-130		
Surrogate: Dibromofluoromethane	28.2		μg/l		30.0		94	70-130		
LCS (9082064-BS1)										
Prepared & Analyzed: 28-Aug-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.4		μg/l		20.0		122	70-130		
Acetone	14.9		μg/l		20.0		74	52.2-144		
Acrylonitrile	17.3		μg/l		20.0		86	70-130		
Benzene	20.0		μg/l		20.0		100	70-130		
Bromobenzene	28.0	QC2	μg/l		20.0		140	70-130		
Bromochloromethane	26.7	QM9	μg/l		20.0		133	70-130		
Bromodichloromethane	19.0		μg/l		20.0		95	70-130		
Bromoform	17.5		μg/l		20.0		88	70-130		
Bromomethane	18.4		μg/l		20.0		92	40-167		
2-Butanone (MEK)	16.2		μg/l		20.0		81	57.7-141		
n-Butylbenzene	15.1		μg/l		20.0		76	70-130		
sec-Butylbenzene	22.6		μg/l		20.0		113	70-130		
tert-Butylbenzene	25.9		μg/l		20.0		130	70-130		
Carbon disulfide	16.1		μg/l		20.0		80	70-130		
Carbon tetrachloride	23.4		μg/l		20.0		117	70-130		
Chlorobenzene	24.9		μg/l		20.0		125	70-130		
Chloroethane	16.6		μg/l		20.0		83	65.1-130		
Chloroform	21.6		μg/l		20.0		108	70-130		
Chloromethane	20.1		μg/l		20.0		101	70-130		
2-Chlorotoluene	22.9		μg/l		20.0		114	70-130		
4-Chlorotoluene	23.2		μg/l		20.0		116	70-130		
1,2-Dibromo-3-chloropropane	11.5	QC2	μg/l		20.0		58	70-130		
Dibromochloromethane	17.0		μg/l		20.0		85	55.6-155		
1,2-Dibromoethane (EDB)	20.4		μg/l		20.0		102	70-130		
Dibromomethane	19.3		μg/l		20.0		97	70-130		
1,2-Dichlorobenzene	21.6		μg/l		20.0		108	70-130		
1,3-Dichlorobenzene	27.8	QC2	μg/l		20.0		139	70-130		
1,4-Dichlorobenzene	20.9		μg/l		20.0		105	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082064 - SW846 5030 Water MS										
LCS (9082064-BS1)										
Prepared & Analyzed: 28-Aug-09										
Dichlorodifluoromethane (Freon12)	25.4		μg/l		20.0		127	45.8-135		
1,1-Dichloroethane	22.2		μg/l		20.0		111	70-130		
1,2-Dichloroethane	18.8		μg/l		20.0		94	70-130		
1,1-Dichloroethene	20.0		μg/l		20.0		100	70-130		
cis-1,2-Dichloroethene	23.1		μg/l		20.0		116	70-130		
trans-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130		
1,2-Dichloropropane	18.6		μg/l		20.0		93	70-130		
1,3-Dichloropropane	17.4		μg/l		20.0		87	70-130		
2,2-Dichloropropane	20.7		μg/l		20.0		103	70-130		
1,1-Dichloropropene	20.8		μg/l		20.0		104	70-130		
cis-1,3-Dichloropropene	15.3		μg/l		20.0		77	70-130		
trans-1,3-Dichloropropene	13.7	QC2	μg/l		20.0		68	70-130		
Ethylbenzene	24.3		μg/l		20.0		121	70-130		
Hexachlorobutadiene	16.4		μg/l		20.0		82	63.3-141		
2-Hexanone (MBK)	14.3		μg/l		20.0		72	70-130		
Isopropylbenzene	21.1		μg/l		20.0		106	70-130		
4-Isopropyltoluene	19.4		μg/l		20.0		97	70-130		
Methyl tert-butyl ether	23.6		μg/l		20.0		118	70-130		
4-Methyl-2-pentanone (MIBK)	14.5		μg/l		20.0		72	40-157		
Methylene chloride	17.7		μg/l		20.0		89	70-130		
Naphthalene	15.1		μg/l		20.0		75	70-130		
n-Propylbenzene	22.7		μg/l		20.0		113	70-130		
Styrene	24.3		μg/l		20.0		121	70-130		
1,1,1,2-Tetrachloroethane	19.4		μg/l		20.0		97	70-130		
1,1,2,2-Tetrachloroethane	18.1		μg/l		20.0		90	70-130		
Tetrachloroethene	25.1		μg/l		20.0		125	70-130		
Toluene	19.5		μg/l		20.0		97	70-130		
1,2,3-Trichlorobenzene	17.3		μg/l		20.0		86	70-130		
1,2,4-Trichlorobenzene	17.4		μg/l		20.0		87	70-130		
1,3,5-Trichlorobenzene	18.6		μg/l		20.0		93	70-130		
1,1,1-Trichloroethane	22.4		μg/l		20.0		112	70-130		
1,1,2-Trichloroethane	20.6		μg/l		20.0		103	70-130		
Trichloroethene	23.4		μg/l		20.0		117	70-130		
Trichlorofluoromethane (Freon 11)	19.8		μg/l		20.0		99	61.9-167		
1,2,3-Trichloropropane	19.6		μg/l		20.0		98	70-130		
1,2,4-Trimethylbenzene	23.6		μg/l		20.0		118	70-130		
1,3,5-Trimethylbenzene	25.0		μg/l		20.0		125	70-130		
Vinyl chloride	19.4		μg/l		20.0		97	70-130		
m,p-Xylene	49.7		μg/l		40.0		124	70-130		
o-Xylene	25.2		μg/l		20.0		126	70-130		
Tetrahydrofuran	17.9		μg/l		20.0		90	70-130		
Ethyl ether	16.2		μg/l		20.0		81	70-133		
Tert-amyl methyl ether	18.8		μg/l		20.0		94	70-130		
Ethyl tert-butyl ether	18.4		μg/l		20.0		92	70-130		
Di-isopropyl ether	18.0		μg/l		20.0		90	70-130		
Tert-Butanol / butyl alcohol	164		μg/l		200		82	70-130		
1,4-Dioxane	212		μg/l		200		106	50.6-156		
trans-1,4-Dichloro-2-butene	13.1	QC2	μg/l		20.0		66	70-130		
Ethanol	369		μg/l		400		92	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082064 - SW846 5030 Water MS										
LCS (9082064-BS1)										
Prepared & Analyzed: 28-Aug-09										
Surrogate: 4-Bromofluorobenzene	32.0		μg/l		30.0		107	70-130		
Surrogate: Toluene-d8	28.9		μg/l		30.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.5		μg/l		30.0		92	70-130		
Surrogate: Dibromofluoromethane	32.9		μg/l		30.0		110	70-130		
LCS Dup (9082064-BSD1)										
Prepared & Analyzed: 28-Aug-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.6		μg/l		20.0		118	70-130	3	25
Acetone	14.6		μg/l		20.0		73	52.2-144	2	50
Acrylonitrile	17.2		μg/l		20.0		86	70-130	0.6	25
Benzene	19.4		μg/l		20.0		97	70-130	3	25
Bromobenzene	28.4	QC2	μg/l		20.0		142	70-130	1	25
Bromochloromethane	25.1		μg/l		20.0		126	70-130	6	25
Bromodichloromethane	18.5		μg/l		20.0		92	70-130	3	25
Bromoform	17.9		μg/l		20.0		90	70-130	2	25
Bromomethane	16.9		μg/l		20.0		84	40-167	8	50
2-Butanone (MEK)	16.0		μg/l		20.0		80	57.7-141	2	50
n-Butylbenzene	15.0		μg/l		20.0		75	70-130	1	25
sec-Butylbenzene	21.9		μg/l		20.0		109	70-130	3	25
tert-Butylbenzene	25.4		μg/l		20.0		127	70-130	2	25
Carbon disulfide	15.2		µg/l		20.0		76	70-130	5	25
Carbon tetrachloride	23.0		μg/l		20.0		115	70-130	2	25
Chlorobenzene	24.1		μg/l		20.0		120	70-130	4	25
Chloroethane	15.8		μg/l		20.0		79	65.1-130	5	50
Chloroform	21.4		μg/l		20.0		107	70-130	0.7	25
Chloromethane	19.1		μg/l		20.0		95	70-130	5	25
2-Chlorotoluene	23.7		μg/l		20.0		118	70-130	4	25
4-Chlorotoluene	22.5		μg/l		20.0		112	70-130	3	25
1,2-Dibromo-3-chloropropane	9.1	QC2	μg/l		20.0		46	70-130	23	25
Dibromochloromethane	17.3		μg/l		20.0		86	55.6-155	2	50
1,2-Dibromoethane (EDB)	20.6		μg/l		20.0		103	70-130	1	25
Dibromomethane	19.3		μg/l		20.0		96	70-130	0.3	25
1,2-Dichlorobenzene	21.2		μg/l		20.0		106	70-130	2	25
1,3-Dichlorobenzene	27.6	QC2	μg/l		20.0		138	70-130	8.0	25
1,4-Dichlorobenzene	20.3		μg/l		20.0		101	70-130	3	25
Dichlorodifluoromethane (Freon12)	24.1		μg/l 		20.0		121	45.8-135	5	50
1,1-Dichloroethane	20.3		μg/l 		20.0		102	70-130	9	25
1,2-Dichloroethane	18.6		μg/l 		20.0		93	70-130	1	25
1,1-Dichloroethene	19.3		μg/l 		20.0		96	70-130	4	25
cis-1,2-Dichloroethene	22.2		μg/l 		20.0		111	70-130	4	25
trans-1,2-Dichloroethene	18.6		μg/l 		20.0		93	70-130	2	25
1,2-Dichloropropane	18.3		μg/l 		20.0		92	70-130	2	25
1,3-Dichloropropane	17.5		µg/l		20.0		87	70-130	0.3	25
2,2-Dichloropropane	20.0		µg/l		20.0		100	70-130	3	25
1,1-Dichloropropene	20.8		μg/l		20.0		104	70-130	0.4	25
cis-1,3-Dichloropropene	15.8	0	μg/l "		20.0		79	70-130	3	25
trans-1,3-Dichloropropene	13.8	QC2	μg/l 		20.0		69	70-130	0.9	25
Ethylbenzene	23.4		μg/l		20.0		117	70-130	4	25
Hexachlorobutadiene	15.2		μg/l		20.0		76	63.3-141	8	50
2-Hexanone (MBK)	14.2		μg/l		20.0		71	70-130	0.7	25
Isopropylbenzene	20.7		μg/l		20.0		104	70-130	2	25

A 1.7		771	** *:	4DDI	Spike	Source	A/PEG	%REC	nnn	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9082064 - SW846 5030 Water MS										
LCS Dup (9082064-BSD1)										
Prepared & Analyzed: 28-Aug-09										
4-Isopropyltoluene	19.0		μg/l		20.0		95	70-130	2	25
Methyl tert-butyl ether	23.5		μg/l		20.0		117	70-130	0.3	25
4-Methyl-2-pentanone (MIBK)	14.5		μg/l		20.0		73	40-157	0.4	50
Methylene chloride	17.1		μg/l		20.0		85	70-130	4	25
Naphthalene	15.4		μg/l		20.0		77	70-130	2	25
n-Propylbenzene	21.4		μg/l		20.0		107	70-130	6	25
Styrene	22.9		μg/l		20.0		114	70-130	6	25
1,1,1,2-Tetrachloroethane	19.6		μg/l		20.0		98	70-130	0.6	25
1,1,2,2-Tetrachloroethane	17.4		μg/l		20.0		87	70-130	4	25
Tetrachloroethene	25.0		μg/l		20.0		125	70-130	0.4	25
Toluene	19.1		μg/l		20.0		95	70-130	2	25
1,2,3-Trichlorobenzene	17.3		μg/l		20.0		87	70-130	0.2	25
1,2,4-Trichlorobenzene	17.2		μg/l		20.0		86	70-130	2	25
1,3,5-Trichlorobenzene	18.5		μg/l		20.0		92	70-130	0.5	25
1,1,1-Trichloroethane	21.3		μg/l		20.0		106	70-130	5	25
1,1,2-Trichloroethane	20.7		μg/l		20.0		104	70-130	0.5	25
Trichloroethene	22.4		μg/l		20.0		112	70-130	5	25
Trichlorofluoromethane (Freon 11)	19.2		μg/l		20.0		96	61.9-167	3	50
1,2,3-Trichloropropane	19.9		μg/l		20.0		99	70-130	1	25
1,2,4-Trimethylbenzene	23.4		μg/l		20.0		117	70-130	1	25
1,3,5-Trimethylbenzene	24.2		μg/l		20.0		121	70-130	3	25
Vinyl chloride	18.2		μg/l		20.0		91	70-130	6	25
m,p-Xylene	47.8		μg/l		40.0		120	70-130	4	25
o-Xylene	24.6		μg/l		20.0		123	70-130	3	25
Tetrahydrofuran	18.6		μg/l		20.0		93	70-130	4	25
Ethyl ether	16.6		μg/l		20.0		83	70-133	3	50
Tert-amyl methyl ether	18.2		μg/l		20.0		91	70-130	3	25
Ethyl tert-butyl ether	18.1		μg/l		20.0		91	70-130	2	25
Di-isopropyl ether	17.8		μg/l		20.0		89	70-130	1	25
Tert-Butanol / butyl alcohol	173		μg/l		200		87	70-130	5	25
1,4-Dioxane	194		μg/l		200		97	50.6-156	9	25
trans-1,4-Dichloro-2-butene	12.8	QC2	μg/l		20.0		64	70-130	3	25
Ethanol	370		μg/l		400		93	70-130	0.4	30
Surrogate: 4-Bromofluorobenzene	32.2		μg/l		30.0		107	70-130		
Surrogate: Toluene-d8	29.0		μg/l		30.0		97 01	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	27.2 32.5		µg/l µg/l		30.0 30.0		91 108	70-130 70-130		
Batch 9090025 - SW846 5030 Water MS										
Blank (9090025-BLK1)										
Prepared & Analyzed: 03-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	0.5						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9090025 - SW846 5030 Water MS										
Blank (9090025-BLK1)										
Prepared & Analyzed: 03-Sep-09										
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						
tert-Butylbenzene	BRL		μg/l	1.0						
Carbon disulfide	BRL		μg/l	5.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene	BRL		μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	1.0						
n-Propylbenzene	BRL		μg/l	1.0						
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • • • • • • • • • • • • • • • • • •	Result	riag	Units	·KDL	Level	Resuit	70KEC	Limits	KPD	Limit
Batch 9090025 - SW846 5030 Water MS										
Blank (9090025-BLK1)										
Prepared & Analyzed: 03-Sep-09										
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l 	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	5.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL BRL		µg/l	10.0 20.0						
1,4-Dioxane trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l μg/l	400						
Surrogate: 4-Bromofluorobenzene	47.6			400	50.0		95	70-130		
Surrogate: Toluene-d8	51.9		μg/l μg/l		50.0		104	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	55.1		μg/l		50.0		110	70-130		
LCS (9090025-BS1)										
Prepared & Analyzed: 03-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.5		μg/l		20.0		127	70-130		
Acetone	22.6		μg/l		20.0		113	52.2-144		
Acrylonitrile	18.7		μg/l		20.0		94	70-130		
Benzene	20.5		μg/l		20.0		103	70-130		
Bromobenzene	21.9		μg/l		20.0		109	70-130		
Bromochloromethane	21.6		μg/l		20.0		108	70-130		
Bromodichloromethane	22.0		μg/l		20.0		110	70-130		
Bromoform	17.2		μg/l		20.0		86	70-130		
Bromomethane	15.0		μg/l		20.0		75	40-167		
2-Butanone (MEK)	22.5		μg/l		20.0		113	57.7-141		
n-Butylbenzene	16.4		μg/l		20.0		82	70-130		
sec-Butylbenzene	19.1		μg/l		20.0		95	70-130		
tert-Butylbenzene	20.0		μg/l		20.0		100	70-130		
Carbon disulfide	17.9		μg/l		20.0		89	70-130		
Carbon tetrachloride	20.9		μg/l		20.0		105	70-130		
Chlorobenzene	22.2		μg/l		20.0		111	70-130		
Chloroethane	17.8		μg/l		20.0		89	65.1-130		
Chloroform	20.2		μg/l		20.0		101	70-130		
Chloromethane	16.4		μg/l		20.0		82	70-130		
2-Chlorotoluene	21.6		μg/l		20.0		108	70-130		
4-Chlorotoluene	22.8		μg/l		20.0		114	70-130		
1,2-Dibromo-3-chloropropane	18.1		μg/l		20.0		91	70-130		
Dibromochloromethane	21.7		μg/l		20.0		109	55.6-155		
1,2-Dibromoethane (EDB)	22.8		μg/l		20.0		114	70-130		
Dibromomethane	20.2		μg/l		20.0		101	70-130		

A 1.70	D. I.	TOI.	** **	*DDI	Spike	Source	A/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9090025 - SW846 5030 Water MS										
LCS (9090025-BS1)										
Prepared & Analyzed: 03-Sep-09										
1,2-Dichlorobenzene	20.3		μg/l		20.0		101	70-130		
1,3-Dichlorobenzene	22.8		μg/l		20.0		114	70-130		
1,4-Dichlorobenzene	19.0		μg/l		20.0		95	70-130		
Dichlorodifluoromethane (Freon12)	16.9		μg/l		20.0		84	45.8-135		
1,1-Dichloroethane	18.7		μg/l		20.0		94	70-130		
1,2-Dichloroethane	21.6		μg/l		20.0		108	70-130		
1,1-Dichloroethene	21.3		μg/l		20.0		106	70-130		
cis-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130		
trans-1,2-Dichloroethene	19.6		μg/l		20.0		98	70-130		
1,2-Dichloropropane	20.6		μg/l		20.0		103	70-130		
1,3-Dichloropropane	21.3		μg/l		20.0		106	70-130		
2,2-Dichloropropane	16.9		μg/l		20.0		84	70-130		
1,1-Dichloropropene	20.9		μg/l		20.0		104	70-130		
cis-1,3-Dichloropropene	19.7		μg/l		20.0		98	70-130		
trans-1,3-Dichloropropene	19.1		μg/l		20.0		96	70-130		
Ethylbenzene	21.4		μg/l		20.0		107	70-130		
Hexachlorobutadiene	19.1		μg/l		20.0		96	63.3-141		
2-Hexanone (MBK)	22.1		μg/l		20.0		111	70-130		
Isopropylbenzene	17.8		μg/l		20.0		89	70-130		
4-Isopropyltoluene	17.1		μg/l		20.0		86	70-130		
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130		
4-Methyl-2-pentanone (MIBK)	20.9		μg/l		20.0		104	40-157		
Methylene chloride	19.1		μg/l		20.0		96	70-130		
Naphthalene	16.7		μg/l		20.0		83	70-130		
n-Propylbenzene	19.0		μg/l		20.0		95	70-130		
Styrene	21.8		μg/l		20.0		109	70-130		
1,1,1,2-Tetrachloroethane	22.4		μg/l		20.0		112	70-130		
1,1,2,2-Tetrachloroethane	21.2		μg/l		20.0		106	70-130		
Tetrachloroethene	21.7		μg/l		20.0		108	70-130		
Toluene	21.1		μg/l		20.0		105	70-130		
1,2,3-Trichlorobenzene	20.5		μg/l		20.0		103	70-130		
1,2,4-Trichlorobenzene	19.4		μg/l		20.0		97	70-130		
1,3,5-Trichlorobenzene	20.2		μg/l		20.0		101	70-130		
1,1,1-Trichloroethane	20.6		μg/l		20.0		103	70-130		
1,1,2-Trichloroethane	21.2		μg/l		20.0		106	70-130		
Trichloroethene	22.7		μg/l		20.0		113	70-130		
Trichlorofluoromethane (Freon 11)	22.3		μg/l		20.0		112	61.9-167		
1,2,3-Trichloropropane	22.9		μg/l		20.0		114	70-130		
1,2,4-Trimethylbenzene	19.2		μg/l		20.0		96	70-130		
1,3,5-Trimethylbenzene	21.8		μg/l		20.0		109	70-130		
Vinyl chloride	21.9		μg/l		20.0		109	70-130		
m,p-Xylene	44.4		μg/l		40.0		111	70-130		
o-Xylene	22.3		μg/l		20.0		112	70-130		
Tetrahydrofuran	21.4		μg/l		20.0		107	70-130		
Ethyl ether	20.9		μg/l		20.0		105	70-133		
Tert-amyl methyl ether	22.5		μg/l		20.0		112	70-130		
Ethyl tert-butyl ether	19.8		μg/l		20.0		99	70-130		
Di-isopropyl ether	20.8		μg/l		20.0		104	70-130		
Tert-Butanol / butyl alcohol	198		μg/l		200		99	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9090025 - SW846 5030 Water MS										
LCS (9090025-BS1)										
Prepared & Analyzed: 03-Sep-09										
1,4-Dioxane	227		μg/l		200		113	50.6-156		
trans-1,4-Dichloro-2-butene	19.0		μg/l		20.0		95	70-130		
Ethanol	474		μg/l		400		119	70-130		
Surrogate: 4-Bromofluorobenzene	52.8		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	51.9		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.6		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		
LCS Dup (9090025-BSD1)										
Prepared & Analyzed: 03-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.6		μg/l		20.0		118	70-130	8	25
Acetone	21.4		μg/l		20.0		107	52.2-144	5	50
Acrylonitrile	19.9		μg/l		20.0		99	70-130	6	25
Benzene	19.7		μg/l		20.0		98	70-130	4	25
Bromobenzene	20.5		μg/l		20.0		103	70-130	6	25
Bromochloromethane	19.8		μg/l		20.0		99	70-130	8	25
Bromodichloromethane	21.3		μg/l		20.0		107	70-130	3	25
Bromoform	16.4		μg/l		20.0		82	70-130	5	25
Bromomethane	14.0		μg/l		20.0		70	40-167	7	50
2-Butanone (MEK)	23.6		μg/l		20.0		118	57.7-141	5	50
n-Butylbenzene	16.1		μg/l		20.0		81	70-130	2	25
sec-Butylbenzene	18.3		μg/l		20.0		91	70-130	4	25
tert-Butylbenzene	18.9		μg/l		20.0		94	70-130	6	25
Carbon disulfide	17.2		μg/l		20.0		86	70-130	4	25
Carbon tetrachloride	19.7		μg/l		20.0		98	70-130	6	25
Chlorobenzene	20.8		μg/l		20.0		104	70-130	6	25
Chloroethane	17.6		μg/l		20.0		88	65.1-130	1	50
Chloroform	19.4		μg/l		20.0		97	70-130	4	25
Chloromethane	15.3		μg/l		20.0		76	70-130	7	25
2-Chlorotoluene	20.9		μg/l		20.0		105	70-130	3	25
4-Chlorotoluene	21.4		μg/l		20.0		107	70-130	6	25
1,2-Dibromo-3-chloropropane	18.3		μg/l		20.0		92	70-130	0.9	25
Dibromochloromethane	20.3		μg/l		20.0		102	55.6-155	7	50
1,2-Dibromoethane (EDB)	22.1		μg/l		20.0		110	70-130	3	25
Dibromomethane	20.1		μg/l		20.0		101	70-130	0.7	25
1,2-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	1	25
1,3-Dichlorobenzene	22.1		μg/l		20.0		110	70-130	3	25
1,4-Dichlorobenzene	18.8		μg/l		20.0		94	70-130	1	25
Dichlorodifluoromethane (Freon12)	16.0		μg/l		20.0		80	45.8-135	5	50
1,1-Dichloroethane	18.1		μg/l		20.0		91	70-130	3	25
1,2-Dichloroethane	20.8		μg/l		20.0		104	70-130	4	25
1,1-Dichloroethene	20.4		μg/l		20.0		102	70-130	4	25
cis-1,2-Dichloroethene	20.8		μg/l		20.0		104	70-130	4	25
trans-1,2-Dichloroethene	18.7		μg/l		20.0		93	70-130	5	25
1,2-Dichloropropane	20.0		μg/l		20.0		100	70-130	3	25
1,3-Dichloropropane	21.3		μg/l		20.0		107	70-130	0.3	25
2,2-Dichloropropane	14.8		μg/l		20.0		74	70-130	14	25
1,1-Dichloropropene	20.1		μg/l		20.0		100	70-130	4	25
cis-1,3-Dichloropropene	18.8		μg/l		20.0		94	70-130	5	25
trans-1,3-Dichloropropene	18.7		μg/l		20.0		93	70-130	2	25
Ethylbenzene	20.4		μg/l		20.0		102	70-130	5	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9090025 - SW846 5030 Water MS										
LCS Dup (9090025-BSD1)										
Prepared & Analyzed: 03-Sep-09										
Hexachlorobutadiene	19.0		μg/l		20.0		95	63.3-141	0.7	50
2-Hexanone (MBK)	22.2		μg/l		20.0		111	70-130	0.1	25
Isopropylbenzene	17.9		μg/l		20.0		90	70-130	0.6	25
4-Isopropyltoluene	16.7		μg/l		20.0		84	70-130	2	25
Methyl tert-butyl ether	19.7		μg/l		20.0		98	70-130	3	25
4-Methyl-2-pentanone (MIBK)	21.4		μg/l		20.0		107	40-157	2	50
Methylene chloride	19.2		μg/l		20.0		96	70-130	0.6	25
Naphthalene	16.3		μg/l		20.0		82	70-130	2	25
n-Propylbenzene	18.2		μg/l		20.0		91	70-130	4	25
Styrene	20.9		μg/l		20.0		104	70-130	4	25
1,1,1,2-Tetrachloroethane	21.9		μg/l		20.0		110	70-130	2	25
1,1,2,2-Tetrachloroethane	21.0		μg/l		20.0		105	70-130	1	25
Tetrachloroethene	21.6		μg/l		20.0		108	70-130	0.4	25
Toluene	20.1		μg/l		20.0		100	70-130	5	25
1,2,3-Trichlorobenzene	19.6		μg/l		20.0		98	70-130	4	25
1,2,4-Trichlorobenzene	18.4		μg/l		20.0		92	70-130	5	25
1,3,5-Trichlorobenzene	18.7		μg/l		20.0		93	70-130	8	25
1,1,1-Trichloroethane	19.4		μg/l		20.0		97	70-130	6	25
1,1,2-Trichloroethane	20.1		μg/l		20.0		100	70-130	5	25
Trichloroethene	21.8		μg/l		20.0		109	70-130	4	25
Trichlorofluoromethane (Freon 11)	20.9		μg/l		20.0		105	61.9-167	7	50
1,2,3-Trichloropropane	23.0		μg/l		20.0		115	70-130	0.5	25
1,2,4-Trimethylbenzene	18.5		μg/l		20.0		92	70-130	4	25
1,3,5-Trimethylbenzene	21.1		μg/l		20.0		105	70-130	3	25
Vinyl chloride	19.9		μg/l		20.0		99	70-130	10	25
m,p-Xylene	43.5		μg/l		40.0		109	70-130	2	25
o-Xylene	21.7		μg/l		20.0		109	70-130	3	25
Tetrahydrofuran	20.6		μg/l		20.0		103	70-130	4	25
Ethyl ether	19.4		μg/l		20.0		97	70-133	8	50
Tert-amyl methyl ether	22.2		μg/l		20.0		111	70-130	1	25
Ethyl tert-butyl ether	18.8		μg/l		20.0		94	70-130	5	25
Di-isopropyl ether	19.6		μg/l		20.0		98	70-130	6	25
Tert-Butanol / butyl alcohol	197		μg/l		200		98	70-130	0.6	25
1,4-Dioxane	220		μg/l		200		110	50.6-156	3	25
trans-1,4-Dichloro-2-butene	18.7		μg/l		20.0		93	70-130	2	25
Ethanol	494		μg/l		400		123	70-130	4	30
Surrogate: 4-Bromofluorobenzene	52.4		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.3		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	50.4 52.4		μg/l μg/l		50.0 50.0		101 105	70-130 70-130		
Batch 9090031 - SW846 5030 Water MS			. •							
Blank (9090031-BLK1)										
Prepared & Analyzed: 01-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
2.5. Hoorior offictibile	DIVE		P9/1	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9090031 - SW846 5030 Water MS		0								
Blank (9090031-BLK1)										
Prepared & Analyzed: 01-Sep-09										
	BRL		//	0.5						
Bromodichloromethane Bromoform	BRL		μg/l	0.5 1.0						
Bromomethane	BRL		μg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
	BRL		μg/l	1.0						
n-Butylbenzene	BRL		µg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						
tert-Butylbenzene Carbon disulfide	BRL		μg/l	5.0						
			μg/l							
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorosthana	BRL		μg/l	1.0						
Chloroform	BRL		μg/l	2.0						
Chlorosophana	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene	BRL		μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l "	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l "	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l "	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l "	1.0						
2,2-Dichloropropane	BRL		μg/l 	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l 	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l 	0.5						
2-Hexanone (MBK)	BRL		μg/l 	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l 	1.0						
n-Propylbenzene	BRL		μg/l 	1.0						
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9090031 - SW846 5030 Water MS										
Blank (9090031-BLK1)										
Prepared & Analyzed: 01-Sep-09										
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l	400						
Surrogate: 4-Bromofluorobenzene	29.1		μg/l		30.0		97	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.2 27.8		μg/l μg/l		30.0 30.0		97 93	70-130 70-130		
Surrogate: Dibromofluoromethane	28.3		μg/l		30.0		94	70-130		
LCS (9090031-BS1)										
Prepared & Analyzed: 01-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	27.5	QM9	μg/l		20.0		137	70-130		
Acetone	29.6	QM9	μg/l		20.0		148	52.2-144		
Acrylonitrile	25.3		μg/l		20.0		127	70-130		
Benzene	22.1		μg/l		20.0		111	70-130		
Bromobenzene	22.4		μg/l		20.0		112	70-130		
Bromochloromethane	21.4		μg/l		20.0		107	70-130		
Bromodichloromethane	23.6		μg/l		20.0		118	70-130		
Bromoform	21.0		μg/l		20.0		105	70-130		
Bromomethane	22.3		μg/l		20.0		111	40-167		
2-Butanone (MEK)	28.5	QM9	μg/l		20.0		142	57.7-141		
n-Butylbenzene	23.1		μg/l		20.0		116	70-130		
sec-Butylbenzene	24.9		μg/l		20.0		124	70-130		
tert-Butylbenzene	24.0		μg/l		20.0		120	70-130		
Carbon disulfide	21.6		μg/l		20.0		108	70-130		
Carbon tetrachloride	21.8		μg/l		20.0		109	70-130		
Chlorobenzene	22.9		μg/l		20.0		115	70-130		
Chloroethane	20.3		μg/l		20.0		101	65.1-130		
Chloroform	20.9		μg/l		20.0		105	70-130		
Chloromethane	20.7		μg/l		20.0		104	70-130		
2-Chlorotoluene	21.3		μg/l		20.0		107	70-130		
4-Chlorotoluene	22.8		μg/l		20.0		114	70-130		
1,2-Dibromo-3-chloropropane	27.5	QM9	μg/l		20.0		138	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9090031 - SW846 5030 Water MS										
LCS (9090031-BS1)										
Prepared & Analyzed: 01-Sep-09										
Dibromochloromethane	19.7		μg/l		20.0		99	55.6-155		
1,2-Dibromoethane (EDB)	23.3		μg/l		20.0		117	70-130		
Dibromomethane	22.2		μg/l		20.0		111	70-130		
1,2-Dichlorobenzene	22.6		μg/l		20.0		113	70-130		
1,3-Dichlorobenzene	23.6		μg/l		20.0		118	70-130		
1,4-Dichlorobenzene	22.2		μg/l		20.0		111	70-130		
Dichlorodifluoromethane (Freon12)	20.9		μg/l		20.0		104	45.8-135		
1,1-Dichloroethane	22.1		μg/l		20.0		110	70-130		
1,2-Dichloroethane	19.9		μg/l		20.0		100	70-130		
1,1-Dichloroethene	22.8		μg/l		20.0		114	70-130		
cis-1,2-Dichloroethene	23.2		μg/l		20.0		116	70-130		
trans-1,2-Dichloroethene	21.7		μg/l		20.0		108	70-130		
1,2-Dichloropropane	23.6		μg/l		20.0		118	70-130		
1,3-Dichloropropane	22.0		μg/l		20.0		110	70-130		
2,2-Dichloropropane	22.5		μg/l		20.0		112	70-130		
1,1-Dichloropropene	22.3		μg/l		20.0		112	70-130		
cis-1,3-Dichloropropene	21.5		μg/l		20.0		108	70-130		
trans-1,3-Dichloropropene	20.4		μg/l		20.0		102	70-130		
Ethylbenzene	22.2		μg/l		20.0		111	70-130		
Hexachlorobutadiene	24.8		μg/l		20.0		124	63.3-141		
2-Hexanone (MBK)	25.0		μg/l		20.0		125	70-130		
Isopropylbenzene	19.2		μg/l		20.0		96	70-130		
4-Isopropyltoluene	24.1		μg/l		20.0		120	70-130		
Methyl tert-butyl ether	22.7		μg/l		20.0		114	70-130		
4-Methyl-2-pentanone (MIBK)	25.3		μg/l		20.0		127	40-157		
Methylene chloride	20.6		μg/l		20.0		103	70-130		
Naphthalene	25.7		μg/l		20.0		128	70-130		
n-Propylbenzene	24.1		μg/l		20.0		121	70-130		
Styrene	24.3		μg/l		20.0		122	70-130		
1,1,1,2-Tetrachloroethane	23.3		μg/l		20.0		117	70-130		
1,1,2,2-Tetrachloroethane	23.3		μg/l		20.0		116	70-130		
Tetrachloroethene	21.9		μg/l		20.0		110	70-130		
Toluene	22.0		μg/l		20.0		110	70-130		
1,2,3-Trichlorobenzene	25.8		μg/l		20.0		129	70-130		
1,2,4-Trichlorobenzene	24.6		μg/l		20.0		123	70-130		
1,3,5-Trichlorobenzene	23.3		μg/l		20.0		116	70-130		
1,1,1-Trichloroethane	22.7		μg/l		20.0		113	70-130		
1,1,2-Trichloroethane	24.1		μg/l		20.0		120	70-130		
Trichloroethene	24.0		μg/l		20.0		120	70-130		
Trichlorofluoromethane (Freon 11)	24.0		μg/l		20.0		120	61.9-167		
1,2,3-Trichloropropane	25.0		μg/l		20.0		125	70-130		
1,2,4-Trimethylbenzene	23.0		μg/l		20.0		115	70-130		
1,3,5-Trimethylbenzene	22.8		μg/l		20.0		114	70-130		
Vinyl chloride	25.1		μg/l		20.0		125	70-130		
m,p-Xylene	47.0		μg/l		40.0		118	70-130		
o-Xylene	24.4		μg/l		20.0		122	70-130		
Tetrahydrofuran	23.9		μg/l		20.0		120	70-130		
Ethyl ether	22.7		μg/l		20.0		113	70-133		

Analyta(a)	Dagult	Elea	Limita	*RDL	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*KDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9090031 - SW846 5030 Water MS										
LCS (9090031-BS1)										
Prepared & Analyzed: 01-Sep-09										
Ethyl tert-butyl ether	21.0		μg/l		20.0		105	70-130		
Di-isopropyl ether	21.2		μg/l		20.0		106	70-130		
Tert-Butanol / butyl alcohol	252		μg/l		200		126	70-130		
1,4-Dioxane	259		μg/l		200		130	50.6-156		
trans-1,4-Dichloro-2-butene	23.2		μg/l		20.0		116	70-130		
Ethanol	537	QM9	μg/l		400		134	70-130		
Surrogate: 4-Bromofluorobenzene	29.5		μg/l		30.0		98	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	30.1 27.8		μg/l		30.0 30.0		100 93	70-130 70-130		
Surrogate: 1,2-Dichloroethane-u4 Surrogate: Dibromofluoromethane	28.6		µg/l µg/l		30.0		95 95	70-130 70-130		
•			P3.							
LCS Dup (9090031-BSD1) Prepared & Analyzed: 01-Sep-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.8		μg/l		20.0		129	70-130	6	25
Acetone	25.3		μg/l μg/l		20.0		129	52.2-144	16	50
Acrylonitrile	23.5		μg/l μg/l		20.0		118	70-130	7	25
Benzene	21.6		μg/l		20.0		108	70-130	2	25 25
Bromobenzene	21.6		μg/l		20.0		108	70-130	4	25
Bromochloromethane	21.2		μg/l		20.0		106	70-130	0.7	25
Bromodichloromethane	22.1				20.0		110	70-130	7	25
Bromoform	20.2		μg/l μg/l		20.0		101	70-130	4	25 25
Bromomethane	21.3		μg/l		20.0		107	40-167	4	50
2-Butanone (MEK)	26.0		μg/l		20.0		130	57.7-141	9	50
n-Butylbenzene	22.0		μg/l		20.0		110	70-130	5	25
sec-Butylbenzene	23.2		μg/l		20.0		116	70-130	7	25
tert-Butylbenzene	22.4		μg/l		20.0		112	70-130	7	25
Carbon disulfide	19.9		μg/l		20.0		99	70-130	8	25
Carbon tetrachloride	19.7		μg/l		20.0		99	70-130	10	25
Chlorobenzene	22.3		μg/l		20.0		111	70-130	3	25
Chloroethane	19.1		μg/l		20.0		95	65.1-130	6	50
Chloroform	19.4		μg/l		20.0		97	70-130	7	25
Chloromethane	19.1		μg/l		20.0		95	70-130	8	25
2-Chlorotoluene	20.3		μg/l		20.0		102	70-130	5	25
4-Chlorotoluene	22.0		μg/l		20.0		110	70-130	3	25 25
1,2-Dibromo-3-chloropropane	22.6		μg/l		20.0		113	70-130	19	25
Dibromochloromethane	19.0		μg/l		20.0		95	55.6-155	4	50
1,2-Dibromoethane (EDB)	22.8		μg/l		20.0		114	70-130	2	25
Dibromomethane	21.4		μg/l		20.0		107	70-130	4	25
1,2-Dichlorobenzene	21.8		μg/l		20.0		109	70-130	3	25
1,3-Dichlorobenzene	22.3		μg/l		20.0		112	70-130	6	25
1,4-Dichlorobenzene	21.2		μg/l		20.0		106	70-130	4	25
Dichlorodifluoromethane (Freon12)	18.3		μg/l		20.0		91	45.8-135	13	50
1,1-Dichloroethane	21.4		μg/l		20.0		107	70-130	3	25
1,2-Dichloroethane	19.2		μg/l		20.0		96	70-130	4	25
1,1-Dichloroethene	21.6		μg/l		20.0		108	70-130	5	25
cis-1,2-Dichloroethene	22.3		μg/l		20.0		112	70-130	4	25
trans-1,2-Dichloroethene	20.4		μg/l		20.0		102	70-130	6	25
1,2-Dichloropropane	23.2		μg/l		20.0		116	70-130	2	25
1,3-Dichloropropane	21.9		μg/l		20.0		109	70-130	0.7	25
2,2-Dichloropropane	20.3		μg/l		20.0		102	70-130	10	25 25
1,1-Dichloropropene	20.8		μg/l		20.0		104	70-130	7	25

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		riag	Omis	·KDL	Level	Resuit	70KEC	Lillits	KFD	Lillit
Batch 9090031 - SW846 5030 Water MS	S									
LCS Dup (9090031-BSD1)										
Prepared & Analyzed: 01-Sep-09										
cis-1,3-Dichloropropene	20.1		μg/l		20.0		100	70-130	7	25
trans-1,3-Dichloropropene	18.9		μg/l		20.0		94	70-130	8	25
Ethylbenzene	21.3		μg/l		20.0		106	70-130	4	25
Hexachlorobutadiene	22.4		μg/l		20.0		112	63.3-141	10	50
2-Hexanone (MBK)	23.6		μg/l		20.0		118	70-130	6	25
Isopropylbenzene	18.5		μg/l		20.0		92	70-130	4	25
4-Isopropyltoluene	22.2		μg/l		20.0		111	70-130	8	25
Methyl tert-butyl ether	21.3		μg/l		20.0		107	70-130	6	25
4-Methyl-2-pentanone (MIBK)	22.2		μg/l		20.0		111	40-157	13	50
Methylene chloride	19.4		μg/l		20.0		97	70-130	6	25
Naphthalene	23.3		μg/l		20.0		117	70-130	10	25
n-Propylbenzene	23.5		μg/l		20.0		117	70-130	3	25
Styrene	23.0		μg/l		20.0		115	70-130	5	25
1,1,1,2-Tetrachloroethane	22.5		μg/l		20.0		113	70-130	4	25
1,1,2,2-Tetrachloroethane	23.7		μg/l		20.0		118	70-130	2	25
Tetrachloroethene	20.5		μg/l		20.0		102	70-130	7	25
Toluene	20.4		μg/l		20.0		102	70-130	8	25
1,2,3-Trichlorobenzene	23.8		μg/l		20.0		119	70-130	8	25
1,2,4-Trichlorobenzene	23.1		μg/l		20.0		116	70-130	6	25
1,3,5-Trichlorobenzene	21.4		μg/l		20.0		107	70-130	8	25
1,1,1-Trichloroethane	20.8		μg/l		20.0		104	70-130	9	25
1,1,2-Trichloroethane	23.1		μg/l		20.0		116	70-130	4	25
Trichloroethene	21.8		μg/l		20.0		109	70-130	9	25
Trichlorofluoromethane (Freon 11)	22.9		μg/l		20.0		114	61.9-167	5	50
1,2,3-Trichloropropane	23.7		μg/l		20.0		119	70-130	5	25
1,2,4-Trimethylbenzene	21.8		μg/l		20.0		109	70-130	6	25
1,3,5-Trimethylbenzene	22.1		μg/l		20.0		110	70-130	3	25
Vinyl chloride	23.1		μg/l		20.0		116	70-130	8	25
m,p-Xylene	46.2		μg/l		40.0		116	70-130	2	25
o-Xylene	23.1		μg/l		20.0		116	70-130	6	25
Tetrahydrofuran	24.1		μg/l		20.0		120	70-130	0.6	25
Ethyl ether	21.0		μg/l		20.0		105	70-133	7	50
Tert-amyl methyl ether	21.5		μg/l		20.0		107	70-130	6	25
Ethyl tert-butyl ether	20.0		μg/l		20.0		100	70-130	5	25
Di-isopropyl ether	20.2		μg/l		20.0		101	70-130	5	25
Tert-Butanol / butyl alcohol	220		μg/l		200		110	70-130	13	25
1,4-Dioxane	222		μg/l		200		111	50.6-156	15	25
trans-1,4-Dichloro-2-butene	21.3		μg/l		20.0		106	70-130	9	25
Ethanol	512		μg/l		400		128	70-130	5	30
Surrogate: 4-Bromofluorobenzene	29.2		μg/l		30.0		97	70-130		
Surrogate: Toluene-d8	29.2		μg/l		30.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	27.6 28.8		μg/l μα/l		30.0 30.0		92 96	70-130 70-130		
		40	μg/l		30.0		90	10-130		
<u></u>	Source: SA99960	-10								
Prepared & Analyzed: 01-Sep-09	22.0		//		20.0	DDI	144	70 400		
Benzene	22.9		μg/l		20.0	BRL	114	70-130		
Chlorobenzene	25.0		μg/l		20.0	BRL	125	70-130		
1,1-Dichloroethene	24.8		μg/l		20.0	BRL	124	70-130		
Toluene	22.8		μg/l "		20.0	BRL	114	70-130		
Trichloroethene	23.7		μg/l		20.0	BRL	118	70-130		

This laboratory report is not valid without an authorized signature on the cover page.

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9090031 - SW846 5030 Water	r MS									
Matrix Spike (9090031-MS1)	Source: SA9996	0-10								
Prepared & Analyzed: 01-Sep-09										
Surrogate: 4-Bromofluorobenzene	30.3		μg/l		30.0		101	70-130		
Surrogate: Toluene-d8	30.5		μg/l		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.2		μg/l		30.0		87	70-130		
Surrogate: Dibromofluoromethane	29.4		μg/l		30.0		98	70-130		
Matrix Spike Dup (9090031-MSD1)	Source: SA9996	0-10								
Prepared & Analyzed: 01-Sep-09										
Benzene	21.6		μg/l		20.0	BRL	108	70-130	6	30
Chlorobenzene	24.8		μg/l		20.0	BRL	124	70-130	0.6	30
1,1-Dichloroethene	24.8		μg/l		20.0	BRL	124	70-130	0	30
Toluene	23.0		μg/l		20.0	BRL	115	70-130	0.5	30
Trichloroethene	23.2		μg/l		20.0	BRL	116	70-130	2	30
Surrogate: 4-Bromofluorobenzene	31.8		μg/l		30.0		106	70-130		
Surrogate: Toluene-d8	30.0		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.4		μg/l		30.0		88	70-130		
Surrogate: Dibromofluoromethane	29.8		μg/l		30.0		100	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

	Result	Elec	Unita	*RDL	Spike	Source	%REC	%REC	RPD	RPD
Analyte(s)	Result	Flag	Units	·KDL	Level	Result	70KEC	Limits	KPD	Limit
Batch 9082016 - SW846 3510C										
Blank (9082016-BLK1)										
Prepared: 28-Aug-09 Analyzed: 30-Aug-09										
Acenaphthene	BRL		μg/l	2.50						
Acenaphthylene	BRL		μg/l	2.50						
Anthracene	BRL		µg/l	2.50						
Benzo (a) anthracene	BRL		µg/l	2.50						
Benzo (a) pyrene	BRL		µg/l	2.50						
Benzo (b) fluoranthene	BRL		µg/l	2.50						
Benzo (g,h,i) perylene	BRL		µg/l	2.50						
Benzo (k) fluoranthene	BRL		µg/l	2.50						
Chrysene	BRL		μg/l	2.50						
Dibenzo (a,h) anthracene	BRL		µg/l	2.50						
Fluoranthene	BRL		µg/l	2.50						
Fluorene	BRL		µg/l	2.50						
Indeno (1,2,3-cd) pyrene	BRL		µg/l	2.50						
1-Methylnaphthalene	BRL		μg/l	2.50						
2-Methylnaphthalene	BRL		μg/l	2.50						
Naphthalene	BRL		μg/l	2.50						
Phenanthrene	BRL		μg/l	2.50						
Pyrene	BRL		μg/l	2.50						
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	28.8 26.7		μg/l μg/l		50.0 50.0		58 53	30-130 30-130		
Surrogate. Terphenyr ar-	20.7		рул		00.0		00	00 700		
<u>_CS (9082016-BS1)</u>										
Prepared: 28-Aug-09 Analyzed: 30-Aug-09										
Acenaphthene	41.7		µg/l	2.50	50.0		83	40-140		
Acenaphthylene	38.5		μg/l	2.50	50.0		77	40-140		
Anthracene	38.9		μg/l	2.50	50.0		78	40-140		
	38.9 37.6		μg/l μg/l	2.50 2.50	50.0 50.0		78 75	40-140 40-140		
Benzo (a) anthracene										
Benzo (a) anthracene Benzo (a) pyrene	37.6		μg/l	2.50	50.0		75	40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene	37.6 39.5		μg/l μg/l	2.50 2.50	50.0 50.0		75 79	40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene	37.6 39.5 39.0		μg/l μg/l μg/l	2.50 2.50 2.50	50.0 50.0 50.0		75 79 78	40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	37.6 39.5 39.0 39.2		μg/l μg/l μg/l	2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0		75 79 78 78	40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene	37.6 39.5 39.0 39.2 40.5		µg/I µg/I µg/I µg/I	2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0		75 79 78 78 81	40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene	37.6 39.5 39.0 39.2 40.5 38.5		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77	40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene	37.6 39.5 39.0 39.2 40.5 38.5 45.3		hâ\I hâ\I hâ\I hâ\I hâ\I	2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91	40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1		hâ\l hâ\l hâ\l hâ\l hâ\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82	40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8		hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6		hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7		hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6		hā\l hā\l hā\l hā\l hā\l hā\l hā\l hā\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 30-130		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 LCS Dup (9082016-BSD1)	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6		hā\l hā\l hā\l hā\l hā\l hā\l hā\l hā\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 30-130		
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 LCS Dup (9082016-BSD1) Prepared: 28-Aug-09 Analyzed: 30-Aug-09 Acenaphthene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6		hā\l hā\l hā\l hā\l hā\l hā\l hā\l hā\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 30-130	4	20
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 LCS Dup (9082016-BSD1) Prepared: 28-Aug-09 Analyzed: 30-Aug-09 Acenaphthene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 30-130 30-130	4 5	20 20
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 LCS Dup (9082016-BSD1) Prepared: 28-Aug-09 Analyzed: 30-Aug-09 Acenaphthene Acenaphthylene	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6 31.0 28.1		hā\l hā\l hā\l hā\l hā\l hā\l hā\l hā\l	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73 62 56	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140		
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 LCS Dup (9082016-BSD1) Prepared: 28-Aug-09 Analyzed: 30-Aug-09	37.6 39.5 39.0 39.2 40.5 38.5 45.3 41.1 39.6 42.8 37.6 36.7 37.1 37.7 36.6 31.0 28.1		hall hall hall hall hall hall hall hall	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		75 79 78 78 81 77 91 82 79 86 75 73 74 75 73 62 56	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 30-130 30-130 40-140 40-140	5	20

Semivolatile Organic Compounds by GCMS - Quality Control

				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag Uni	its *RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9082016 - SW846 3510C									
_CS Dup (9082016-BSD1)									
Prepared: 28-Aug-09 Analyzed: 30-Aug-0	09								
Benzo (b) fluoranthene	38.4	μg/l	2.50	50.0		77	40-140	2	20
Benzo (g,h,i) perylene	37.6	μg/l	2.50	50.0		75	40-140	4	20
Benzo (k) fluoranthene	34.9	μg/l	2.50	50.0		70	40-140	15	20
Chrysene	36.4	μg/l	2.50	50.0		73	40-140	6	20
Dibenzo (a,h) anthracene	41.8	μg/l	2.50	50.0		84	40-140	8	20
Fluoranthene	38.8	μg/l	2.50	50.0		78	40-140	6	20
Fluorene	37.8	μg/l	2.50	50.0		76	40-140	4	20
Indeno (1,2,3-cd) pyrene	40.2	μg/l	2.50	50.0		80	40-140	6	20
1-Methylnaphthalene	36.5	μg/l	2.50	50.0		73	40-140	3	20
2-Methylnaphthalene	34.8	μg/l	2.50	50.0		70	40-140	5	20
Naphthalene	35.5	μg/l	2.50	50.0		71	40-140	5	20
Phenanthrene	36.4	μg/l	2.50	50.0		73	40-140	4	20
Pyrene	35.2	μg/l	2.50	50.0		70	40-140	4	20
Surrogate: 2-Fluorobiphenyl	30.9	μg/l		50.0		62	30-130		
Surrogate: Terphenyl-dl4	28.5	μg/l		50.0		57	30-130		
Acenaphthene	BRL	μg/l	5.38		BRL				50
Acenaphthylene	BRL				BRL				50
Anthracene	BRL	μg/l			BRL				50
	BRL	µg/l							
Benzo (a) anthracene	DLL								50
Renzo (a) pyrene		μg/l			BRL				50 50
	BRL	μg/l	5.38		BRL				50
Benzo (b) fluoranthene	BRL BRL	μg/l μg/l	5.38 5.38		BRL BRL				50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene	BRL BRL BRL	µg/l µg/l µg/l	5.38 5.38 5.38		BRL BRL BRL				50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL BRL BRL BRL	µg/l µg/l µg/l	5.38 5.38 5.38 5.38		BRL BRL BRL BRL				50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene	BRL BRL BRL BRL BRL	µg/l µg/l µg/l µg/l	5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL				50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene	BRL BRL BRL BRL BRL BRL	h8\/ h8\/ h8\/ h8\/ h8\/ h8\/ h8\/	5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene	BRL BRL BRL BRL BRL BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene	BRL BRL BRL BRL BRL BRL BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	BRL BRL BRL BRL BRL BRL BRL BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene	BRL BRL BRL BRL BRL BRL BRL BRL BRL	hâ\; ha\; ha\; ha\; ha\; ha\; ha\; ha\; ha	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene	BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL BRL BRL BRL BRL BRL BRL BRL BRL				50 50 50 50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL				50 50 50 50 50 50 50 50 50 50
Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38		BRL				50 50 50 50 50 50 50 50 50 50 50
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene Naphthalene	BRL	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38	53.8	BRL	63	30-130		50 50 50 50 50 50 50 50 50 50

Notes and Definitions

CAL1 Analyte quantified by quadratic equation type calibration.

CAL2 Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the

20% Drift/Difference criteria

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were

accepted based on LCS/LCSD or SRM recoveries within the control limits.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

	· .				
E.	PECTI		1		
	RUMA)	
TECH	CIVIN	1	4	-	-
HOLE	VIICA				
Š	T. IN				

Report To: CEA

Invoice To: CEA

Page_

(west

Bookston, was

127 Horavell 5T

Concerd, Not

Project Mgr.: 511 Hapk

P.O. No.:

RQN:

Sampler(s): B. Hefter

Location: Site Name

State:

CHAIN OF CUSTODY RECOR

Special Handling:

Standard TAT The Noveled of

i f che si	
Project No.: RT-	Jan Si
90-1100	 Sumples disposed of after 60 otherwise instructed.

	Figure 1	and a
bom Seffertes Residence	RI-0011-06	Rush LAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes Samples disposed of after 60 days unless otherwise instructed.
Sidene		d: ory approval. eded for rushes days unless

I=N ₄₂ S2O ₃ 2=HCl 3=H ₂ S 8= N ₃ HSO ₂ 0=	3=H ₂ SO ₄ 4=HNO ₃	5=NaOH 6=Ascorbic Acid	=Ascorbic Ac		7=СН ₃ ОН	HO		. 1		List preservative code below:	eservi	ative	Code	belo		QA/QC Reporting Notes: (check as needed)
. II			ā:		Con	Containers:	3				A	Analyses:	es:			
DW=Drinking Water GW=Groundwater O=Oil SW=Surface Water SO=Soil X1=X2=	2	-Sludge A=Air X3=	unups.	ials	Glass	lass		0	.2	70	vii in rii ni		catasaju	n odnos		☐ Provide MA DEP MCP CAM Report ☐ Provide CT DPH RCP Report QA/QC Reporting Level
G=Grab C=0	C=Composite	hat e	lous	OA V	mber	lear (lastic	820	529	82	A. Aire		Bill Bir bulains	ngilkgi	h.,	Other No QC
Lab Id: Sample Id:	Date:	Time:	Type	# of V	# of A	# of C	# of P	Voc	voc	PAH	Concretos.		g de la bara La caracteria	EU BIL E		State specific reporting standards:
Ma	8/25/09	10:20	G-60 G	6	2			1		1			100	1000		SUP IN
2000		0:10		2	2			1		1		in his	U.G. 38, 38	co.li		
P. Rew-3	e de la constante de la consta	oh ib		4	2	1.591		9		1			SJA ALS	mir Sala		
- Oll Mury		10:40	107 (0)3	2	2		ii-ii-d	1		1			1000	LLIE LLIE		
Some S	E E E	11:05	ins ins	4	2			1		1		50	169.0	2.1		15 May 15
Ob mu-6	FARE LE	11:20		4	4	100		1	3010	1	801		16.0	nic es		E E
- 07 mm-7	. 11	24:45		4	٢			1		1	200			i i c		Constitution of the consti
1-0x Rw-7	811 811 811 811	11:40	<	S	12	109	op Ri	1	Ş!!	<	16.0		S D	100		
1- B PDW-1	+	12:50	DW +	6	1902		(3)	1	1	ŠĄ.	-178		6.0	100		L pro
1) Drain Clux	8/25/09	51:8	6W 6	6	3	istas istas	108	1		1	2 21		10		-	
EDD Format PDF + Excel		230 230	, Re	Relinquished by:	ished	by:		. 01	1	1	Rec	Received by		11	i pe	Date Time
BE-mail to Whoppen @ C	span @ CEA-Inc, con		Une	1	50	7			CA	3	(A)	M. M.	8	8		5 h 1 6 gless
Condition upon receipt:	mbient doc c	2,3	,	0				0.016			- 10					

Report Date: 08-Jul-09 10:37

\checkmark	Final Report
	Re-Issued Report
	Revised Report

HANIBAL TECHNOLOGY Laboratory Report

CEA, Inc 62B Hall Street Concord, NH 03301 Attn: William Hopper

Project: Jeffries Residence - Landgrove, VT

Project RI-0011-06

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA96879-01	MW-5	Ground Water	24-Jun-09 13:00	25-Jun-09 17:55
SA96879-02	MW-4	Ground Water	24-Jun-09 13:15	25-Jun-09 17:55
SA96879-03	MW-6	Ground Water	24-Jun-09 13:30	25-Jun-09 17:55
SA96879-04	MW-7	Ground Water	24-Jun-09 13:45	25-Jun-09 17:55

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 30 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 5.6 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 2.2 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260B

Laboratory Control Samples:

9070039-BS1

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

1,1,2-Trichlorotrifluoroethane (Freon 113)

Ethanol

9070225-BS1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

4-Methyl-2-pentanone (MIBK)

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

Bromomethane

9070225-BSD1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

4-Methyl-2-pentanone (MIBK)

Samples:

S906205-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

4-Methyl-2-pentanone (MIBK)

Bromomethane

This affected the following samples:

MW-4

MW-5

MW-7

SW846 8270C

SW846 8270C

Duplicates:

9062199-DUP1 Source: SA96879-01

Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results

Phenanthrene

Elevated Reporting Limits due to limited sample volume.

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds										
Prepared	by method SW846 5030 Water	MS									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fr 113)	eorBRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Χ
67-64-1	Acetone	BRL		μg/l	10.0	1	"	"	"	"	X
107-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	u u	"	"	X
71-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	u u	"	"	
74-97-5	Bromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	"	"	"	"	X
75-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	X
74-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	X
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	X
104-51-8	n-Butylbenzene	2.8		μg/l	1.0	1	"	"	"	"	X
135-98-8	sec-Butylbenzene	2.7		μg/l	1.0	1	"	"	"	"	X
98-06-6	tert-Butylbenzene	2.7		μg/l	1.0	1	"	"	"	"	X
75-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	X
56-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	X
108-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
75-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	X
67-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	X
74-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	X
95-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	"	"	"	"	X
124-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	X
74-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	X
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
75-71-8	Dichlorodifluoromethane (Freon	12) BRL		μg/l	2.0	1	"	"	"	"	X
75-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
107-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
75-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
78-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
142-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	X
594-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	u u	"	"	Х
563-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	X
10061-01-5		BRL		μg/l	0.5	1	"	u u	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	u u	"	"	Х
100-41-4	Ethylbenzene	12.3		μg/l	1.0	1	"	"	"	"	X
87-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	4.9		μg/l	1.0	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	4.0		μg/l	1.0	1	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Х
75-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	Χ
91-20-3	Naphthalene	52.0		μg/l	1.0	1	"	"	"	"	Х
103-65-1	n-Propylbenzene	5.2		μg/l	1.0	1	"	"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds										
/olatile (<u> Organic Compounds</u>										
Prepared	l by method SW846 5030 Water M	1S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	"	"	"	"	Χ
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-63-6	1,2,4-Trimethylbenzene	24.9		μg/l	1.0	1	"	"	"	"	Χ
08-67-8	1,3,5-Trimethylbenzene	32.6		μg/l	1.0	1	"	"	"	"	Χ
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
79601-23-	¹ m,p-Xylene	12.2		μg/l	2.0	1	"	"	"	"	Χ
5-47-6	o-Xylene	2.0		μg/l	1.0	1	"	"	"	"	Χ
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
0-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
4-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	100		70-13	30 %		"	"	"	"	
037-26-5	Toluene-d8	100		70-13	30 %		"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	108		70-13	30 %		"	"	"		
868-53-7	Dibromofluoromethane	101		70-13	30 %		"	"	"		
emivola	tile Organic Compounds by GCMS										
	SW846 8270C										
-	by method SW846 3510C										
3-32-9	•	BRL		μg/l	8.33	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
08-96-8	Acenaphthene Acenaphthylene	BRL		μg/l	8.33	1	"	"	"	"	X
20-12-7	Anthracene	BRL		μg/l	8.33	1	"	"	"	"	X
6-55-3	Benzo (a) anthracene	BRL		μg/l	8.33	1	"	"	"	"	X
0-32-8	Benzo (a) pyrene	BRL		μg/l	8.33	1		"	"		X
05-99-2	, , , ,	BRL		μg/l	8.33	1		"	"		X
91-24-2	Benzo (b) fluoranthene	BRL		μg/l	8.33	1	"	"	"	"	X
07-08-9	Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL		μg/l	8.33	1	"	"	"	"	X
18-01-9	, ,	BRL		μg/l	8.33	1	"	"	"	"	X
10-01-8	Chrysene Dibonzo (a.b.) anthracono	BRL		μg/l	8.33	1		"	"		X
3-70-3	Dibenzo (a,h) anthracene	BRL			8.33	1	"	"	"	"	X
	Elucronthono			μg/l	0.55	'					
06-44-0	Fluoranthene			ua/l	8 33	1	"	"	"	"	V
33-70-3 206-44-0 36-73-7	Fluorene	BRL		μg/l	8.33	1	"	"	"	"	X
06-44-0				µg/l µg/l	8.33 8.33 8.33	1 1 1	" "	" "			X

Sample Identification MW-5 SA96879-01

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by G	GCMS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	8.33	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
85-01-8	Phenanthrene	BRL		μg/l	8.33	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	8.33	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	67		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	45		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile C	Organic Compounds										
Prepared	d by method SW846 5030 Water	MS									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fr 113)	_{eoi} BRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Χ
67-64-1	Acetone	BRL		μg/l	10.0	1	п	"	"	"	Χ
107-13-1	Acrylonitrile	BRL		μg/l	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	3.3		μg/l	1.0	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BRL		μg/l	1.0	1	"	"	"	"	
74-97-5	Bromochloromethane	BRL		μg/l	1.0	1	п	"	"	"	Χ
75-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	п	"	"	"	Χ
75-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BRL		μg/l	2.0	1	п	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	4.4		μg/l	1.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	5.1		μg/l	1.0	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	3.0		μg/l	1.0	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BRL		μg/l	5.0	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-00-3	Chloroethane	BRL		μg/l	2.0	1	п	"	"	"	Χ
67-66-3	Chloroform	BRL		μg/l	1.0	1	п	"	"	"	Χ
74-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1	п	"	"	"	
106-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	n n	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0	1	п	"	"	"	Χ
124-48-1	Dibromochloromethane	BRL		μg/l	0.5	1	п	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon1	2) BRL		μg/l	2.0	1	H .	"	"	"	Χ
75-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	п	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	n n	"	"	"	X
75-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	H .	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	H .	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	п	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	H .	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	H .	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	H .	"	"	"	Χ
100-41-4	Ethylbenzene	34.7		μg/l	1.0	1	п	"	"	"	X
87-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	п	"	"	"	Χ
98-82-8	Isopropylbenzene	11.7		μg/l	1.0	1	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	3.3		μg/l	1.0	1	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	u u	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	u u	"	"	Χ
91-20-3	Naphthalene	78.2		μg/l	1.0	1	"	u u	"	"	Χ
103-65-1	n-Propylbenzene	14.7		μg/l	1.0	1	"	"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile C	Organic Compounds										
Prepared	l by method SW846 5030 Water M	IS									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	п	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	n n	"	"	"	Χ
108-88-3	Toluene	BRL		μg/l	1.0	1	n n	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	n n	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	п	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	n n	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	п	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	п	"	"	"	Х
79-01-6	Trichloroethene	BRL		μg/l	1.0	1	п	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	п	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	n n	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	87.9		μg/l	1.0	1	n .	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	34.2		μg/l	1.0	1	n n	II .	"	"	Х
75-01-4	Vinyl chloride	BRL		μg/l	1.0	1	п	"	"	"	Х
179601-23-	¹ m,p-Xylene	32.1		μg/l	2.0	1		"	"	"	Х
95-47-6	o-Xylene	33.2		μg/l	1.0	1	"	"	"		Х
109-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	п	"	"	"	
60-29-7	Ethyl ether	BRL		μg/l	1.0	1		"	"	"	
994-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"		Х
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1		"	"	"	Х
108-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	n n	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"		Χ
123-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	п	"	"	"	Х
64-17-5	Ethanol	BRL		μg/l	400	1	n.	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	99		70-13	30 %		п	"	"		
	Toluene-d8	102		70-13	30 %		п	"	"		
	1,2-Dichloroethane-d4	95		70-13				"	"	"	
	Dibromofluoromethane	90		70-13			п	"	"		
	tile Organic Compounds by GCMS										
	SW846 8270C										
	I by method SW846 3510C										
33-32-9	•	BRL		μg/l	5.43	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
208-96-8	Acenaphthene	BRL		μg/l	5.43	1	"	"	"	"	X
	Acenaphthylene	BRL			5.43	1		"			X
120-12-7	Anthracene			μg/l	5.43		"				X
56-55-3	Benzo (a) anthracene	BRL BRL		µg/l	5.43 5.43	1 1		"			X
50-32-8 205-99-2	Benzo (a) pyrene	BRL		µg/l	5.43	1	п	"			X
	Benzo (b) fluoranthene			µg/l	5.43	1		"		"	X
191-24-2	Benzo (g,h,i) perylene	BRL		µg/l	5.43 5.43	1		"			X
207-08-9	Benzo (k) fluoranthene	BRL		μg/l				"			X
218-01-9	Chrysene	BRL		μg/l	5.43	1		"			
53-70-3	Dibenzo (a,h) anthracene	BRL		μg/l	5.43	1		"			X
206-44-0	Fluoranthene	BRL		μg/l	5.43	1	"	"			X
36-73-7	Fluorene	BRL		μg/l	5.43	1	"	"	"		X
193-39-5	Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.43	1	"	"	"		Х
90-12-0	1-Methylnaphthalene	12.6		μg/l 	5.43	1					
91-57-6	2-Methylnaphthalene	BRL		μg/l	5.43	1	"	"	"	"	Χ

Sample Identification MW-4 SA96879-02

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	IS									
PAHs by	SW846 8270C										
Prepared	by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	5.43	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.43	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.43	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	69		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	61		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:30

76-13-1 1,1,2-Tr 113) 67-64-1 Accetone 107-13-1 Acrylon 71-43-2 Benzen 108-86-1 Bromob 74-97-5 Bromoc 75-27-4 Bromod 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 98-06-6 tert-Buty 75-15-0 Carbon 108-90-7 Chlorob 75-00-3 Chlorob 67-66-3 Chlorof 74-87-3 Chloron 95-49-8 2-Chloro 106-43-4 4-Chloro 96-12-8 1,2-Dibi 124-48-1 Dibromo 106-93-4 1,2-Dibi 124-48-1 Dibromo 106-93-4 1,2-Dibi 74-95-3 Dibromo 95-50-1 1,2-Dict 541-73-1 1,3-Dict 106-46-7 1,4-Dict 75-34-3 1,1-Dict 107-06-2 1,2-Dict 75-35-4 1,1-Dict 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dict 142-28-9 1,3-Dict 196-10-15 cis-1,3-I 10061-01-5 cis-1,3-I 10061-02-6 trans-1, 100-41-4 Ethylbe				*RDL	Dilution	Method Ref.	Prepared	2171tily teti	Batch	Cert.
Prepared by meth 76-13-1 1,1,2-Tr 113) 67-64-1 Acetone 107-13-1 Acrylon 71-43-2 Benzen 108-86-1 Bromod 74-97-5 Bromod 75-25-2 Bromod 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 98-06-6 tert-But 75-15-0 Carbon 108-90-7 Chlorob 67-66-3 Chlorof 74-87-3 Chlorof 67-66-3 Chlorof 74-87-3 Chlorof 96-12-8 1,2-Dibl 124-48-1 Dibromod 106-93-4 1,2-Dibl 124-48-1 Dibromod 106-93-4 1,2-Dibl 74-95-3 Dibromod 95-50-1 1,2-Dicl 541-73-1 1,3-Dicl 106-46-7 1,4-Dicl 75-35-4 1,1-Dicl 107-06-2 1,2-Dicl 75-35-4 1,1-Dicl 107-06-2 1,2-Dicl 75-35-4 1,1-Dicl 107-06-2 1,2-Dicl 75-35-4 1,1-Dicl 106-59-2 cis-1,2-156-60-5 trans-1, 78-87-5 1,2-Dicl 594-20-7 2,2-Dicl 563-58-6 1,1-Dicl 10061-01-5 cis-1,3-1 10061-01-6 trans-1, 100-41-4 Ethylbe	e Compounds									
76-13-1 1,1,2-Tr 113) 87-64-1 Acetone 107-13-1 Acrylon 71-43-2 Benzen 108-86-1 Bromod 74-97-5 Bromod 75-27-4 Bromod 75-25-2 Bromofr 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylk 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 135-98-8 carbon 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-1 Chlorob 108-90-1 Chlorof 108-90-1 Chlorob 108-90-1 Chlo	<u>c Compounds</u>									
113) 67-64-1 Acetone 107-13-1 Acrylon 71-43-2 Benzen 108-86-1 Bromob 74-97-5 Bromoc 75-27-4 Bromod 75-25-2 Bromofe 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylk 135-98-8 sec-But 135-98-8 sec-But 135-98-8 carbon 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-1 Chlorof 108-90-1 Chlo	ethod SW846 5030 Water	r MS								
107-13-1 Acrylon 71-43-2 Benzen 108-86-1 Bromob 74-97-5 Bromoc 75-27-4 Bromod 75-25-2 Bromofr 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylk 135-98-8 sec-But 198-06-6 tert-Buty 75-15-0 Carbon 108-90-7 Chlorob 67-23-5 Carbon 108-90-7 Chlorob 67-66-3 Chlorof 75-00-3 Chlorof 75-00-3 Chlorof 74-87-3 Chlorof 106-43-4 4-Chloro 106-43-4 4-Chloro 106-93-4 1,2-Dibl 124-48-1 Dibrom 106-93-4 1,2-Dibl 124-48-1 Dibrom 106-93-4 1,2-Dibl 174-95-3 Dibrom 195-50-1 1,2-Dicl 164-73-1 1,3-Dicl 106-46-7 1,4-Dicl 75-35-4 1,1-Dicl 107-06-2 1,2-Dicl 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dicl 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dicl 156-35-86 1,1-Dicl 10061-01-5 cis-1,3- 10061-02-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-7 trans-1, 10061-01-7 trans-1, 10061-01-7 trans-1, 10061-01-7 trans-1, 10061-01-1 trans-1, 10061-0	-Trichlorotrifluoroethane (Fr	reorBRL	μg/l	5.0	5	SW846 8260B	01-Jul-09	02-Jul-09	9070039	Х
71-43-2 Benzen 71-43-2 Bromob 74-97-5 Bromoc 75-27-4 Bromod 75-25-2 Bromof 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 135-98-8 sec-But 135-98-8 carbon 66-23-5 Carbon 108-90-7 Chlorob 67-66-3 Chlorof 67-66-3 Chlorof 67-66-3 Chlorof 67-66-3 Chlorof 67-68-3 Chlorof 67-88-3 2-Chlor 106-43-4 4-Chloro 106-12-8 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 74-95-3 Dibromo 106-93-4 1,2-Dibl 75-50-1 1,2-Dicl 75-31-3 1,3-Dicl 107-06-2 1,2-Dicl 75-35-4 1,1-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 106-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dicl 106-10-5 cis-1,3-1 10061-01-6 cis-1,3-1 10061-01-6 cis-1,3-1 10061-01-6 cis-1,3-1 10061-01-6 cis-1,3-1	one	BRL	μg/l	50.0	5	n n	"	"	"	Х
108-86-1 Bromob 74-97-5 Bromoc 75-27-4 Bromod 75-25-2 Bromofe 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 104-51-5 Carbon 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-91-8 2-Chlorob 108-91-8 1,2-Dibr 108-93-4 1,2-Dibr 108-93-4 1,2-Dibr 108-93-4 1,2-Dibr 108-93-4 1,2-Dicr 108-175-18 Dichlorof 108-30-1 1,2-Dicr 108-31-1 1,2-Dicr 1	onitrile	BRL	μg/l	2.5	5	п	"	"	"	Χ
74-97-5 Bromod 75-27-4 Bromod 75-25-2 Bromof 76-25-2 Bromof 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 198-06-6 tert-Buty 75-15-0 Carbon 108-90-7 Chlorob 75-00-3 Chlorof 74-87-3 Chlorof 74-87-3 Chlorof 74-87-3 Chlorof 74-87-3 Chlorof 74-87-3 Dibromod 106-43-4 4-Chlorod 106-93-4 1,2-Dibl 124-48-1 Dibromod 106-93-4 1,2-Dibl 124-48-1 Dibromod 106-93-4 1,2-Dibl 106-93-4 1,2-Dibl 106-46-7 1,4-Dicl 106-60-1 1,2-Dicl 106-46-7 1,4-Dicl 106-60-2 1,2-Dicl 107-06-2 1,2-Dicl 105-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 106-10-15 cis-1,3-I 10061-01-5 cis-1,3-I 10061-01-5 cis-1,3-I 10061-01-6 trans-1, 100061-01-6 trans-1, 100061	ene	18.3	μg/l	5.0	5	н	"	"	"	Χ
75-27-4 Bromod 75-25-2 Bromofor 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylk 135-98-8 sec-But 175-15-0 Carbon 108-90-7 Chlorob 67-60-3 Chlorofor 74-87-3 Chlorofor 75-75-8 Dibromor 106-93-4 1,2-Dibromor 106-93-4 1,2-Dicrofor 1,3-Dicrofor 1,3-Dicrofor 1,2-Dicrofor 1,2	obenzene	BRL	μg/l	5.0	5	"	"	"	"	
75-25-2 Bromofe 74-83-9 Bromon 78-93-3 2-Butan 104-51-8 n-Butylt 135-98-8 sec-But 135-98-8 sec-But 135-98-6 tert-But 135-98-7 Carbon 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorof 108-90-7 1,2-Dict 108-90-1 1,2-Dict 108-175-18 Dichlorof 108-175-18 Dichlorof 108-175-18 Dichlorof 108-18-19-18-18-19-18-18-19-18-18-19-18-18-19-18-18-19-18-18-18-19-18-18-18-19-18-18-18-18-18-18-18-18-18-18-18-18-18-	ochloromethane	BRL	μg/l	5.0	5	"	"	"	"	Χ
74-83-9 Bromon 78-93-3 2-Butan n-Butylt 135-98-8 sec-But 138-96-6 tert-But; 75-15-0 Carbon 108-90-7 Chlorob 75-00-3 Chlorob 75-00-3 Chlorof 74-87-3 Chlorof 106-43-4 4-Chloro 106-43-4 4-Chloro 106-43-4 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 174-95-3 Dibromo 175-50-1 1,2-Dict 175-71-8 Dichloro 175-34-3 1,1-Dict 175-34-3 1,1-Dict 175-35-4 1,1-Dict 175-35-4 1,1-Dict 175-35-4 1,2-Dict 175-35-4 1,1-Dict 175-35-4 1,1-Dict 175-35-4 1,2-Dict 175-35-4 1,1-Dict 175-35-6 1,2-Dict 175-35-6 1,3-Dict 175-35-6 1,3-Dict 175-35-6 1,3-Dict 175-35-6 1,1-Dict 175	odichloromethane	BRL	μg/l	2.5	5	"	"	"	"	Х
78-93-3 2-Butan n-Butylk sec-But 135-98-8 sec-But 135-98-8 sec-But 175-15-0 Carbon 108-90-7 Chlorob 75-00-3 Chlorof 76-66-3 Chlorof 74-87-3 Chloron 195-49-8 2-Chlorol 106-43-4 4-Chlorol 106-93-4 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 106-46-7 1,4-Dicl 106-46-7 1,4-Dicl 106-46-7 1,2-Dicl 106-60-5 trans-1, 78-87-5 1,2-Dicl 156-59-2 cis-1,2-It 156-59-2 cis-1,2-Dicl 142-28-9 1,3-Dicl 142	oform	BRL	μg/l	5.0	5	"	"	"	"	Х
n-Butylk 135-98-8 sec-But 135-98-8 sec-But 135-98-8 sec-But 135-98-6 tert-But 175-15-0 Carbon 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-7 Chlorob 108-90-8 Chlorof 108-91-8 2-Chloro 108-43-4 4-Chloro 108-12-8 1,2-Dibl 124-48-1 Dibromo 108-93-4 1,2-Dibl 124-48-1 Dibromo 108-93-4 1,2-Dibl 14-95-3 Dibromo 15-50-1 1,2-Dicl 15-51-71-8 Dichloro 175-31 1,1-Dicl 107-06-2 1,2-Dicl 175-35-4 1,1-Dicl 175-35-4 1,1-Dicl 175-35-4 1,1-Dicl 176-59-2 cis-1,2- 156-60-5 trans-1, 178-87-5 1,2-Dicl 142-28-9 1,3-Dicl 1594-20-7 2,2-Dicl 1563-58-6 1,1-Dicl 1563-58-6 1,	omethane	BRL	μg/l	10.0	5	"	"	"	"	Х
135-98-8 sec-But 135-98-8 sec-But 175-15-0 Carbon 168-23-5 Carbon 108-90-7 Chlorob 175-00-3 Chlorof 176-63 Chlorof 174-87-3 Chloron 196-12-8 1,2-Dibr 106-43-4 4-Chloro 106-12-8 1,2-Dibr 106-93-4 1,2-Dibr 106-93-4 1,2-Dibr 106-93-1 1,3-Dicr 106-46-7 1,4-Dicr 107-06-2 1,2-Dicr 175-35-4 1,1-Dicr 175-35-4 1,1-Dicr 176-59-2 cis-1,2-I 178-87-5 1,2-Dicr 178-87-5 1,2-Dicr 178-87-7 1,2-Dicr 178-87-7 1,2-Dicr 178-87-7 1,2-Dicr 178-87-7 1,2-Dicr 178-87-7 1,2-Dicr 178-8	tanone (MEK)	BRL	μg/l	50.0	5	"	"	"	"	Х
98-06-6 tert-But; 75-15-0 Carbon 56-23-5 Carbon 108-90-7 Chlorob 67-60-3 Chlorofe 67-66-3 Chlorofe 67-66-3 Chlorofe 67-66-3 Chlorofe 106-43-4 4-Chloro 106-43-4 4-Chlorofe 106-93-4 1,2-Dibl 106-93-4 1,2-Dibl 106-93-4 1,2-Dicl 106-93-4 1,3-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 107-06-2 1,2-Dicl 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 142-28-9 1,3-Dicl 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 142-48-1 Dicl	tylbenzene	8.8	μg/l	5.0	5	"	"	"	"	Х
75-15-0 Carbon 76-23-5 Carbon 108-90-7 Chlorob 75-00-3 Chloroc 67-66-3 Chloroc 67-66-3 Chloroc 106-43-4 4-Chloro 106-43-4 1,2-Dibl 124-48-1 Dibrom 106-93-4 1,2-Dibl 74-95-3 Dibrom 106-93-4 1,2-Dicl 75-50-1 1,2-Dicl 541-73-1 1,3-Dicl 106-46-7 1,4-Dicl 75-71-8 Dichloroc 75-34-3 1,1-Dicl 107-06-2 1,2-Dicl 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 594-20-7 2,2-Dicl 563-58-6 1,1-Dicl 10061-01-5 cis-1,3-I 10061-01-6 trans-1, 10061-01-41 Ethylbe	Butylbenzene	11.0	μg/l	5.0	5	"	"	"	"	Х
56-23-5 Carbon 108-90-7 Chlorob 75-00-3 Chloroe 67-66-3 Chlorof 74-87-3 Chloron 95-49-8 2-Chloro 106-43-4 4-Chloro 106-43-4 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 74-95-3 Dibromo 106-46-7 1,3-Dicl 106-46-7 1,4-Dicl 75-71-8 Dichloro 75-34-3 1,1-Dicl 107-06-2 1,2-Dicl 175-35-4 1,1-Dicl 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 594-20-7 2,2-Dicl 563-58-6 1,1-Dicl 10061-01-5 cis-1,3-I 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1, 100-41-4 Ethylbe	Butylbenzene	5.2	μg/l	5.0	5	"	"	"	"	Х
108-90-7 Chlorob 775-00-3 Chlorofe 776-63 Chlorofe 774-87-3 Chloron 985-49-8 2-Chloron 985-49-8 2-Chloron 986-12-8 1,2-Dibh 106-93-4 1,2-Dibh 774-95-3 Dibrome 985-50-1 1,2-Dich 541-73-1 1,3-Dich 106-46-7 1,4-Dich 775-71-8 Dichlorof 775-71-8 Dichlorof 775-34-3 1,1-Dich 107-06-2 1,2-Dich 107-06-2 1,2-Dich 156-69-2 cis-1,2-Dich 178-87-5 1,2-Dich 142-28-9 1,3-Dich 1594-20-7 2,2-Dich 10061-01-5 cis-1,3-1 10061-01-6 trans-1, 10061-01-6 trans-1, 10061-01-6 trans-1,	on disulfide	BRL	μg/l	25.0	5	"	"	"	"	Х
75-00-3 Chloroe 67-66-3 Chloroe 67-66-3 Chlorof 74-87-3 Chloron 95-49-8 2-Chloro 106-43-4 4-Chloro 96-12-8 1,2-Dibl 124-48-1 Dibromo 106-93-4 1,2-Dibl 74-95-3 Dibromo 95-50-1 1,2-Dicl 541-73-1 1,3-Dicl 106-46-7 1,4-Dicl 75-31 1,1-Dicl 107-06-2 1,2-Dicl 175-35-4 1,1-Dicl 175-35-4 1,1-Dicl 176-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 142-28-9 1,3-Dicl 1594-20-7 2,2-Dicl 1563-58-6 1,1-Dicl 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 10061-02-6 trans-1, 100-41-4 Ethylbe	on tetrachloride	BRL	μg/l	5.0	5	"	"	"	"	Х
67-66-3 Chlorofe 74-87-3 Chlorofe 74-87-3 Chlorofe 95-49-8 2-Chlorofe 106-43-4 4-Chlorofe 124-48-1 Dibrome 106-93-4 1,2-Dibl 74-95-3 Dibrome 95-50-1 1,2-Dicl 541-73-1 1,3-Dicl 106-46-7 1,4-Dicl 75-71-8 Dichlorofe 75-34-3 1,1-Dicl 107-06-2 1,2-Dicl 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dicl 142-28-9 1,3-Dicl 142-28-9 1,3-Dicl 1594-20-7 2,2-Dicl 1563-58-6 1,1-Dicl 10061-01-5 cis-1,3-I 10061-02-6 trans-1, 10061-02-6 trans-1,	obenzene	BRL	μg/l	5.0	5	"	"	"	"	Х
74-87-3 Chloron 95-49-8 2-Chloron 96-43-4 4-Chloron 96-12-8 1,2-Dibi 124-48-1 Dibromo 106-93-4 1,2-Dibi 74-95-3 Dibromo 95-50-1 1,2-Dici 541-73-1 1,3-Dici 106-46-7 1,4-Dici 75-71-8 Dichloro 75-34-3 1,1-Dici 107-06-2 1,2-Dici 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dici 142-28-9 1,3-Dici 594-20-7 2,2-Dici 594-20-7 2,2-Dici 594-20-7 2,2-Dici 594-20-7 2,2-Dici 10061-01-5 cis-1,3-I 10061-02-6 trans-1, 10061-04-4 Ethylbe	oethane	BRL	μg/l	10.0	5	"	"	"	"	Х
95-49-8 2-Chlori 106-43-4 4-Chlori 96-12-8 1,2-Dibi 106-93-4 1,2-Dibi 74-95-3 Dibromi 95-50-1 1,2-Dici 541-73-1 1,3-Dici 106-46-7 1,4-Dici 75-71-8 Dichlori 75-34-3 1,1-Dici 107-06-2 1,2-Dici 107-06-2 1,2-Dici 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dici 142-28-9 1,3-Dici 594-20-7 2,2-Dici 563-58-6 1,1-Dici 10061-01-5 cis-1,3-I 10061-02-6 trans-1, 10061-02-6 trans-1,	oform	BRL	μg/l	5.0	5	"	"	"	"	Х
106-43-4 4-Chloro 106-12-8 1,2-Dibi 104-48-1 Dibromo 106-93-4 1,2-Dibi 74-95-3 Dibromo 105-50-1 1,2-Dici 106-46-7 1,4-Dici 106-46-7 1,4-Dici 107-06-2 1,2-Dici 107-06-2 1,2-Dici 105-59-2 cis-1,2-I 156-60-5 trans-1, 178-87-5 1,2-Dici 142-28-9 1,3-Dici 156-59-2 2,2-Dici 142-28-9 1,3-Dici 156-59-2 1,3-Dici 156-60-5 1,3-D	omethane	BRL	μg/l	10.0	5	"	"	"	"	Х
96-12-8 1,2-Dibromo 106-93-4 1,2-Dibromo 106-93-4 1,2-Dibromo 105-50-1 1,2-Dicromo 106-46-7 1,4-Dicromo 106-46-7 1,4-Dicromo 106-46-7 1,4-Dicromo 106-46-7 1,2-Dicromo 107-06-2 1,2-Dicromo 107-06-2 1,2-Dicromo 107-06-2 1,2-Dicromo 106-60-5 1,2-Dicromo 106-60-5 1,2-Dicromo 106-60-5 1,2-Dicromo 106-60-5 1,3-Dicromo 106-60-5 1,3-Dicromo 106-10-1-5 1,3-Dicromo 1006-10-1-5 1,3-Dicromo 1006-100-10-10-10-10-10-10-10-10-10-10-10-10	lorotoluene	BRL	μg/l	5.0	5	"	"	"	"	
124-48-1 Dibromo 106-93-4 1,2-Dibr 74-95-3 Dibromo 95-50-1 1,2-Dich 541-73-1 1,3-Dich 106-46-7 1,4-Dich 107-75-71-8 Dichloro 75-34-3 1,1-Dich 107-06-2 1,2-Dich 175-35-4 1,1-Dich 156-59-2 cis-1,2-Dich 156-60-5 trans-1, 178-87-5 1,2-Dich 142-28-9 1,3-Dich 1594-20-7 2,2-Dich 1563-58-6 1,1-Dich 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 10061-041-4 Ethylbe	lorotoluene	BRL	μg/l	5.0	5	"	"	"	"	
106-93-4 1,2-Dibromo 95-50-1 1,2-Dicr 541-73-1 1,3-Dicr 106-46-7 1,4-Dicr 75-71-8 Dichloro 75-34-3 1,1-Dicr 107-06-2 1,2-Dicr 156-59-2 cis-1,2-Dicr 142-28-9 1,3-Dicr 142-28-9 1,3-Dicr 142-28-9 1,3-Dicr 142-28-0 1,1-Dicr 142-28-1 1,1-Dicr 142-28-1 1,2-Dicr 142-28-1 1,3-Dicr 142-28-1 1,3-Dicr 142-28-1 1,3-Dicr 142-28-1 1,1-Dicr 142-28-1 1,3-Dicr 142-28-1 1,1-Dicr 142-28-1 1,3-Dicr 142-28-1 1,1-Dicr 142-28-1 1,3-Dicr 142-28-1 1,1-Dicr 142-28-1	ibromo-3-chloropropane	BRL	μg/l	10.0	5	"	"	"	"	Х
74-95-3 Dibromo 95-50-1 1,2-Dich 541-73-1 1,3-Dich 106-46-7 1,4-Dich 75-71-8 Dichloro 75-34-3 1,1-Dich 107-06-2 1,2-Dich 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 563-58-6 1,1-Dich 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 100-41-4 Ethylbe	mochloromethane	BRL	μg/l	2.5	5	"	"	"	"	Х
95-50-1 1,2-Dict 541-73-1 1,3-Dict 106-46-7 1,4-Dict 75-71-8 Dichloro 75-34-3 1,1-Dict 107-06-2 1,2-Dict 156-59-2 cis-1,2-I 156-60-5 trans-1, 78-87-5 1,2-Dict 142-28-9 1,3-Dict 594-20-7 2,2-Dict 563-58-6 1,1-Dict 10061-01-5 cis-1,3-I 10061-02-6 trans-1, 100-41-4 Ethylbe	ibromoethane (EDB)	BRL	μg/l	2.5	5		"	"	"	Х
541-73-1 1,3-Dich 106-46-7 1,4-Dich 75-71-8 Dichloro 75-34-3 1,1-Dich 107-06-2 1,2-Dich 75-35-4 1,1-Dich 156-59-2 cis-1,2-l 156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 563-58-6 1,1-Dich 10061-01-5 cis-1,3-l 10061-02-6 trans-1, 10061-041-4 Ethylbe	momethane	BRL	μg/l	5.0	5		"	"	"	Х
106-46-7 1,4-Dich 75-71-8 Dichloro 75-34-3 1,1-Dich 107-06-2 1,2-Dich 75-35-4 1,1-Dich 156-59-2 cis-1,2-l 156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 10061-01-5 cis-1,3-l 10061-02-6 trans-1, 100-41-4 Ethylbe	ichlorobenzene	BRL	μg/l	5.0	5		"	"	"	Х
75-71-8 Dichlord 75-34-3 1,1-Dich 107-06-2 1,2-Dich 75-35-4 1,1-Dich 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 10061-01-5 cis-1,3- 10061-02-6 trans-1, 100-41-4 Ethylbe	ichlorobenzene	BRL	μg/l	5.0	5	"		"		X
75-34-3 1,1-Dict 107-06-2 1,2-Dict 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dict 142-28-9 1,3-Dict 594-20-7 2,2-Dict 1563-58-6 1,1-Dict 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 100-41-4 Ethylbe	ichlorobenzene	BRL	μg/l	5.0	5			"		X
107-06-2 1,2-Dich 75-35-4 1,1-Dich 156-59-2 cis-1,2-1 156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 563-58-6 1,1-Dich 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 100-41-4 Ethylbe	orodifluoromethane (Freon1		μg/l	10.0	5		"	"	"	Х
75-35-4 1,1-Dict 156-59-2 cis-1,2- 156-60-5 trans-1, 78-87-5 1,2-Dict 142-28-9 1,3-Dict 594-20-7 2,2-Dict 563-58-6 1,1-Dict 10061-01-5 cis-1,3- 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloroethane	BRL	μg/l	5.0	5	"	"	"	"	Х
156-59-2 cis-1,2-l 156-60-5 trans-1, 78-87-5 1,2-Dict 142-28-9 1,3-Dict 594-20-7 2,2-Dict 563-58-6 1,1-Dict 10061-01-5 cis-1,3-l 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloroethane	BRL	μg/l	5.0	5	"	"	"	"	Х
156-60-5 trans-1, 78-87-5 1,2-Dich 142-28-9 1,3-Dich 594-20-7 2,2-Dich 563-58-6 1,1-Dich 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloroethene	BRL	μg/l	5.0	5					X
78-87-5 1,2-Dict 142-28-9 1,3-Dict 594-20-7 2,2-Dict 563-58-6 1,1-Dict 10061-01-5 cis-1,3-1 10061-02-6 trans-1, 100-41-4 Ethylbe	2-Dichloroethene	BRL	μg/l	5.0	5			" "		X
142-28-9 1,3-Dick 594-20-7 2,2-Dick 563-58-6 1,1-Dick 10061-01-5 cis-1,3- 10061-02-6 trans-1, 100-41-4 Ethylbe	-1,2-Dichloroethene	BRL	μg/l 	5.0	5		"	"		X
594-20-7 2,2-Dict 563-58-6 1,1-Dict 10061-01-5 cis-1,3- 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloropropane	BRL	μg/l	5.0	5		"	"		X
563-58-6 1,1-Dich 10061-01-5 cis-1,3- 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloropropane	BRL	μg/l 	5.0	5		"	"		X
10061-01-5 cis-1,3-l 10061-02-6 trans-1, 100-41-4 Ethylbe	ichloropropane	BRL	μg/l 	5.0	5		"	"		X
10061-02-6 trans-1, 100-41-4 Ethylbe	ichloropropene	BRL	μg/l 	5.0	5		"	"		X
100-41-4 Ethylbe		BRL	μg/l "	2.5	5		"			X
=,		BRL	μg/l "	2.5	5		"			X
87-68-3 Hexach	benzene	70.4	μg/l "	5.0	5		"			X
F04 70 6 5 ::	chlorobutadiene	BRL	μg/l	2.5	5		"	"		X
	xanone (MBK)	BRL	μg/l	50.0	5		"	"		X
	opylbenzene	22.7	μg/l	5.0	5		"	"		X
	propyltoluene	9.2	μg/l	5.0	5		"	"		X
•	yl tert-butyl ether	BRL	μg/l	5.0	5		"	"		X
•	thyl-2-pentanone (MIBK)	BRL	μg/l	50.0	5			"		X
· ·	ylene chloride	BRL	μg/l	25.0	5			"		X
91-20-3 Naphtha 103-65-1 n-Propy	ithalene pylbenzene	225 33.8	μg/l μg/l	5.0 5.0	5 5	"	"	"		X X

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:30

Volatile O Prepared 100-42-5 630-20-6	Organic Compounds Organic Compounds									
Prepared 100-42-5 630-20-6	Organic Compounds									
100-42-5 630-20-6										
630-20-6	by method SW846 5030 Water M	IS								
	Styrene	BRL	μg/l	5.0	5	SW846 8260B	01-Jul-09	02-Jul-09	9070039	Χ
	1,1,1,2-Tetrachloroethane	BRL	μg/l	5.0	5	н	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL	μg/l	2.5	5	u u	"	"	"	Χ
127-18-4	Tetrachloroethene	BRL	μg/l	5.0	5	н	"	"	"	Χ
108-88-3	Toluene	BRL	μg/l	5.0	5	п	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BRL	μg/l	5.0	5	u u	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BRL	μg/l	5.0	5	u u	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BRL	μg/l	5.0	5	н	"	"	"	
71-55-6	1,1,1-Trichloroethane	BRL	μg/l	5.0	5	н	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BRL	μg/l	5.0	5	н	"	"	"	Χ
79-01-6	Trichloroethene	BRL	μg/l	5.0	5	н	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BRL	μg/l	5.0	5	п	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BRL	μg/l	5.0	5	u u	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	278	μg/l	5.0	5	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	77.7	μg/l	5.0	5	u u	"	"	"	Χ
75-01-4	Vinyl chloride	BRL	μg/l	5.0	5	"	"	"	"	Χ
179601-23-1	¹ m,p-Xylene	128	μg/l	10.0	5	"	"	"	"	Χ
	o-Xylene	121	μg/l	5.0	5	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BRL	μg/l	50.0	5	"	"	"	"	
60-29-7	Ethyl ether	BRL	μg/l	5.0	5	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BRL	μg/l	5.0	5	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BRL	μg/l	5.0	5	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BRL	μg/l	5.0	5	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BRL	μg/l	50.0	5	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BRL	μg/l	100	5	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BRL	μg/l	25.0	5	"	"	"	"	Χ
64-17-5	Ethanol	BRL	μg/l	2000	5	"	"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	99	70-13	80 %		п	"	"	"	
2037-26-5	Toluene-d8	94	70-13	80 %		н	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104	70-13	80 %		"	"	"	"	
1868-53-7	Dibromofluoromethane	103	70-13	80 %		н	"	"	"	
Semivolat	ile Organic Compounds by GCMS									
PAHs by	SW846 8270C									
	by method SW846 3510C									
	Acenaphthene	11.0	μg/l	5.43	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
	Acenaphthylene	BRL	μg/l	5.43	1	п	"	"	"	Х
	Anthracene	BRL	μg/l	5.43	1	п	"	"	"	Х
56-55-3	Benzo (a) anthracene	BRL	μg/l	5.43	1	"	"	"	"	X
50-32-8	Benzo (a) pyrene	BRL	μg/l	5.43	1	u u	"	"	"	Х
	Benzo (b) fluoranthene	BRL	μg/l	5.43	1	u u	"	"	"	Х
	Benzo (g,h,i) perylene	BRL	μg/l	5.43	1	"	"	"	"	X
207-08-9	Benzo (k) fluoranthene	BRL	μg/l	5.43	1	п	"	"	"	X
	Chrysene	BRL	μg/l	5.43	1	п	"	"	"	X
53-70-3	Dibenzo (a,h) anthracene	BRL	μg/l	5.43	1	"	"	"	"	X
	Fluoranthene	BRL	μg/l	5.43	1	"	"	"	"	X
86-73-7	Fluorene	13.6	μg/l	5.43	1	"	"	"	"	X
		BRL	μg/l	5.43	1	"	"	"	"	X
	Indeno (1,2,3-cd) pyrene 1-Methylnaphthalene	88.4	μg/l	5.43	1	"	"		"	^
90-12-0	i-iviellivilladillilalette	JU.T	P9/1	0.70	'					

Sample Identification MW-6 SA96879-03

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by	GCMS									
PAHs by	SW846 8270C										
Prepared	d by method SW846 3510C	:									
91-20-3	Naphthalene	83.0		μg/l	5.43	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
85-01-8	Phenanthrene	21.6		μg/l	5.43	1	"	"	"	"	Χ
129-00-0	Pyrene	BRL		μg/l	5.43	1	"	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	59		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	51		30-13	30 %		"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
/olatile C	Organic Compounds										
repared	l by method SW846 5030 Water M	1S									
76-13-1	1,1,2-Trichlorotrifluoroethane (Fred	_I BRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Х
7.04.4	113)	DDI		//	10.0	1	,,				v
67-64-1	Acetone	BRL		μg/l	10.0	1	"		"		X
107-13-1	Acrylonitrile	BRL		μg/l	0.5	1	,		"		X
1-43-2	Benzene	BRL		μg/l	1.0 1.0	1 1	"		"	"	Х
08-86-1	Bromobenzene	BRL		μg/l		1	"		"	"	Х
'4-97-5 '5-27-4	Bromochloromethane	BRL		μg/l	1.0	1	"		"	"	X
5-27-4	Bromodichloromethane	BRL		μg/l	0.5	1	,,		"	"	
75-25-2	Bromoform	BRL		μg/l	1.0	1	"		"	"	X
4-83-9	Bromomethane	BRL		μg/l	2.0		,,				X
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	,				X
04-51-8	n-Butylbenzene	BRL		μg/l	1.0	1	,				X
35-98-8	sec-Butylbenzene	BRL		μg/l	1.0	1	"	"	"		X
8-06-6	tert-Butylbenzene	BRL		μg/l	1.0	1	"	"	"		X
5-15-0	Carbon disulfide	BRL		μg/l "	5.0	1		"			X
6-23-5	Carbon tetrachloride	BRL		μg/l "	1.0	1		"			X
08-90-7	Chlorobenzene	BRL		μg/l "	1.0	1		"	"		>
5-00-3	Chloroethane	BRL		μg/l "	2.0	1					X
7-66-3	Chloroform	BRL		μg/l 	1.0	1			"	"	×
4-87-3	Chloromethane	BRL		μg/l "	2.0	1		"	"		×
5-49-8	2-Chlorotoluene	BRL		μg/l	1.0	1		"	"	"	
06-43-4	4-Chlorotoluene	BRL		μg/l	1.0	1	"	"	"		
6-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l 	2.0	1					>
24-48-1	Dibromochloromethane	BRL		μg/l "	0.5	1		"	"	"	>
06-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l 	0.5	1		"	"	"	>
4-95-3	Dibromomethane	BRL		μg/l 	1.0	1			"	"	>
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"				>
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1			"	"	>
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"			"	>
5-71-8	Dichlorodifluoromethane (Freon12)			μg/l	2.0	1	"	"	"		>
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	•	"	"	"	X
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1		"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
42-28-9	1,3-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
94-20-7	2,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
63-58-6	1,1-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
	cis-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	>
0061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	0.5	1	"	"	"	"	>
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	×
7-68-3	Hexachlorobutadiene	BRL		μg/l	0.5	1	"	"	"	"	>
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	>
3-82-8	Isopropylbenzene	BRL		μg/l	1.0	1	"	"	"	"	X
9-87-6	4-Isopropyltoluene	BRL		μg/l	1.0	1	"	II .	"	"	>
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	X
5-09-2	Methylene chloride	BRL		μg/l	5.0	1	"	"	"	"	X
1-20-3	Naphthalene	BRL		μg/l	1.0	1	n .	"	"	"	Х
03-65-1	n-Propylbenzene	BRL		μg/l	1.0	1	"		"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds										
/olatile C	Organic Compounds										
repared	by method SW846 5030 Water M	1S									
100-42-5	Styrene	BRL		μg/l	1.0	1	SW846 8260B	06-Jul-09	06-Jul-09	9070225	Х
30-20-6	1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5	1	u u	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	X
7-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Χ
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Χ
6-18-4	1,2,3-Trichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Χ
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Χ
09-99-9	Tetrahydrofuran	BRL		μg/l	10.0	1	"	"	"	"	
0-29-7	Ethyl ether	BRL		μg/l	1.0	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
37-92-3	Ethyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-20-3	Di-isopropyl ether	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-65-0	Tert-Butanol / butyl alcohol	BRL		μg/l	10.0	1	"	"	"	"	Χ
23-91-1	1,4-Dioxane	BRL		μg/l	20.0	1	"	"	"	"	Χ
10-57-6	trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0	1	"	"	"	"	Χ
4-17-5	Ethanol	BRL		μg/l	400	1	"	"	"	"	Χ
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	90		70-13	30 %		"	"	"	"	
037-26-5	Toluene-d8	106		70-13	30 %		"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	95		70-13	30 %		"	"	"		
868-53-7	Dibromofluoromethane	90		70-13	30 %		"	"	"		
emivola	tile Organic Compounds by GCMS										
	SW846 8270C										
-	by method SW846 3510C										
3-32-9	Acenaphthene	BRL		μg/l	5.56	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Х
08-96-8	Acenaphthylene	BRL		μg/l	5.56	1	"	"	"	"	X
20-12-7	Anthracene	BRL		μg/l	5.56	1	"	"	"		X
6-55-3	Benzo (a) anthracene	BRL		μg/l	5.56	1	"		"		X
0-32-8	Benzo (a) pyrene	BRL		μg/l	5.56	1	"	"	"		X
05-99-2	, , , , ,	BRL		μg/l	5.56	1	"	"	"		X
91-24-2	Benzo (b) fluoranthene	BRL		μg/l	5.56	1	"	"	"	"	X
07-08-9	Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL		μg/l	5.56	1	"	"	"	"	X
18-01-9	Chrysene	BRL		μg/l	5.56	1	"	"	"	"	X
	•	BRL		μg/l	5.56	1	"	"	"	"	X
3-70-3	Dibenzo (a,h) anthracene Fluoranthene	BRL		μg/l	5.56	1	"	"	"		X
		סו ער		ду/1			_	_			X
06-44-0		RDI		ua/l	5 56	1	"	"	"	"	
33-70-3 206-44-0 36-73-7	Fluorene	BRL BRI		μg/l	5.56 5.56	1	"	"		"	
206-44-0		BRL BRL BRL		µg/l µg/l µg/l	5.56 5.56 5.56	1 1 1	" "	"			X

Sample Identification MW-7 SA96879-04

Client Project # RI-0011-06

<u>Matrix</u> Ground Water Collection Date/Time 24-Jun-09 13:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCMS										
PAHs by	SW846 8270C										
Prepared	by method SW846 3510C										
91-20-3	Naphthalene	BRL		μg/l	5.56	1	SW846 8270C	30-Jun-09	30-Jun-09	9062199	Χ
85-01-8	Phenanthrene	BRL		μg/l	5.56	1	"	"	"	"	Х
129-00-0	Pyrene	BRL		μg/l	5.56	1	n .	"	"	"	Χ
Surrogate	recoveries:										
321-60-8	2-Fluorobiphenyl	67		30-13	30 %		"	"	"	"	
1718-51-0	Terphenyl-dl4	64		30-13	30 %		"	"	"	"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9070039 - SW846 5030 Water MS										
Blank (9070039-BLK1)										
Prepared & Analyzed: 01-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	0.5						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						
tert-Butylbenzene	BRL		μg/l	1.0						
Carbon disulfide	BRL		μg/l	5.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL			1.0						
Chloromethane	BRL		µg/l	2.0						
	BRL		μg/l							
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene			μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l "	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l 	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l 	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9070039 - SW846 5030 Water MS										
Blank (9070039-BLK1)										
Prepared & Analyzed: 01-Jul-09										
n-Propylbenzene	BRL		μg/l	1.0						
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l	400						
Surrogate: 4-Bromofluorobenzene	46.5		μg/l		50.0		93	70-130		
Surrogate: Toluene-d8	46.9		μg/l		50.0		94 105	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	52.4 51.3		μg/l μg/l		50.0 50.0		105 103	70-130 70-130		
LCS (9070039-BS1)			13							
Prepared & Analyzed: 01-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	28.1	QM9	ua/l		20.0		141	70-130		
		QIVIS	µg/l							
Acetone Acrylonitrile	22.2 22.6		µg/l		20.0 20.0		111 113	41.6-158 70-130		
Benzene	22.6		µg/l		20.0		109	70-130 70-130		
Bromobenzene	20.8		µg/l		20.0		109	70-130 70-130		
Bromochloromethane	20.8		µg/l		20.0		104	70-130 70-130		
Bromodichloromethane	23.9		μg/l μg/l		20.0		119	70-130 70-130		
Bromoform	24.3				20.0		121	70-130		
Bromomethane	24.3 19.7		μg/l μg/l		20.0		99	70-130 47-147		
2-Butanone (MEK)	23.6		μg/l		20.0		118	60.9-144		
n-Butylbenzene	23.6		μg/l μg/l		20.0		123	70-130		
sec-Butylbenzene	24.0		μg/l μg/l		20.0		123	70-130		
tert-Butylbenzene	23.6				20.0		118	70-130		
Carbon disulfide	23.6		μg/l μg/l		20.0		106	70-130 70-130		
Carbon distillide Carbon tetrachloride	25.6		μg/l μg/l		20.0		128	70-130		
Chlorobenzene	21.5				20.0		108	70-130		
OHIOLODGHZGHG	۵۱.۵		μg/l		20.0		100	10-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9070039 - SW846 5030 Water MS										
LCS (9070039-BS1)										
Prepared & Analyzed: 01-Jul-09										
Chloroethane	21.1		μg/l		20.0		105	63.6-131		
Chloroform	21.4		μg/l		20.0		107	70-130		
Chloromethane	21.1		μg/l		20.0		106	70-130		
2-Chlorotoluene	22.5		μg/l		20.0		113	70-130		
4-Chlorotoluene	22.3		μg/l		20.0		112	70-130		
1,2-Dibromo-3-chloropropane	20.4		μg/l		20.0		102	70-130		
Dibromochloromethane	20.8		μg/l		20.0		104	58.8-145		
1,2-Dibromoethane (EDB)	21.4		μg/l		20.0		107	70-130		
Dibromomethane	21.2		μg/l		20.0		106	70-130		
1,2-Dichlorobenzene	21.8		μg/l		20.0		109	70-130		
1,3-Dichlorobenzene	22.8		μg/l		20.0		114	70-130		
1,4-Dichlorobenzene	21.1		μg/l		20.0		106	70-130		
Dichlorodifluoromethane (Freon12)	18.7		μg/l		20.0		94	56.6-137		
1,1-Dichloroethane	23.0		μg/l		20.0		115	70-130		
1,2-Dichloroethane	22.3		μg/l		20.0		111	70-130		
1,1-Dichloroethene	22.5		μg/l		20.0		112	70-130		
cis-1,2-Dichloroethene	23.1		μg/l		20.0		115	70-130		
trans-1,2-Dichloroethene	21.2		μg/l		20.0		106	70-130		
1,2-Dichloropropane	22.3		μg/l		20.0		111	70-130		
1,3-Dichloropropane	21.0		μg/l		20.0		105	70-130		
2,2-Dichloropropane	22.2		μg/l		20.0		111	70-130		
1,1-Dichloropropene	23.4		μg/l		20.0		117	70-130		
cis-1,3-Dichloropropene	24.1		μg/l		20.0		121	70-130		
trans-1,3-Dichloropropene	20.7		μg/l		20.0		104	70-130		
Ethylbenzene	22.2		μg/l		20.0		111	70-130		
Hexachlorobutadiene	21.9		μg/l		20.0		109	70-134		
2-Hexanone (MBK)	20.5		μg/l		20.0		103	70-130		
Isopropylbenzene	19.3		μg/l		20.0		96	70-130		
4-Isopropyltoluene	22.8		μg/l		20.0		114	70-130		
Methyl tert-butyl ether	22.6		μg/l		20.0		113	70-130		
4-Methyl-2-pentanone (MIBK)	21.8		μg/l		20.0		109	64.8-130		
Methylene chloride	20.2		μg/l		20.0		101	70-130		
Naphthalene	17.2		μg/l		20.0		86	70-130		
n-Propylbenzene	22.4		μg/l		20.0		112	70-130		
Styrene	23.0		μg/l		20.0		115	70-130		
1,1,1,2-Tetrachloroethane	23.4		μg/l		20.0		117	70-130		
1,1,2,2-Tetrachloroethane	22.6		μg/l		20.0		113	70-130		
Tetrachloroethene	21.6		μg/l		20.0		108	70-130		
Toluene	20.6		μg/l		20.0		103	70-130		
1,2,3-Trichlorobenzene	19.3		μg/l		20.0		96	70-130		
1,2,4-Trichlorobenzene	18.5		μg/l		20.0		92	70-130		
1,3,5-Trichlorobenzene	20.7		μg/l		20.0		103	70-130		
1,1,1-Trichloroethane	24.2		μg/l		20.0		121	70-130		
1,1,2-Trichloroethane	20.8		μg/l		20.0		104	70-130		
Trichloroethene	24.6		μg/l		20.0		123	70-130		
Trichlorofluoromethane (Freon 11)	25.2		μg/l		20.0		126	70-152		
1,2,3-Trichloropropane	23.8		μg/l		20.0		119	70-130		
1,2,4-Trimethylbenzene	22.7		μg/l		20.0		114	70-130		
1,3,5-Trimethylbenzene	22.3		μg/l		20.0		111	70-130		

A 1770	P. 1:	T.I.	YY 14	*DDI	Spike	Source	A/DEG	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9070039 - SW846 5030 Water MS										
LCS (9070039-BS1)										
Prepared & Analyzed: 01-Jul-09										
Vinyl chloride	21.8		μg/l		20.0		109	70-130		
m,p-Xylene	45.4		μg/l		40.0		114	70-130		
o-Xylene	23.4		μg/l		20.0		117	70-130		
Tetrahydrofuran	21.1		μg/l		20.0		106	70-130		
Ethyl ether	22.2		μg/l		20.0		111	70-133		
Tert-amyl methyl ether	23.5		μg/l		20.0		118	70-130		
Ethyl tert-butyl ether	23.0		μg/l		20.0		115	70-130		
Di-isopropyl ether	23.6		μg/l		20.0		118	70-130		
Tert-Butanol / butyl alcohol	236		μg/l		200		118	70-130		
1,4-Dioxane	252		μg/l		200		126	53.1-139		
trans-1,4-Dichloro-2-butene	20.3		μg/l		20.0		101	70-130		
Ethanol	545	QM9	μg/l		400		136	70-130		
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0	<u></u>	100	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	47.8 52.1		μg/l		50.0 50.0		96 104	70-130 70-130		
Surrogate: 1,2-Dichioroethane-u4 Surrogate: Dibromofluoromethane	51.6		µg/l µg/l		50.0		104	70-130 70-130		
LCS Dup (9070039-BSD1)			10							
Prepared & Analyzed: 01-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.6		μg/l		20.0		128	70-130	10	25
Acetone	20.5		μg/l		20.0		103	41.6-158	8	50
Acrylonitrile	21.7		μg/l		20.0		108	70-130	4	25
Benzene	21.0		μg/l		20.0		105	70-130	4	25
Bromobenzene	20.8		μg/l		20.0		104	70-130	0.2	25
Bromochloromethane	20.1		μg/l		20.0		101	70-130	3	25
Bromodichloromethane	23.2		μg/l		20.0		116	70-130	3	25
Bromoform	22.9		μg/l		20.0		114	70-130	6	25
Bromomethane	18.6		μg/l		20.0		93	47-147	6	50
2-Butanone (MEK)	22.2		μg/l		20.0		111	60.9-144	6	50
n-Butylbenzene	23.4		μg/l		20.0		117	70-130	5	25
sec-Butylbenzene	23.2		μg/l		20.0		116	70-130	5	25
tert-Butylbenzene	22.4		μg/l		20.0		112	70-130	5	25
Carbon disulfide	19.8		μg/l		20.0		99	70-130	7	25
Carbon tetrachloride	24.3		μg/l		20.0		121	70-130	5	25
Chlorobenzene	21.2		μg/l		20.0		106	70-130	1	25
Chloroethane	19.8		μg/l		20.0		99	63.6-131	6	50
Chloroform	21.1		μg/l		20.0		105	70-130	1	25
Chloromethane	20.0		μg/l		20.0		100	70-130	5	25
2-Chlorotoluene	21.9		μg/l		20.0		110	70-130	3	25
4-Chlorotoluene	22.0		μg/l		20.0		110	70-130	1	25
1,2-Dibromo-3-chloropropane	19.0		μg/l		20.0		95	70-130	7	25
Dibromochloromethane	20.1		μg/l		20.0		101	58.8-145	3	50
1,2-Dibromoethane (EDB)	21.0		μg/l		20.0		105	70-130	2	25
Dibromomethane	20.9		μg/l		20.0		104	70-130	2	25
1,2-Dichlorobenzene	22.1		μg/l		20.0		110	70-130	1	25
1,3-Dichlorobenzene	22.3		μg/l		20.0		111	70-130	2	25
1,4-Dichlorobenzene	20.5		μg/l		20.0		102	70-130	3	25
Dichlorodifluoromethane (Freon12)	16.6		μg/l		20.0		83	56.6-137	12	50
1,1-Dichloroethane	22.0		μg/l		20.0		110	70-130	4	25
1,2-Dichloroethane	21.8		μg/l		20.0		109	70-130	2	25
1,1-Dichloroethene	21.1		μg/l		20.0		106	70-130	6	25

			** .		Spike	Source	0/5=5	%REC	D.F.=	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9070039 - SW846 5030 Water MS										
_CS Dup (9070039-BSD1)										
Prepared & Analyzed: 01-Jul-09										
cis-1,2-Dichloroethene	21.9		μg/l		20.0		109	70-130	5	25
trans-1,2-Dichloroethene	19.9		μg/l		20.0		99	70-130	7	25
1,2-Dichloropropane	21.6		μg/l		20.0		108	70-130	3	25
1,3-Dichloropropane	20.6		μg/l		20.0		103	70-130	2	25
2,2-Dichloropropane	20.7		μg/l		20.0		104	70-130	7	25
1,1-Dichloropropene	22.2		μg/l		20.0		111	70-130	5	25
cis-1,3-Dichloropropene	20.8		μg/l		20.0		104	70-130	15	25
trans-1,3-Dichloropropene	20.6		μg/l		20.0		103	70-130	0.7	25
Ethylbenzene	21.4		μg/l		20.0		107	70-130	4	25
Hexachlorobutadiene	20.9		μg/l		20.0		105	70-134	5	50
2-Hexanone (MBK)	20.5		μg/l		20.0		102	70-130	0.1	25
Isopropylbenzene	18.5		μg/l		20.0		92	70-130	4	25
4-Isopropyltoluene	22.1		μg/l		20.0		110	70-130	3	25
Methyl tert-butyl ether	22.1		μg/l		20.0		110	70-130	3	25
4-Methyl-2-pentanone (MIBK)	20.8		μg/l		20.0		104	64.8-130	5	50
Methylene chloride	20.2		μg/l		20.0		101	70-130	0	25
Naphthalene	16.9		μg/l		20.0		85	70-130	2	25
n-Propylbenzene	21.6		μg/l		20.0		108	70-130	3	25
Styrene	22.3		μg/l		20.0		111	70-130	3	25
1,1,1,2-Tetrachloroethane	23.0		μg/l		20.0		115	70-130	2	25
1,1,2,2-Tetrachloroethane	22.3		μg/l		20.0		112	70-130	1	25
Tetrachloroethene	20.6		μg/l		20.0		103	70-130	5	25
Toluene	20.0		μg/l		20.0		100	70-130	2	25
1,2,3-Trichlorobenzene	18.3		μg/l		20.0		92	70-130	5	25
1,2,4-Trichlorobenzene	17.7		μg/l		20.0		89	70-130	4	25
1,3,5-Trichlorobenzene	20.1		μg/l		20.0		100	70-130	3	25
1,1,1-Trichloroethane	22.9		μg/l		20.0		114	70-130	5	25
1,1,2-Trichloroethane	20.2		μg/l		20.0		101	70-130	3	25
Trichloroethene	23.6		μg/l		20.0		118	70-130	4	25
Trichlorofluoromethane (Freon 11)	23.1		μg/l		20.0		115	70-152	9	50
1,2,3-Trichloropropane	23.7		μg/l		20.0		118	70-130	0.5	25
1,2,4-Trimethylbenzene	22.2		μg/l		20.0		111	70-130	2	25
1,3,5-Trimethylbenzene	21.7		μg/l		20.0		108	70-130	3	25
Vinyl chloride	20.2		μg/l		20.0		101	70-130	8	25
n,p-Xylene	43.7		μg/l		40.0		109	70-130	4	25
o-Xylene	22.7		μg/l		20.0		114	70-130	3	25
Fetrahydrofuran	19.4		μg/l		20.0		97	70-130	9	25
Ethyl ether	21.7		μg/l		20.0		108	70-133	2	50
Fert-amyl methyl ether	22.7		μg/l		20.0		114	70-130	4	25
Ethyl tert-butyl ether	22.6		μg/l		20.0		113	70-130	2	25
Di-isopropyl ether	23.0		μg/l		20.0		115	70-130	3	25
Fert-Butanol / butyl alcohol	222		μg/l		200		111	70-130	6	25
1,4-Dioxane	217		μg/l		200		109	53.1-139	15	25
trans-1,4-Dichloro-2-butene	19.7		μg/l		20.0		99	70-130	3	25
Ethanol	485		μg/l		400		121	70-130	12	30
Surrogate: 4-Bromofluorobenzene	49.9		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	47.4		μg/l		50.0		95	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.5		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	50.9		μg/l		50.0		102	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9070225 - SW846 5030 Water MS										
Blank (9070225-BLK1)										
Prepared & Analyzed: 06-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	0.5						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	0.5						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						
2-Butanone (MEK)	BRL		μg/l	10.0						
n-Butylbenzene	BRL		μg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						
tert-Butylbenzene	BRL		μg/l	1.0						
Carbon disulfide	BRL		μg/l	5.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
2-Chlorotoluene	BRL		μg/l	1.0						
4-Chlorotoluene	BRL		μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	0.5						
Dibromomethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
1,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
1,1-Dichloropropene	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	0.5						
trans-1,3-Dichloropropene	BRL		μg/l	0.5						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	0.5						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Isopropylbenzene	BRL		μg/l	1.0						
4-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	1.0						
n-Propylbenzene	BRL		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9070225 - SW846 5030 Water MS										
Blank (9070225-BLK1)										
Prepared & Analyzed: 06-Jul-09										
Styrene	BRL		μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	0.5						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,3,5-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Tert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL		μg/l	1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL		μg/l	5.0						
Ethanol	BRL		μg/l	400						
Surrogate: 4-Bromofluorobenzene	28.1		μg/l		30.0		94	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	32.7 27.6		μg/l		30.0 30.0		109 92	70-130 70-130		
Surrogate: 1,2-Dictrioroethane-u4 Surrogate: Dibromofluoromethane	27.0 27.2		μg/l μg/l		30.0		92 90	70-130 70-130		
			10							
Blank (9070225-BLK2) Prepared & Analyzed: 06-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	5.0						
Acetone	BRL		μg/l	50.0						
Acrylonitrile	BRL		μg/l	2.5						
Benzene	BRL		μg/l	5.0						
Bromobenzene	BRL		μg/l	5.0						
Bromochloromethane	BRL		μg/l	5.0						
Bromodichloromethane	BRL		μg/l	2.5						
Bromoform	BRL		μg/l	5.0						
Bromomethane	BRL		μg/l	10.0						
2-Butanone (MEK)	BRL		μg/l	50.0						
n-Butylbenzene	BRL		μg/l	5.0						
sec-Butylbenzene	BRL		μg/l	5.0						
tert-Butylbenzene	BRL		μg/l	5.0						
Carbon disulfide	BRL		μg/l	25.0						
Carbon tetrachloride	BRL		μg/l	5.0						
Chlorobenzene	BRL		μg/l	5.0						
Chloroethane	BRL		μg/l	10.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9070225 - SW846 5030 Water MS										
Blank (9070225-BLK2)										
Prepared & Analyzed: 06-Jul-09										
Chloroform	BRL		μg/l	5.0						
Chloromethane	BRL		μg/l	10.0						
2-Chlorotoluene	BRL		μg/l	5.0						
4-Chlorotoluene	BRL		μg/l	5.0						
1,2-Dibromo-3-chloropropane	BRL		μg/l	10.0						
Dibromochloromethane	BRL		μg/l	2.5						
1,2-Dibromoethane (EDB)	BRL		μg/l	2.5						
Dibromomethane	BRL		μg/l	5.0						
1,2-Dichlorobenzene	BRL		μg/l	5.0						
1,3-Dichlorobenzene	BRL		μg/l	5.0						
1,4-Dichlorobenzene	BRL		μg/l	5.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	10.0						
1,1-Dichloroethane	BRL		μg/l	5.0						
1,2-Dichloroethane	BRL		μg/l	5.0						
1,1-Dichloroethene	BRL		μg/l	5.0						
cis-1,2-Dichloroethene	BRL		μg/l	5.0						
trans-1,2-Dichloroethene	BRL		μg/l	5.0						
1,2-Dichloropropane	BRL		μg/l	5.0						
1,3-Dichloropropane	BRL		μg/l	5.0						
2,2-Dichloropropane	BRL		μg/l	5.0						
1,1-Dichloropropene	BRL		μg/l	5.0						
cis-1,3-Dichloropropene	BRL		μg/l	2.5						
trans-1,3-Dichloropropene	BRL		μg/l	2.5						
Ethylbenzene	BRL		μg/l	5.0						
Hexachlorobutadiene	BRL		μg/l	2.5						
2-Hexanone (MBK)	BRL		μg/l	50.0						
Isopropylbenzene	BRL		μg/l	5.0						
4-Isopropyltoluene	BRL		μg/l	5.0						
Methyl tert-butyl ether	BRL		μg/l	5.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	50.0						
Methylene chloride	BRL		μg/l	25.0						
Naphthalene	BRL		μg/l	5.0						
n-Propylbenzene	BRL		μg/l	5.0						
Styrene	BRL		μg/l	5.0						
1,1,1,2-Tetrachloroethane	BRL		μg/l	5.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	2.5						
Tetrachloroethene	BRL		μg/l	5.0						
Toluene	BRL		μg/l	5.0						
1,2,3-Trichlorobenzene	BRL		μg/l	5.0						
1,2,4-Trichlorobenzene	BRL		μg/l	5.0						
1,3,5-Trichlorobenzene	BRL		μg/l	5.0						
1,1,1-Trichloroethane	BRL		μg/l	5.0						
1,1,2-Trichloroethane	BRL		μg/l	5.0						
Trichloroethene	BRL		μg/l	5.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	5.0						
1,2,3-Trichloropropane	BRL		μg/l	5.0						
1,2,4-Trimethylbenzene	BRL		μg/l	5.0						
1,3,5-Trimethylbenzene	BRL		μg/l	5.0						
Vinyl chloride	BRL		μg/l	5.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • • • • • • • • • • • • • • • • • •	Result	Tag	Onits	KDL	Level	Result	/0KEC	Lillits	KI D	Lillit
Batch 9070225 - SW846 5030 Water MS										
Blank (9070225-BLK2)										
Prepared & Analyzed: 06-Jul-09										
m,p-Xylene	BRL		μg/l	10.0						
o-Xylene	BRL		μg/l	5.0						
Tetrahydrofuran	BRL		μg/l	50.0						
Ethyl ether	BRL		μg/l	5.0						
Tert-amyl methyl ether	BRL		μg/l	5.0						
Ethyl tert-butyl ether	BRL		μg/l 	5.0						
Di-isopropyl ether	BRL		μg/l	5.0						
Tert-Butanol / butyl alcohol	BRL		μg/l	50.0						
1,4-Dioxane	BRL		μg/l	100						
trans-1,4-Dichloro-2-butene	BRL		μg/l	25.0						
Ethanol	BRL		μg/l	2000						
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	23.6 27.8		μg/l μg/l		30.0 30.0		78 93	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	31.4		μg/l		30.0		93 105	70-130 70-130		
Surrogate: Dibromofluoromethane	29.1		μg/l		30.0		97	70-130		
LCS (9070225-BS1)										
Prepared & Analyzed: 06-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.7		μg/l		20.0		104	70-130		
Acetone	16.8		μg/l		20.0		84	41.6-158		
Acrylonitrile	17.5		μg/l		20.0		88	70-130		
Benzene	18.2		μg/l		20.0		91	70-130		
Bromobenzene	21.2		μg/l		20.0		106	70-130		
Bromochloromethane	19.2		μg/l		20.0		96	70-130		
Bromodichloromethane	18.0		μg/l		20.0		90	70-130		
Bromoform	16.9		μg/l		20.0		85	70-130		
Bromomethane	30.3	QM9	μg/l		20.0		152	47-147		
2-Butanone (MEK)	18.2		μg/l		20.0		91	60.9-144		
n-Butylbenzene	18.1		μg/l		20.0		91	70-130		
sec-Butylbenzene	19.3		μg/l		20.0		97	70-130		
tert-Butylbenzene	19.6		μg/l		20.0		98	70-130		
Carbon disulfide	19.2		μg/l		20.0		96	70-130		
Carbon tetrachloride	17.8		μg/l		20.0		89	70-130		
Chlorobenzene	20.0		μg/l		20.0		100	70-130		
Chloroethane	16.2		μg/l		20.0		81	63.6-131		
Chloroform	18.2		μg/l		20.0		91	70-130		
Chloromethane	16.2		μg/l		20.0		81	70-130		
2-Chlorotoluene	21.3		μg/l		20.0		106	70-130		
4-Chlorotoluene	21.6		μg/l		20.0		108	70-130		
1,2-Dibromo-3-chloropropane	14.9		μg/l		20.0		74	70-130		
Dibromochloromethane	17.2		μg/l		20.0		86	58.8-145		
1,2-Dibromoethane (EDB)	22.5		μg/l		20.0		113	70-130		
Dibromomethane	19.7		μg/l		20.0		98	70-130		
1,2-Dichlorobenzene	21.9		μg/l		20.0		109	70-130		
1,3-Dichlorobenzene	21.5		μg/l		20.0		108	70-130		
1,4-Dichlorobenzene	19.5		μg/l		20.0		97	70-130		
Dichlorodifluoromethane (Freon12)	15.7		μg/l		20.0		78	56.6-137		
1,1-Dichloroethane	18.3		μg/l		20.0		91	70-130		
1,2-Dichloroethane	17.5		μg/l		20.0		88	70-130		
1,1-Dichloroethene	18.3		μg/l		20.0		92	70-130		
cis-1,2-Dichloroethene	19.7		μg/l		20.0		98	70-130		

Analyte(s) Result Flag Units *RDL Level	l Result %	REC Limits	RPD	RPD Limit
Prepared & Analyzed: 06-Jul-09 trans-1,2-Dichloroethene	. , ,			
Prepared & Analyzed: 06-Jul-09 trans-1,2-Dichloroethene 17.8 µg/l 20.0 1,3-Dichloropropane 21.0 µg/l 20.0 1,3-Dichloropropane 21.0 µg/l 20.0 2,2-Dichloropropane 19.9 µg/l 20.0 1,1-Dichloropropene 18.8 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 4-Hospropylbuluene 18.9 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 n-Propylbenzene 18.1 </td <td></td> <td></td> <td></td> <td></td>				
trans-1,2-Dichloroethene 17.8 µg/l 20.0 1,2-Dichloropropane 21.0 µg/l 20.0 1,3-Dichloropropane 21.0 µg/l 20.0 2,2-Dichloropropane 19.9 µg/l 20.0 2,2-Dichloropropane 19.9 µg/l 20.0 cis-1,3-Dichloropropene 18.8 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 trans-1,3-Dichloropropene 18.7 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Ethylbenzene 19.8 µg/l 20.0 Sopropylbenzene 19.8 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 Methyl eth-butyl ether 20.1 µg/l 20.0 Methyler-butyl ether 20.1 µg/l 20.0 Methylene-blohide 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.1 µg/l 20.0 Naphthalene 20.0 µg/l				
1,2-Dichloropropane 21.0 µg/l 20.0 1,3-Dichloropropane 21.0 µg/l 20.0 2,2-Dichloropropane 19.9 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 cis-1,3-Dichloropropene 18.7 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 4-Isopropylbenzene 17.6 µg/l 20.0 4-Isopropyltoluene 18.9 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 4-Methyl-2-pentanone (MBK) 26.5 QC2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 N-Propylbenzene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,1,2-Tetrachloroethane 21.9 µg/l		89 70-130		
1,3-Dichloropropane 21.0 µg/l 20.0 2,2-Dichloropropane 19.9 µg/l 20.0 1,1-Dichloropropane 19.9 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Ethylbenzene 19.8 µg/l 20.0 Ethylbenzene 17.6 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 Sopropylbenzene 17.6 µg/l 20.0 Hoxachloropylbenzene 17.6 µg/l 20.0 Hoxachlorobutadiene 18.9 µg/l 20.0 Hoxachlorobutadiene 20.1 µg/l 20.0 Hoxachlorobutadiene 20.1 µg/l 20.0 Hoxachloropylbenzene 17.6 µg/l 20.0 Hoxachloropylbenzene 18.9 µg/l 20.0 Hoxachloropylbenzene 18.9 µg/l 20.0 Hoxachloropylbenzene 18.9 µg/l 20.0 Hoxachloropylbenzene 18.1 µg/l 20.0 Hoxachloropylbenzene 19.3 µg/l 20.0 Hoxachloropylbenzene 22.9 µg/l 20.0 Hoxachloropylbenzene 22.1 µg/l 20.0 Hoxachloropylbenzene 23.1 µg/l 20.0 Hoxachloropylbenzene 23.5 µg/l 20.0 Hoxachloropylbenzene 23.5 µg/l 20.0 Hoxachloropylbenzene 21.4 µg/l 20.0 Hoxachloropylbenzene 21.4 µg/l 20.0 Hoxachloropylbenzene 21.9 µg/l 20.0 Hoxachloropylbenzene 21.2 µg/l 20.0 Hoxachloropylbenzene 21.6 µg/l 20.0 Hoxa		105 70-130		
2,2-Dichloropropane 19.9 µg/l 20.0 1,1-Dichloropropene 18.8 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 trans-1,3-Dichloropropene 18.7 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 4-Isopropyltoluene 18.9 µg/l 20.0 Methyl et-butyl ether 20.1 µg/l 20.0 Methylere-chloride 17.6 µg/l 20.0 Methylere-chloride 17.6 µg/l 20.0 Methylere-chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 1,1,1,2-Tetrachloroethane 18.0 µg/l 20.0 Styrene 18.0 µg/l 20.0 <td></td> <td>105 70-130</td> <td></td> <td></td>		105 70-130		
1,1-Dichloropropene 18.8 µg/l 20.0 cis-1,3-Dichloropropene 19.1 µg/l 20.0 trans-1,3-Dichloropropene 18.7 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Lexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 4-Isopropyltoluene 18.9 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 Methyl-2-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methylere chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 N-Propylbenzene 18.1 µg/l 20.0 N-Propylbenzene 18.0 µg/l 20.0 1,1,2,-Tetrachloroethane 21.9 </td <td></td> <td>100 70-130</td> <td></td> <td></td>		100 70-130		
cis-1,3-Dichloropropene 19.1 µg/l 20.0 trans-1,3-Dichloropropene 18.7 µg/l 20.0 Ethylbenzene 21.5 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 4-Isopropylbenzene 17.6 µg/l 20.0 4-Isopropylboluene 18.9 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 Styrene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.		94 70-130		
trans-1,3-Dichloropropene 18.7 μg/l 20.0 Ethylbenzene 21.5 μg/l 20.0 Hexachlorobutadiene 19.8 μg/l 20.0 2-Hexanone (MBK) 18.4 μg/l 20.0 Isopropylbenzene 17.6 μg/l 20.0 4-Isopropyltoluene 18.9 μg/l 20.0 Methyl tert-butyl ether 20.1 μg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 μg/l 20.0 Methylene chloride 17.6 μg/l 20.0 Naphthalene 20.2 μg/l 20.0 1,1,1,2-Tetrachloroethane 18.0 μg/l 20.0 1,1,1,2-Tetrachloroethane 21.1 μg/l 2		95 70-130		
Ethylbenzene 21.5 µg/l 20.0 Hexachlorobutadiene 19.8 µg/l 20.0 2-Hexanone (MBK) 18.4 µg/l 20.0 Isopropylbenzene 17.6 µg/l 20.0 4-Isopropyltoluene 18.9 µg/l 20.0 Methyl tert-butyl ether 20.1 µg/l 20.0 Methyler-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 N-Propylbenzene 18.1 µg/l 20.0 N-Propylbenzene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,2,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethane 21.1 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 1,2,3-Trichloroethane 21.9 µg/l 20.0 1,2,3-Trichloroethane 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,2,5-Trimethylbenzene 18.7 µg/l 20.0 1,2,6-Trimethylbenzene 18.6 µg/l 20.0		94 70-130		
Hexachlorobutadiene 19.8 μg/l 20.0 2-Hexanone (MBK) 18.4 μg/l 20.0 Isopropylbenzene 17.6 μg/l 20.0 4-Isopropyltoluene 18.9 μg/l 20.0 Methyl tert-butyl ether 20.1 μg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 μg/l 20.0 Methylene chloride 17.6 μg/l 20.0 Methylene chloride 17.6 μg/l 20.0 Maphthalene 20.2 μg/l 20.0 n-Propylbenzene 18.1 μg/l 20.0 Naphthalene 20.2 μg/l 20.0 n-Propylbenzene 18.0 μg/l 20.0 Styrene 18.0 μg/l 20.0 1,1,2-Tetrachloroethane 22.9 μg/l 20.0 1,1,2-Tetrachloroethane 29.3 μg/l 20.0 1,2,3-Trichlorobenzene 23.1 μg/l 20.0 1,2,4-Trichloroethane 21.4 μg/l		107 70-130		
2-Hexanone (MBK)		99 70-134		
Sopropy benzene		92 70-130		
4-Isopropyltoluene 18.9 μg/l 20.0 Methyl tert-butyl ether 20.1 μg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 μg/l 20.0 Methylene chloride 17.6 μg/l 20.0 Naphthalene 20.2 μg/l 20.0 n-Propylbenzene 18.1 μg/l 20.0 Styrene 18.0 μg/l 20.0 1,1,1,2-Tetrachloroethane 22.9 μg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 μg/l 20.0 1,1,2,2-Tetrachloroethane 22.0 μg/l 20.0 1,2,3-Trichlorobenzene 22.1 μg/l 20.0 1,2,3-Trichlorobenzene 23.1 μg/l 20.0 1,2,4-Trichlorobenzene 23.5 μg/l 20.0 1,3,5-Trichlorobenzene 21.4 μg/l 20.0 1,1,2-Trichloroethane 21.9 μg/l 20.0 1,1,2-Trichloroethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,3-Trimethylbenzene<		88 70-130		
Methyl tert-butyl ether 20.1 µg/l 20.0 4-Methyl-2-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 n-Propylbenzene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethane 22.0 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichloroethane 18.9 µg/l 20.0 1,1,1-Trichloroethane 21.9 µg/l 20.0 1,1,2-Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trimethylbenzene<		95 70-130		
4-Methyl-2-pentanone (MIBK) 26.5 QC2 µg/l 20.0 Methylene chloride 17.6 µg/l 20.0 Naphthalene 20.2 µg/l 20.0 n-Propylbenzene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethane 22.0 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichloroethane 18.9 µg/l 20.0 1,1,1-Trichloroethane 21.9 µg/l 20.0 1,1,2-Trichloroethane 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene <t< td=""><td></td><td>101 70-130</td><td></td><td></td></t<>		101 70-130		
Methylene chloride 17.6 μg/l 20.0 Naphthalene 20.2 μg/l 20.0 n-Propylbenzene 18.1 μg/l 20.0 Styrene 18.0 μg/l 20.0 1,1,1,2-Tetrachloroethane 22.9 μg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 μg/l 20.0 Tetrachloroethene 22.0 μg/l 20.0 Toluene 21.1 μg/l 20.0 1,2,3-Trichlorobenzene 23.1 μg/l 20.0 1,2,3-Trichlorobenzene 23.5 μg/l 20.0 1,3,5-Trichloroethane 18.9 μg/l 20.0 1,1,1-Trichloroethane 21.9 μg/l 20.0 1,1,2-Trichloroethane 21.8 μg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,3-Trimethylbenzene 18.7 μg/l 20.0 1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l <t< td=""><td>1</td><td>132 64.8-130</td><td></td><td></td></t<>	1	132 64.8-130		
Naphthalene 20.2 μg/l 20.0 n-Propylbenzene 18.1 μg/l 20.0 Styrene 18.0 μg/l 20.0 1,1,1,2-Tetrachloroethane 22.9 μg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 μg/l 20.0 Tetrachloroethene 22.0 μg/l 20.0 Toluene 21.1 μg/l 20.0 1,2,3-Trichlorobenzene 23.1 μg/l 20.0 1,2,4-Trichlorobenzene 23.5 μg/l 20.0 1,3,5-Trichlorobenzene 21.4 μg/l 20.0 1,1,1-Trichloroethane 18.9 μg/l 20.0 1,1,2-Trichloroethane 21.9 μg/l 20.0 Trichloroethane 21.8 μg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,4-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 mp-Xylene 40.0 μg/l 20.0		88 70-130		
n-Propylbenzene 18.1 µg/l 20.0 Styrene 18.0 µg/l 20.0 1,1,1,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethene 22.0 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 21.4 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20	1	101 70-130		
1,1,1,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethene 22.0 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethene 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m.p-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l <td></td> <td>91 70-130</td> <td></td> <td></td>		91 70-130		
1,1,1,2-Tetrachloroethane 22.9 µg/l 20.0 1,1,2,2-Tetrachloroethane 19.3 µg/l 20.0 Tetrachloroethene 22.0 µg/l 20.0 Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethene 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 20.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 2		90 70-130		
Tetrachloroethene 22.0 μg/l 20.0 Toluene 21.1 μg/l 20.0 1,2,3-Trichlorobenzene 23.1 μg/l 20.0 1,2,4-Trichlorobenzene 23.5 μg/l 20.0 1,3,5-Trichlorobenzene 21.4 μg/l 20.0 1,1,1-Trichloroethane 18.9 μg/l 20.0 1,1,2-Trichloroethane 21.9 μg/l 20.0 Trichloroethene 21.8 μg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,4-Trimethylbenzene 18.7 μg/l 20.0 1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tetra-amyl methyl ether 21.6 μg/l 20.0 </td <td>1</td> <td>114 70-130</td> <td></td> <td></td>	1	114 70-130		
Toluene 21.1 µg/l 20.0 1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethane 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 Winyl chloride 19.1 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Tetramyl methyl ether 18.6 µg/l 20.0 Tetrt-amyl methyl ether 19.8 µg/l 20.0 Ethyl tetr-butyl ether 19.8 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0		97 70-130		
1,2,3-Trichlorobenzene 23.1 µg/l 20.0 1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethane 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 Winyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Ethyl tetr-butyl ether 21.6 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0	1	110 70-130		
1,2,4-Trichlorobenzene 23.5 µg/l 20.0 1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethene 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 40.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Ethyl tetr-butyl ether 21.6 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0	1	106 70-130		
1,3,5-Trichlorobenzene 21.4 µg/l 20.0 1,1,1-Trichloroethane 18.9 µg/l 20.0 1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethane 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 40.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Tett-amyl methyl ether 21.6 µg/l 20.0 Ethyl tert-butyl ether 19.8 µg/l 20.0 Di-isopropyl ether	1	115 70-130		
1,1,1-Trichloroethane 18.9 μg/l 20.0 1,1,2-Trichloroethane 21.9 μg/l 20.0 Trichloroethene 21.8 μg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,4-Trimethylbenzene 18.7 μg/l 20.0 1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0	1	117 70-130		
1,1,2-Trichloroethane 21.9 µg/l 20.0 Trichloroethene 21.8 µg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 µg/l 20.0 1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 40.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Tert-amyl methyl ether 21.6 µg/l 20.0 Ethyl tert-butyl ether 19.8 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0	1	107 70-130		
Trichloroethene 21.8 μg/l 20.0 Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,4-Trimethylbenzene 18.7 μg/l 20.0 1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0		95 70-130		
Trichlorofluoromethane (Freon 11) 18.6 μg/l 20.0 1,2,3-Trichloropropane 20.7 μg/l 20.0 1,2,4-Trimethylbenzene 18.7 μg/l 20.0 1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0	1	110 70-130		
1,2,3-Trichloropropane 20.7 µg/l 20.0 1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 40.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Tetr-amyl methyl ether 21.6 µg/l 20.0 Ethyl tert-butyl ether 19.8 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0	1	109 70-130		
1,2,4-Trimethylbenzene 18.7 µg/l 20.0 1,3,5-Trimethylbenzene 18.7 µg/l 20.0 Vinyl chloride 19.1 µg/l 20.0 m,p-Xylene 40.0 µg/l 40.0 o-Xylene 20.6 µg/l 20.0 Tetrahydrofuran 19.2 µg/l 20.0 Ethyl ether 18.6 µg/l 20.0 Tert-amyl methyl ether 21.6 µg/l 20.0 Ethyl tert-butyl ether 19.8 µg/l 20.0 Di-isopropyl ether 16.8 µg/l 20.0		93 70-152		
1,3,5-Trimethylbenzene 18.7 μg/l 20.0 Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0	1	104 70-130		
Vinyl chloride 19.1 μg/l 20.0 m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0		94 70-130		
m,p-Xylene 40.0 μg/l 40.0 o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tetr-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0		93 70-130		
o-Xylene 20.6 μg/l 20.0 Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0		96 70-130		
Tetrahydrofuran 19.2 μg/l 20.0 Ethyl ether 18.6 μg/l 20.0 Tert-amyl methyl ether 21.6 μg/l 20.0 Ethyl tert-butyl ether 19.8 μg/l 20.0 Di-isopropyl ether 16.8 μg/l 20.0	1	100 70-130		
Ethyl ether 18.6 $\mu g/l$ 20.0 Tert-amyl methyl ether 21.6 $\mu g/l$ 20.0 Ethyl tert-butyl ether 19.8 $\mu g/l$ 20.0 Di-isopropyl ether 16.8 $\mu g/l$ 20.0	1	103 70-130		
Tert-amyl methyl ether 21.6 $\mu g/l$ 20.0 Ethyl tert-butyl ether 19.8 $\mu g/l$ 20.0 Di-isopropyl ether 16.8 $\mu g/l$ 20.0		96 70-130		
Ethyl tert-butyl ether 19.8 μ g/l 20.0 Di-isopropyl ether 16.8 μ g/l 20.0		93 70-133		
Di-isopropyl ether 16.8 μ g/l 20.0	1	108 70-130		
		99 70-130		
Tert-Butanol / butyl alcohol 207 μ g/l 200		84 70-130		
	1	104 70-130		
1,4-Dioxane 233 $\mu g/l$ 200	1	117 53.1-139		
trans-1,4-Dichloro-2-butene 16.8 μ g/l 20.0		84 70-130		
Ethanol 360 μg/l 400	<u> </u>	90 70-130		
Surrogate: 4-Bromofluorobenzene 30.0 µg/l 30.0		100 70-130		
Surrogate: Toluene-d8 33.4 µg/l 30.0 Surrogate: 1.2-Dichloroethane-d4 27.8 µg/l 30.0		112 70-130 93 70-130		
Surrogate: 1,2-Dichloroethane-d4 27.8 µg/l 30.0 Surrogate: Dibromofluoromethane 28.2 µg/l 30.0		93 70-130 94 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	Tiag	Onits	KDL	Level	Result	/0KEC	Lillits	KI D	Lillit
Batch 9070225 - SW846 5030 Water MS										
LCS Dup (9070225-BSD1)										
Prepared & Analyzed: 06-Jul-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.6		μg/l		20.0		103	70-130	0.5	25
Acetone	17.2		μg/l		20.0		86	41.6-158	2	50
Acrylonitrile	17.7		μg/l		20.0		88	70-130	0.7	25
Benzene	17.6		μg/l		20.0		88	70-130	3	25
Bromobenzene	21.1		μg/l		20.0		106	70-130	0.4	25
Bromochloromethane	18.3		μg/l		20.0		92	70-130	4	25
Bromodichloromethane	17.9		μg/l		20.0		89	70-130	1	25
Bromoform	16.7		μg/l		20.0		84	70-130	1	25
Bromomethane	28.4		μg/l		20.0		142	47-147	7	50
2-Butanone (MEK)	20.4		μg/l		20.0		102	60.9-144	11	50
n-Butylbenzene	18.3		μg/l		20.0		92	70-130	1	25
sec-Butylbenzene	19.0		μg/l		20.0		95	70-130	2	25
tert-Butylbenzene	19.0		μg/l		20.0		95	70-130	3	25
Carbon disulfide	18.2		μg/l		20.0		91	70-130	5	25
Carbon tetrachloride	17.1		μg/l		20.0		86	70-130	4	25
Chlorobenzene	20.0		μg/l		20.0		100	70-130	0.1	25
Chloroethane	15.1		μg/l		20.0		75	63.6-131	7	50
Chloroform	17.4		μg/l		20.0		87	70-130	5	25
Chloromethane	15.6		μg/l		20.0		78	70-130	4	25
2-Chlorotoluene	21.0		μg/l		20.0		105	70-130	1	25
4-Chlorotoluene	20.9		μg/l		20.0		104	70-130	3	25
1,2-Dibromo-3-chloropropane	15.5		μg/l		20.0		78	70-130	4	25
Dibromochloromethane	16.8		μg/l		20.0		84	58.8-145	3	50
1,2-Dibromoethane (EDB)	22.1		μg/l		20.0		110	70-130	2	25
Dibromomethane	19.5		μg/l		20.0		98	70-130	8.0	25
1,2-Dichlorobenzene	21.9		μg/l		20.0		110	70-130	0.3	25
1,3-Dichlorobenzene	21.3		μg/l		20.0		106	70-130	1	25
1,4-Dichlorobenzene	19.6		μg/l		20.0		98	70-130	0.7	25
Dichlorodifluoromethane (Freon12)	15.3		μg/l		20.0		77	56.6-137	2	50
1,1-Dichloroethane	17.5		μg/l		20.0		88	70-130	4	25
1,2-Dichloroethane	17.2		μg/l		20.0		86	70-130	2	25
1,1-Dichloroethene	17.5		μg/l		20.0		88	70-130	4	25
cis-1,2-Dichloroethene	18.8		μg/l		20.0		94	70-130	4	25
trans-1,2-Dichloroethene	16.9		μg/l		20.0		85	70-130	5	25
1,2-Dichloropropane	20.4		μg/l		20.0		102	70-130	3	25
1,3-Dichloropropane	20.7		μg/l		20.0		103	70-130	2	25
2,2-Dichloropropane	18.5		μg/l		20.0		92	70-130	7	25
1,1-Dichloropropene	18.0		μg/l		20.0		90	70-130	5	25
cis-1,3-Dichloropropene	18.5		μg/l		20.0		93	70-130	3	25
trans-1,3-Dichloropropene	18.0		μg/l		20.0		90	70-130	4	25
Ethylbenzene	21.0		μg/l		20.0		105	70-130	2	25
Hexachlorobutadiene	19.2		μg/l		20.0		96	70-134	3	50
2-Hexanone (MBK)	17.7		μg/l		20.0		88	70-130	4	25
Isopropylbenzene	17.1		μg/l		20.0		85	70-130	3	25
4-Isopropyltoluene	19.1		μg/l		20.0		96	70-130	1	25
Methyl tert-butyl ether	20.0		μg/l		20.0		100	70-130	0.7	25
4-Methyl-2-pentanone (MIBK)	26.3	QC2	μg/l		20.0		131	64.8-130	8.0	50
Methylene chloride	16.8		μg/l		20.0		84	70-130	4	25
Naphthalene	20.7		μg/l		20.0		104	70-130	2	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9070225 - SW846 5030 Water MS										
LCS Dup (9070225-BSD1)										
Prepared & Analyzed: 06-Jul-09										
n-Propylbenzene	17.5		μg/l		20.0		88	70-130	3	25
Styrene	17.9		μg/l		20.0		89	70-130	0.7	25
1,1,1,2-Tetrachloroethane	22.6		μg/l		20.0		113	70-130	1	25
1,1,2,2-Tetrachloroethane	19.7		μg/l		20.0		99	70-130	2	25
Tetrachloroethene	21.0		μg/l		20.0		105	70-130	5	25
Toluene	20.2		μg/l		20.0		101	70-130	4	25
1,2,3-Trichlorobenzene	22.7		μg/l		20.0		114	70-130	2	25
1,2,4-Trichlorobenzene	23.4		μg/l		20.0		117	70-130	0.6	25
1,3,5-Trichlorobenzene	21.4		μg/l		20.0		107	70-130	0.1	25
1,1,1-Trichloroethane	17.6		μg/l		20.0		88	70-130	7	25
1,1,2-Trichloroethane	21.4		μg/l		20.0		107	70-130	2	25
Trichloroethene	21.1		μg/l		20.0		106	70-130	3	25
Trichlorofluoromethane (Freon 11)	17.9		μg/l		20.0		89	70-152	4	50
1,2,3-Trichloropropane	21.5		μg/l		20.0		107	70-130	3	25
1,2,4-Trimethylbenzene	18.4		μg/l		20.0		92	70-130	2	25
1,3,5-Trimethylbenzene	18.1		μg/l		20.0		91	70-130	3	25
Vinyl chloride	18.1		μg/l		20.0		91	70-130	5	25
m,p-Xylene	39.2		μg/l		40.0		98	70-130	2	25
o-Xylene	20.4		μg/l		20.0		102	70-130	1	25
Tetrahydrofuran	17.6		μg/l		20.0		88	70-130	9	25
Ethyl ether	18.0		μg/l		20.0		90	70-133	3	50
Tert-amyl methyl ether	21.1		μg/l		20.0		106	70-130	2	25
Ethyl tert-butyl ether	19.1		μg/l		20.0		96	70-130	3	25
Di-isopropyl ether	16.2		μg/l		20.0		81	70-130	4	25
Tert-Butanol / butyl alcohol	205		μg/l		200		102	70-130	1	25
1,4-Dioxane	221		μg/l		200		111	53.1-139	5	25
trans-1,4-Dichloro-2-butene	17.3		μg/l		20.0		86	70-130	3	25
Ethanol	341		μg/l		400		85	70-130	5	30
Surrogate: 4-Bromofluorobenzene	29.5		μg/l		30.0		98	70-130		
Surrogate: Toluene-d8	31.9		μg/l		30.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	26.6 27.0		µg/l µg/l		30.0 30.0		89 90	70-130 70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9062199 - SW846 3510C										
Blank (9062199-BLK1)										
Prepared & Analyzed: 30-Jun-09										
Acenaphthene	BRL		μg/l	2.50						
Acenaphthylene	BRL		μg/l	2.50						
Anthracene	BRL		μg/l	2.50						
Benzo (a) anthracene	BRL		μg/l	2.50						
Benzo (a) pyrene	BRL		μg/l	2.50						
Benzo (b) fluoranthene	BRL		μg/l	2.50						
Benzo (g,h,i) perylene	BRL		μg/l	2.50						
Benzo (k) fluoranthene	BRL		μg/l	2.50						
Chrysene	BRL		μg/l	2.50						
Dibenzo (a,h) anthracene	BRL		μg/l	2.50						
Fluoranthene	BRL		μg/l	2.50						
Fluorene	BRL		μg/l	2.50						
Indeno (1,2,3-cd) pyrene	BRL		μg/l	2.50						
1-Methylnaphthalene	BRL		μg/l	2.50						
2-Methylnaphthalene	BRL		μg/l	2.50						
Naphthalene	BRL		μg/l	2.50						
Phenanthrene	BRL		μg/l	2.50						
Pyrene	BRL		μg/l	2.50						
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	28.9 27.7		μg/l μg/l		50.0 50.0		58 55	30-130 30-130		
_CS (9062199-BS1)										
Prepared & Analyzed: 30-Jun-09										
Acenaphthene	35.8		μg/l	2.50	50.0		72	40-140		
Acenaphthylene	34.9		μg/l	2.50	50.0		70	40-140		
Anthracene	35.7		μg/l	2.50	50.0		71	40-140		
Benzo (a) anthracene	36.8		μg/l	2.50	50.0		74	40-140		
Benzo (a) pyrene	35.8		μg/l	2.50	50.0		72	40-140		
Benzo (b) fluoranthene	40.2		μg/l	2.50	50.0		80	40-140		
Benzo (g,h,i) perylene	39.3		μg/l	2.50	50.0		79	40-140		
Benzo (k) fluoranthene	25.1		μg/l	2.50	50.0		50	40-140		
Chrysene	36.7		μg/l	2.50	50.0		73	40-140		
Dibenzo (a,h) anthracene	37.8		μg/l	2.50	50.0		76	40-140		
Fluoranthene	35.2		μg/l	2.50	50.0		70	40-140		
Fluorene	34.5		μg/l	2.50	50.0		69	40-140		
Indeno (1,2,3-cd) pyrene	39.0		μg/l	2.50	50.0		78	40-140		
1-Methylnaphthalene	34.1		μg/l	2.50	50.0		68	40-140		
2-Methylnaphthalene	33.9		μg/l	2.50	50.0		68	40-140		
Naphthalene	33.8		μg/l	2.50	50.0		68	40-140		
Phenanthrene	31.5		μg/l	2.50	50.0		63	40-140		
Pyrene	36.7		μg/l	2.50	50.0		73	40-140		
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	29.7 32.4		μg/l μg/l		50.0 50.0		59 65	30-130 30-130		
_CS Dup (9062199-BSD1)			-							
Prepared & Analyzed: 30-Jun-09										
Acenaphthene	38.5		μg/l	2.50	50.0		77	40-140	7	200
Acenaphthylene	37.2		μg/l	2.50	50.0		74	40-140	6	200
Anthracene	39.2		μg/l	2.50	50.0		7 4 78	40-140	9	200
	40.5		μg/l μg/l	2.50	50.0		81	40-140	10	200
Benzo (a) anthracene										

Semivolatile Organic Compounds by GCMS - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9062199 - SW846 3510C										
LCS Dup (9062199-BSD1)										
Prepared & Analyzed: 30-Jun-09										
Benzo (b) fluoranthene	42.9		μg/l	2.50	50.0		86	40-140	6	200
Benzo (g,h,i) perylene	44.4		μg/l	2.50	50.0		89	40-140	12	200
Benzo (k) fluoranthene	29.8		μg/l	2.50	50.0		60	40-140	17	200
Chrysene	40.2		μg/l	2.50	50.0		80	40-140	9	200
Dibenzo (a,h) anthracene	41.7		μg/l	2.50	50.0		83	40-140	10	200
Fluoranthene	38.8		μg/l	2.50	50.0		78	40-140	10	200
Fluorene	36.4		μg/l	2.50	50.0		73	40-140	5	200
Indeno (1,2,3-cd) pyrene	43.8		μg/l	2.50	50.0		88	40-140	12	200
1-Methylnaphthalene	36.5		μg/l	2.50	50.0		73	40-140	7	200
2-Methylnaphthalene	36.3		μg/l	2.50	50.0		73	40-140	7	200
Naphthalene	36.4		μg/l	2.50	50.0		73	40-140	7	200
Phenanthrene	33.4		μg/l	2.50	50.0		67	40-140	6	200
Pyrene	39.9		μg/l	2.50	50.0		80	40-140	8	200
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	30.5 33.6		μg/l μg/l		50.0 50.0		61 67	30-130 30-130		
		0 04 D02								
Duplicate (9062199-DUP1)	Source: SA9687	9-01 R02								
Prepared & Analyzed: 30-Jun-09	0.00			0.50		0.57			40	50
Acenaphthene	2.26	J	μg/l	6.58		2.57			13	50
Acenaphthylene	BRL		μg/l 	6.58		BRL				50
Anthracene	BRL		μg/l 	6.58		BRL				50
Benzo (a) anthracene	BRL		μg/l 	6.58		BRL				50
Benzo (a) pyrene	BRL		μg/l 	6.58		BRL				50
Benzo (b) fluoranthene	BRL		μg/l 	6.58		BRL				50
Benzo (g,h,i) perylene	BRL		μg/l	6.58		BRL				50
Benzo (k) fluoranthene	BRL		μg/l 	6.58		BRL				50
Chrysene	BRL		μg/l	6.58		BRL				50
Dibenzo (a,h) anthracene	BRL		μg/l	6.58		BRL				50
Fluoranthene	BRL		µg/l	6.58		BRL				50
Fluorene	3.87	J	μg/l	6.58		4.80			21	50
Indeno (1,2,3-cd) pyrene	BRL		μg/l	6.58		BRL				50
1-Methylnaphthalene	4.08	J	μg/l	6.58		4.03			1	50
2-Methylnaphthalene	BRL		μg/l	6.58		BRL				50
Naphthalene	BRL		μg/l	6.58		BRL				50
Phenanthrene	1.34	J,QR4	μg/l	6.58		2.47			59	50
Pyrene	1.58	J	μg/l	6.58		1.83			15	50
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4	37.6 28.6		μg/l μg/l		65.8 65.8		57 43	30-130 30-130		

Notes and Definitions

CAL2	Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the
	20% Drift/Difference criteria

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

QR4 Analyses are not controlled on RPD values from sample concentrations less than the reporting limit. QC batch accepted based on LCS and/or LCSD QC results

R02 Elevated Reporting Limits due to limited sample volume.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

SAGUETA CA

CHAIN OF CUSTODY RECORD

Special Handling:

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

Samples disposed of after 60 days unless otherwise instructed.

SPECTRUM ANALYTICAL, INC. Frenering HANIBAL TECHNOLOGY	20 000	Peterion	Page	-		Į,		- district radio				1 1246 24		Min. 24-hour notifies Samples disposed of otherwise instructed.	Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.
Report To: CEA	•	Invoice To:	127 H L. 11 57	-		7	1	of the fact of		Proje	Project No.:	104.J/(E)	-T2	RI-0011-06	athy a
Concerd, NH			west	B	Boylston,	243	M	1991	1	Site	lame	14	幸	1	
Project Mer. B 4500		151	11P1	laci.		- Q				Loca	non:	6	0	Location: Condition	State: 07
	000	P.O. No.:	(i)		R	RQN:				Samp	Sampler(s): B. He	12	T.	参い	
1=N ₄ 2S2O ₃ 2=HCl 3=H ₂ SO ₄	SO ₄ 4=HNO ₃	5=NaOH 6	6=Ascorbic Acid	cid	7=(7=СН ₃ ОН	Ĭ			ist p	List preservative code	ville.	e cod	e belaw:	QA/QC Reporting Notes:
9==	1	245 25 25 25 25 25 25 25 25 25 25 25 25 25	11=			ija.		P	1			o fign		7.19	(check as needed)
DW=Drinking Water GW=Groundwater	1.0	WW=Wastewater			C	Containers:	ners:				٨	Analyses	ses:	d	
O=Oil SW= Surface Water SO X1= X2= X2=	₩.	dge A=Air	lowps	/ials	Glass	er digie a ar	77033	00	70				orie .		☐ Provide MA DEP MCP CAM Report ☐ Provide CT DPH RCP Report QA/QC Reporting Level
G=Grab C=	C=Composite		x	OA V		lear (820	82			-b-gjo	(5 JBp)	perior	Other No QC
Lab Id: Sample Id:	Date:	Time:	Type	# of V	2 2110	V9565.1	# of I	va	PAH	ONS-		ilbenzi	o eluit	as jou	State specific reporting standards:
AND MULY	6/24/09	13:00	6 CW	3	2	LLC I		<	1	ŒĿ		16.Qr	S 91		
OR MINS	10	13:15	C CW	w	2	dip		1	1	Life		TEP9	- ĢE		OSA PAGE
B MW-6	10	3:30	a cw	W	2	D.L.Fi		1	1	1/12		1442	crµ-		och de l
C-11111 FD	÷	13:45	G CW	W	2	HELDOD		<	1	080-	init.	of profe	ep/ves		SLICY Tabel Ta
igsi ide Agg		Cing Cing Cind Cind Cind Cind Cind Cind Cind Cind	9 169	91111	a.co.	ntor.	uj	756	8615	# ((eraja Paga	i/A6jit)	260	overs upun edilo edilo edilo	
		Tab Tab		10.61.		1 - 5	ide ede	oit.	984	93	5587	44	isiu	nosin Daja Vala	Ede Coe Stan Chie Miles E Co
ic set			10 (p.s.)	(B) - 1	Since published	nin min	- 5 - 15 k	185 p.6-1	3한 2 년 2학교	isiulo	as 0. c	nave tu		ger er ig Mei z ce Mei z ce	CEPT, CEPT, CEPT, distal
Sall Media Skill Alich Media Media Media Media Media Media Media	COL.			301	la la			le.		SE1		16 ja: 17 / C	6.8		in Ar
EDD Format PDF + Excel	Cea-Inc. Com	*	whi	T. Kan	to	7			as	11	2	131	The		COSI 60/89/3
Condition upon receipt:	□ Ambient 42°C >	e	1 May	1	1	1		A A	S	1		1		4	6/2/201 10/2/10

gunst, stydest by Communicati

SAGUSTA CAC Special Handling:

Report To. CEA 6.34 Heal ST Concerned Let Hold ST Concerned Let Heal ST Concerned Let Heal ST Concerned Let Heal ST Concerned Let Heal ST Concerned Let Hold ST Telephone # Letter Apps - 1/4DD Telephone Apps - 1/4D	7							13	F	C	□ Ambient 42°C >	□ Iccd	Condition upon receipt:
Invoice To: CEA			1	ŧ	1	1	51	1	_	Y.	a-Inc. Co	1.	
Invoice To. CEA	Ned by	1 February	L.		> 5	ished Shed	(elinqu					+	EDD Format §
Invoice To. CEA Project No. P.T.				H	-		-				-61 T		
Invoice To: CEA Holl 5T Site Name: 3-444		+		+	+		C	+	:			LANGE	
Invoice To: CEA Project No: PI -					+		+	+	+				
CEFA CEFA Invoice To: CEA Project No: PLANDER Project No: PLANDER Site Name: THE Containers: Steel ST Site Name: THE STAKE Containers: Site Name: THE STAKE Steel ST Site Name: THE Steel ST				+				+	-				1557
CEA Invoice To: CEA Project No.: PLANDER Site Name: ST Site Name: ST Site Name: ST Site Name: Stite Name: Stite Name: Stite Name: ST Stite Name:				+	-		1					er.	E IS
CEA CEA Project No.: PI			+	<		2	-	E.	5	13:45	•	MW-7	fr0
Invoice To: CEA Project No.: PI			1	5		12	W	110	6	3:30	1	MU-6	08
CEA Hell 5T			+-	5	-	7	w	CN	C	13:15	1 2	Mw 8rd	
Invoice To: CEA Project No: PI			,	(+	6		-	6	13:00	6/24/09	HW-45	MURRO
Invoice To: CEA				2.7	1 100	# of	# of		Typs	Time:	Date:	Sample Id:	.pl qeT.
Invoice To: CEA	- 1 - 1 - 1					Ambe	VOA	1200			omposite	ai Au	
CEA Invoice To: CEA Project No: PI L3A Hall ST (27 Hz-hwell ST Site Name: Toffe Cenceral, WH West Roylstor, wa Location: Cenals #: Centeral, WH P.O. No: RQN: Sampler(s): B. H #: Centeral, WH P.O. No: RQN: Sampler(s): B. H \$203, 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 7=CH ₃ OH List preservative cod \$11= Containers: Analyses:	* . 					r Glass	Vials			ige A=Air	20	1000	
CEA Invoice To: CEA Project No: PI- Lo2A Hadl ST (27 Hz. fwed ST Site Name: 3-4/2 Concered, AJH (West Roylettr, MA Location: Ce-ds r: B Hades RQN: RQN: Sampler(s): B. H Sampler(s): B. H #: 603-325-7400 P.O. No: RQN: Sampler(s): B. H Sampler(s): B. H #: 800-325-7400 P.O. No: RQN: Sampler(s): B. H List preservative cod	vses:	Anal			ainers	Cont				Wastemater		- li	
CEA Hall ST Invoice To: CEA Project No.: PI- CENCERAL ST 127 He- fused ST Site Name: Jaffe CENCERAL ST UNIT UKST Roy/s for, MA Location: Cencers T. B Hopper P.O. No.: RON: Sampler(s): B. H.	e code below	ist preservativ	·-	90	HO	7=CH	cid	orbic A	6=Asc			2=HCl 9=	1=N ₃₂ S2C 8= N ₃ HSC
CEA Invoice To: CEA Project No.: PI- LOJA Hall ST Site Name: Jeffe Cencerd, NH West Roylston, MA Location: Conde	3. Falls	Sampler(s):				RQN				P.O. No		Hopen	Project Mgr.: 1
CEA Invoice To: CEA Project No.: PI-	malspr			3	2	15 for	Boy	lest.	u				(D)
$C\mathcal{E}A$ Invoice To: $C\mathcal{E}A$ Project No.: $P\mathcal{I}$	Heres	Site Name: 3			7	sell s	to to					5	\ !
	RI-0011-06							CEA	1	Invoice	٠	4	
		CORL	\mathcal{H}	Y	\mathbf{D}	T	S	CI	9	MIA	CF	1	
CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECO	ļ												

11 Almgren Drive - Agawam, MA 01001 . 413-789-9018 . FAX 413-789-4076 . www.spectrum-analytical.com

Report Date: 07-Jul-09 10:02

Final Report
Re-Issued Report
Revised Report

Laboratory Report

CEA, Inc 62B Hall Street Concord, NH 03301 Attn: William Hopper

Project: Jeffries Residence - Landgrove, VT

Project RI-0011-06

Laboratory ID	Client Sample ID	Container	<u>Matrix</u>	Date Sampled	Date Received
SA96849-01	Basement	Summa canister 6 liter	Air	24-Jun-09 12:20	25-Jun-09 17:48
SA96849-02	1st Floor LR	Summa canister 6 liter	Air	24-Jun-09 12:20	25-Jun-09 17:48
SA96849-03	Ambient	Summa canister 6 liter	Air	24-Jun-09 12:20	25-Jun-09 17:48

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 13 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA TO-15

Samples:

SA96849-01 Basement

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

4-Bromofluorobenzene

Client Project # RI-0011-06

Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Qualit	ty Analyses									
EPA TO-	<u>15</u>		Prepared	d 30-Jun-09			Can pressur	e: -1		
15-07-1	Propene	BRL	0.500	BRL	0.86		EPA TO-15	30-Jun-09	9070029	
5-71-8	Dichlorodifluoromethane (Freon12)	5.11	0.500	25.27	2.47		"	"	"	Х
4-87-3	Chloromethane	BRL	0.500	BRL	1.03		"	"	"	Х
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500	BRL	3.49		"	"	"	
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		"	"	"	Х
06-99-0	1,3-Butadiene	BRL	0.500	BRL	1.10		"	"	"	Х
4-83-9	Bromomethane	BRL	0.500	BRL	1.94		"	"	"	Х
5-00-3	Chloroethane	BRL	0.500	BRL	1.32		"	"	"	Х
7-64-1	Acetone	13.5	0.500	32.08	1.19		"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	1.16	0.500	6.52	2.81		"	"	"	Х
64-17-5	Ethanol	6.39	0.500	12.05	0.94		"	"	"	
07-13-1	Acrylonitrile	BRL	0.500	BRL	1.08		"	"	"	
5-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Χ
5-09-2	Methylene chloride	BRL	0.500	BRL	1.74		"	"	"	Х
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500	BRL	3.83		"	"	"	Х
5-15-0	Carbon disulfide	BRL	0.500	BRL	1.56		"	"	"	Х
56-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		m .	"	"	Х
5-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
634-04-4	Methyl tert-butyl ether	BRL	0.500	BRL	1.80		"	"	"	Х
7-63-0	Isopropyl alcohol	0.720	0.500	1.77	1.23		"	"	"	Х
8-93-3	2-Butanone (MEK)	1.90	0.500	5.60	1.47		"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
10-54-3	Hexane	BRL	0.500	BRL	1.76		"	"	"	Х
41-78-6	Ethyl acetate	BRL	0.500	BRL	1.80		"	"	"	
7-66-3	Chloroform	BRL	0.500	BRL	2.43		"	"	"	Х
09-99-9	Tetrahydrofuran	BRL	0.500	BRL	1.47		"	"	"	
07-06-2	1,2-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	Х
1-43-2	Benzene	BRL	0.500	BRL	1.60		"	"	"	Х
6-23-5	Carbon tetrachloride	BRL	0.500	BRL	3.15		"	"	"	Х
10-82-7	Cyclohexane	1.21	0.500	4.16	1.72		"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL	0.500	BRL	2.31		"	"	"	Х
5-27-4	Bromodichloromethane	BRL	0.500	BRL	3.35		"	"	"	Х
9-01-6	Trichloroethene	BRL	0.500	BRL	2.69		"	"	"	Х
23-91-1	1,4-Dioxane	BRL	0.500	BRL	1.80		"	"	"	
42-82-5	n-Heptane	1.89	0.500	7.75	2.05		"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	41.3	0.500	169.25	2.05		"	"	"	Х
0061-01-5		BRL	0.500	BRL	2.27		"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL	0.500	BRL	2.27		"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	X
08-88-3	Toluene	11.2	0.500	42.14	1.88		"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL	0.500	BRL	2.05		"	"	"	
24-48-1	Dibromochloromethane	BRL	0.500	BRL	4.26		"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL	0.500	BRL	3.84		"	"		X
27-18-4	Tetrachloroethene	BRL	0.500	BRL	3.39		"	"	"	X
08-90-7	Chlorobenzene	BRL	0.500	BRL	2.30		"	"		X
30-20-6	1,1,1,2-Tetrachloroethane	BRL	0.500	BRL	3.44		"	"	"	^
30-20-6 00-41-4	Ethylbenzene	2.62	0.500	11.36	2.17		"	"		Х
	m,p-Xylene	13.4	0.500	58.09	2.17		"	"		
79601-23-1 '5-25-2	Bromoform	BRL	0.500	BRL	5.17		"	"		X X
:1-/7-/	DIVITIVIUIII	BKL	0.500	BKL	J. 17					^

Sample Identification
Basement
SA96849-01

Client Project # RI-0011-06 Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Quali	ty Analyses									
EPA TO-	<u>15</u>		Prepare	d 30-Jun-09			Can pressur	re: -1		
5-47-6	o-Xylene	4.78	0.500	20.72	2.17		EPA TO-15	30-Jun-09	9070029	Χ
9-34-5	1,1,2,2-Tetrachloroethane	BRL	0.500	BRL	3.43		"	"	"	Χ
8-82-8	Isopropylbenzene	0.540	0.500	2.65	2.46		"	"	"	
08-67-8	1,3,5-Trimethylbenzene	1.88	0.500	9.24	2.46		"	"	"	Χ
22-96-8	4-Ethyltoluene	1.45	0.500	7.13	2.46		"	"	"	
5-63-6	1,2,4-Trimethylbenzene	3.61	0.500	17.75	2.46		"	"	"	Χ
41-73-1	1,3-Dichlorobenzene	BRL	0.500	BRL	3.01		"	"	"	Χ
00-44-7	Benzyl chloride	BRL	0.500	BRL	2.58		"	"	"	Χ
06-46-7	1,4-Dichlorobenzene	BRL	0.500	BRL	3.01		"	"	"	Χ
35-98-8	sec-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
9-87-6	4-Isopropyltoluene	0.630	0.500	3.38	2.68		"	"	"	
5-50-1	1,2-Dichlorobenzene	0.950	0.500	5.71	3.01		"	"	"	Χ
04-51-8	n-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
20-82-1	1,2,4-Trichlorobenzene	BRL	0.500	BRL	3.71		"	"	"	Χ
37-68-3	Hexachlorobutadiene	BRL	0.500	BRL	5.33		"	"	"	Χ
Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	134	70-	-130 %		S02	"	"	"	

Client Project # RI-0011-06 Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	ty Analyses									
EPA TO-	<u>15</u>		Prepared	d 30-Jun-09			Can pressur	e: -2		
115-07-1	Propene	BRL	0.500	BRL	0.86		EPA TO-15	30-Jun-09	9070029	
75-71-8	Dichlorodifluoromethane (Freon12)	1.40	0.500	6.92	2.47		"	"	"	Χ
4-87-3	Chloromethane	0.520	0.500	1.07	1.03		"	"	"	Χ
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500	BRL	3.49		"	"	"	
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		"	"	"	Χ
06-99-0	1,3-Butadiene	BRL	0.500	BRL	1.10		"	"	"	Χ
4-83-9	Bromomethane	BRL	0.500	BRL	1.94		"	"	"	Χ
5-00-3	Chloroethane	BRL	0.500	BRL	1.32		"	"	"	Χ
7-64-1	Acetone	19.2	0.500	45.62	1.19		"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	1.64	0.500	9.22	2.81		"	"	"	Χ
64-17-5	Ethanol	34.8	0.500	65.61	0.94		"	"	"	
07-13-1	Acrylonitrile	BRL	0.500	BRL	1.08		"	"	"	
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Χ
5-09-2	Methylene chloride	BRL	0.500	BRL	1.74		"	"	"	Χ
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500	BRL	3.83		"	"	"	Χ
5-15-0	Carbon disulfide	BRL	0.500	BRL	1.56		"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Χ
5-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Χ
634-04-4	Methyl tert-butyl ether	BRL	0.500	BRL	1.80		"	"	"	Χ
67-63-0	Isopropyl alcohol	1.06	0.500	2.60	1.23		"	"	"	Χ
8-93-3	2-Butanone (MEK)	2.75	0.500	8.11	1.47		"	"	"	Χ
56-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
10-54-3	Hexane	BRL	0.500	BRL	1.76		"	"	"	Х
41-78-6	Ethyl acetate	BRL	0.500	BRL	1.80		"	"	"	
67-66-3	Chloroform	BRL	0.500	BRL	2.43		"	"	"	Χ
09-99-9	Tetrahydrofuran	BRL	0.500	BRL	1.47		"	"	"	
07-06-2	1,2-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	Х
1-43-2	Benzene	BRL	0.500	BRL	1.60		"	"	"	Х
6-23-5	Carbon tetrachloride	BRL	0.500	BRL	3.15		u u	"	"	Х
10-82-7	Cyclohexane	1.38	0.500	4.75	1.72		"	"	"	Х
78-87-5	1,2-Dichloropropane	BRL	0.500	BRL	2.31		u u	"	"	Х
5-27-4	Bromodichloromethane	BRL	0.500	BRL	3.35		"	"	"	Х
9-01-6	Trichloroethene	BRL	0.500	BRL	2.69		"			Х
123-91-1	1,4-Dioxane	BRL	0.500	BRL	1.80		"			,,
42-82-5	n-Heptane	1.09	0.500	4.47	2.05		"		"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL	0.500	BRL	2.05		,,	"	"	X
	cis-1,3-Dichloropropene	BRL	0.500	BRL	2.27		,,	"	"	X
0061-02-6	trans-1,3-Dichloropropene	BRL	0.500	BRL	2.27		"	"	"	X
9-00-5	1,1,2-Trichloroethane	BRL	0.500	BRL	2.73		,,	"	"	X
08-88-3	Toluene	4.43	0.500	16.67	1.88				"	Х
91-78-6	2-Hexanone (MBK)	BRL	0.500	BRL	2.05		"			^
24-48-1	Dibromochloromethane	BRL	0.500	BRL	4.26		"		"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL	0.500	BRL	3.84		"	"	"	X
27-18-4	Tetrachloroethene	29.0	0.500	196.65	3.39			"		X
08-90-7	Chlorobenzene	BRL	0.500	BRL	2.30			"		X
		BRL	0.500	BRL	3.44		"	"	"	^
30-20-6	1,1,1,2-Tetrachloroethane						"	"		V
00-41-4 70604 22 4	Ethylbenzene	BRL	0.500	BRL 2.51	2.17			"		X
79001-23-1	m,p-Xylene Bromoform	0.580 BRL	0.500 0.500	2.51 BRL	2.17 5.17			"		X X
75-25-2			11 2011	KKI	2 1/					X

Sample Identification 1st Floor LR SA96849-02

Client Project # RI-0011-06

Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	<u>15</u>		Prepare	d 30-Jun-09			Can pressur	e: -2		
95-47-6	o-Xylene	BRL	0.500	BRL	2.17		EPA TO-15	30-Jun-09	9070029	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BRL	0.500	BRL	3.43		n n	"	"	Χ
98-82-8	Isopropylbenzene	BRL	0.500	BRL	2.46		n n	"	"	
108-67-8	1,3,5-Trimethylbenzene	BRL	0.500	BRL	2.46		"	"	"	X
622-96-8	4-Ethyltoluene	BRL	0.500	BRL	2.46		n n	"	"	
95-63-6	1,2,4-Trimethylbenzene	BRL	0.500	BRL	2.46		n n	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BRL	0.500	BRL	3.01		"	"	"	X
100-44-7	Benzyl chloride	BRL	0.500	BRL	2.58		m m	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BRL	0.500	BRL	3.01		n n	"	"	Χ
135-98-8	sec-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
99-87-6	4-Isopropyltoluene	BRL	0.500	BRL	2.68		m m	"	"	
95-50-1	1,2-Dichlorobenzene	BRL	0.500	BRL	3.01		m m	"	"	Χ
104-51-8	n-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BRL	0.500	BRL	3.71		m m	"	"	Χ
87-68-3	Hexachlorobutadiene	BRL	0.500	BRL	5.33		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	99	70-	-130 %			"	"	"	

Client Project # RI-0011-06 Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Qualit	y Analyses									
EPA TO-1	<u>5</u>		Prepared	d 30-Jun-09			Can pressur	e: -2		
115-07-1	Propene	BRL	0.500	BRL	0.86		EPA TO-15	30-Jun-09	9070029	
5-71-8	Dichlorodifluoromethane (Freon12)	0.590	0.500	2.92	2.47		"	"	"	Χ
4-87-3	Chloromethane	0.510	0.500	1.05	1.03		"	"	"	Х
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500	BRL	3.49		"	"	"	
5-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		"	"	"	Х
06-99-0	1,3-Butadiene	BRL	0.500	BRL	1.10		"	"	"	Х
4-83-9	Bromomethane	BRL	0.500	BRL	1.94		"	"	"	Х
5-00-3	Chloroethane	BRL	0.500	BRL	1.32		"	"	"	Х
7-64-1	Acetone	3.09	0.500	7.34	1.19		"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL	0.500	BRL	2.81		"	"	"	Х
4-17-5	Ethanol	2.01	0.500	3.79	0.94		"	"	"	
07-13-1	Acrylonitrile	BRL	0.500	BRL	1.08		"	"	"	
5-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
5-09-2	Methylene chloride	BRL	0.500	BRL	1.74		"	"	"	Х
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500	BRL	3.83		"	"	"	Х
5-15-0	Carbon disulfide	BRL	0.500	BRL	1.56		"	"	"	Х
56-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
634-04-4	Methyl tert-butyl ether	BRL	0.500	BRL	1.80		"	"	"	Х
7-63-0	Isopropyl alcohol	1.62	0.500	3.98	1.23		"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL	0.500	BRL	1.47		"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
10-54-3	Hexane	BRL	0.500	BRL	1.76		"	"	"	Х
41-78-6	Ethyl acetate	BRL	0.500	BRL	1.80		"	"	"	
7-66-3	Chloroform	BRL	0.500	BRL	2.43		"	"		Х
09-99-9	Tetrahydrofuran	BRL	0.500	BRL	1.47		"	"		
07-06-2	1,2-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"		X
1-43-2	Benzene	BRL	0.500	BRL	1.60		"	"		Х
6-23-5	Carbon tetrachloride	BRL	0.500	BRL	3.15		"	"	"	X
10-82-7	Cyclohexane	BRL	0.500	BRL	1.72		"	"	"	X
8-87-5	1,2-Dichloropropane	BRL	0.500	BRL	2.31		"	"	"	X
5-27-4	Bromodichloromethane	BRL	0.500	BRL	3.35		"	"	"	X
9-01-6	Trichloroethene	BRL	0.500	BRL	2.69		"	"		X
23-91-1	1,4-Dioxane	BRL	0.500	BRL	1.80		"	"	"	^
42-82-5	n-Heptane	BRL	0.500	BRL	2.05		"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL	0.500	BRL	2.05		"	"	"	X
	cis-1,3-Dichloropropene	BRL	0.500	BRL	2.27		"	"	"	X
	trans-1,3-Dichloropropene	BRL	0.500	BRL	2.27		"	"		X
9-00-5	1,1,2-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	X
08-88-3	Toluene	BRL	0.500	BRL	1.88		"	"	"	X
91-78-6	2-Hexanone (MBK)	BRL	0.500	BRL	2.05		"			^
24-48-1	Dibromochloromethane	BRL	0.500	BRL	4.26		"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BRL	0.500	BRL	3.84		"	"	"	X
27-18-4	Tetrachloroethene	BRL	0.500	BRL	3.39		"	"		X
08-90-7	Chlorobenzene	BRL	0.500	BRL	2.30		"	"		X
		BRL	0.500		3.44		"	"	"	^
30-20-6	1,1,1,2-Tetrachloroethane			BRL			"	"		V
00-41-4 70601 22 1	Ethylbenzene	BRL	0.500	BRL	2.17		"			X
79601-23-1 5-25-2	m,p-Xylene	BRL	0.500	BRL	2.17			"		X
	Bromoform	BRL	0.500	BRL	5.17		•		**	Χ

Sample Identification
Ambient
SA96849-03

Client Project # RI-0011-06

Matrix Air Collection Date/Time 24-Jun-09 12:20

CAS No.	Analyte(s)	Result ppbv	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Quali	ty Analyses									
EPA TO-	<u>15</u>		Prepare	d 30-Jun-09			Can pressur	e: -2		
5-47-6	o-Xylene	BRL	0.500	BRL	2.17		EPA TO-15	30-Jun-09	9070029	Х
9-34-5	1,1,2,2-Tetrachloroethane	BRL	0.500	BRL	3.43		"	"	"	Х
8-82-8	Isopropylbenzene	BRL	0.500	BRL	2.46		"	"	"	
08-67-8	1,3,5-Trimethylbenzene	BRL	0.500	BRL	2.46		n n	"	"	Х
22-96-8	4-Ethyltoluene	BRL	0.500	BRL	2.46		"	"	"	
5-63-6	1,2,4-Trimethylbenzene	BRL	0.500	BRL	2.46		n n	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL	0.500	BRL	3.01		n n	"	"	Х
00-44-7	Benzyl chloride	BRL	0.500	BRL	2.58		"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL	0.500	BRL	3.01		n n	"	"	Х
35-98-8	sec-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
9-87-6	4-Isopropyltoluene	BRL	0.500	BRL	2.68		п	"	"	
5-50-1	1,2-Dichlorobenzene	BRL	0.500	BRL	3.01		п	"	"	Х
04-51-8	n-Butylbenzene	BRL	0.500	BRL	2.74		"	"	"	
20-82-1	1,2,4-Trichlorobenzene	BRL	0.500	BRL	3.71		п	"	"	Х
7-68-3	Hexachlorobutadiene	BRL	0.500	BRL	5.33		u u	"	•	X
Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	98	70	-130 %			"	"	"	

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9070029 - General Air Prep										
Blank (9070029-BLK1)				Prepared &	α Analyzed:	30-Jun-09				
Propene	BRL	0.500]	ppbv							
Dichlorodifluoromethane (Freon12)	BRL	0.500 1	ppbv							
Chloromethane	BRL	0.500 1	ppbv							
1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500 1	ppbv							
Vinyl chloride	BRL	0.500]	ppbv							
1,3-Butadiene	BRL	0.500]	ppbv							
Bromomethane	BRL	0.500]	ppbv							
Chloroethane	BRL	0.500]	ppbv							
Acetone	BRL	0.500]	ppbv							
Trichlorofluoromethane (Freon 11)	BRL	0.500]	ppbv							
Ethanol	BRL	0.500]	ppbv							
Acrylonitrile	BRL	0.500]	ppbv							
1,1-Dichloroethene	BRL	0.500]	ppbv							
Methylene chloride	BRL	0.500 1	ppbv							
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500 1	ppbv							
Carbon disulfide	BRL	0.500]	ppbv							
trans-1,2-Dichloroethene	BRL	0.500 1	ppbv							
1,1-Dichloroethane	BRL	0.500]	ppbv							
Methyl tert-butyl ether	BRL	0.500 1	ppbv							
Isopropyl alcohol	BRL	0.500 1	ppbv							
2-Butanone (MEK)	BRL	0.500 1	ppbv							
cis-1,2-Dichloroethene	BRL	0.500 1	ppbv							
Hexane	BRL	0.500 1	ppbv							
Ethyl acetate	BRL	0.500]	ppbv							
Chloroform	BRL	0.500 1	ppbv							
Tetrahydrofuran	BRL	0.500 1	ppbv							
1,2-Dichloroethane	BRL	0.500 1	ppbv							
1,1,1-Trichloroethane	BRL	0.500]	ppbv							
Benzene	BRL	0.500]	ppbv							
Carbon tetrachloride	BRL	0.500]	ppbv							
Cyclohexane	BRL	0.500]	ppbv							
1,2-Dichloropropane	BRL	0.500]	ppbv							
Bromodichloromethane	BRL	0.500]								
Trichloroethene	BRL	0.500]	ppbv							
1,4-Dioxane	BRL	0.500]	ppbv							
n-Heptane	BRL	0.500]	ppbv							
4-Methyl-2-pentanone (MIBK)	BRL	0.500 1								
cis-1,3-Dichloropropene	BRL	0.500 1								
trans-1,3-Dichloropropene	BRL	0.500 1								
1,1,2-Trichloroethane	BRL	0.500 1								
Toluene	BRL	0.500 1								
2-Hexanone (MBK)	BRL	0.500]								
Dibromochloromethane	BRL	0.500 1								
1,2-Dibromoethane (EDB)	BRL	0.500]								
Tetrachloroethene	BRL	0.500 1								
Chlorobenzene	BRL	0.500]								
1,1,1,2-Tetrachloroethane	BRL	0.500 1								
Ethylbenzene	BRL	0.500]								
m,p-Xylene	BRL	0.500 1								
Bromoform	BRL	0.500]								
Styrene	BRL	0.500]								
o-Xylene	BRL	0.500 1								
1,1,2,2-Tetrachloroethane	BRL	0.500]								
Isopropylbenzene	BRL	0.500]	ppbv							

Analyte(s)	Result	*RDL \	Spike Units Level	Source Result %	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9070029 - General Air Prep				· ,	-				
Blank (9070029-BLK1)			Prenared &	& Analyzed: 30-	-Jun-09				
1,3,5-Trimethylbenzene	BRL	0.500 ppbv	Tropurou o	~ : :::a:;					
4-Ethyltoluene	BRL	0.500 ppbv							
1,2,4-Trimethylbenzene	BRL	0.500 ppbv							
1,3-Dichlorobenzene	BRL	0.500 ppbv							
Benzyl chloride	BRL	0.500 ppbv							
1,4-Dichlorobenzene	BRL	0.500 ppbv							
sec-Butylbenzene	BRL	0.500 ppbv							
4-Isopropyltoluene	BRL	0.500 ppbv							
1,2-Dichlorobenzene	BRL	0.500 ppbv							
n-Butylbenzene	BRL	0.500 ppbv							
1,2,4-Trichlorobenzene	BRL	0.500 ppbv							
Hexachlorobutadiene	BRL	0.500 ppbv							
Surrogate: 4-Bromofluorobenzene	9.59	ppbv	10.0		96	70-130			
-		11		Anglazad. 20					
LCS (9070029-BS1)	0.55	1	•	& Analyzed: 30-		70 120			
Propene Dishloradifluoromethana (Frann 12)	9.55 8.67	ppbv	10.0		96 97	70-130			
Dichlorodifluoromethane (Freon12)	8.67	ppbv	10.0		87	70-130			
Chloromethane	9.90	ppbv	10.0		99	70-130			
1,2-Dichlorotetrafluoroethane (Freon 114)	9.29	ppbv	10.0		93	70-130			
Vinyl chloride	9.77	ppbv	10.0		98	70-130			
1,3-Butadiene	10.0	ppbv	10.0		100	70-130			
Bromomethane	9.02	ppbv	10.0		90	70-130			
Chloroethane	8.86	ppbv	10.0		89	70-130			
Acetone	9.55	ppbv	10.0		96	70-130			
Trichlorofluoromethane (Freon 11)	9.00	ppbv	10.0		90	70-130			
Ethanol	11.0	ppbv	10.0		110	56.7-135			
Acrylonitrile	9.16	ppbv	10.0		92	60-160			
1,1-Dichloroethene	8.85	ppbv	10.0		88	70-130			
Methylene chloride	8.77	ppbv	10.0		88	70-130			
1,1,2-Trichlorotrifluoroethane (Freon 113)	8.65	ppbv	10.0		86	70-130			
Carbon disulfide	9.60	ppbv	10.0		96	70-130			
trans-1,2-Dichloroethene	8.49	ppbv	10.0		85	70-130			
1,1-Dichloroethane	8.74	ppbv	10.0		87	70-130			
Methyl tert-butyl ether	8.37	ppbv	10.0		84	70-130			
Isopropyl alcohol	9.40	ppbv	10.0		94	70-130			
2-Butanone (MEK)	8.71	ppbv	10.0		87	70-130			
cis-1,2-Dichloroethene	9.14	ppbv	10.0		91	70-130			
Hexane	9.54	ppbv	10.0		95	70-130			
Ethyl acetate Chloroform	9.82	ppbv	10.0		98	70-130			
	8.67	ppbv	10.0		87	70-130			
Tetrahydrofuran	9.38	ppbv	10.0		94	70-130			
1,2-Dichloroethane	8.65	ppbv	10.0		86	70-130			
1,1,1-Trichloroethane	8.66	ppbv	10.0		87	70-130			
Benzene Carbon tatraghlarida	8.98 8.05	ppbv	10.0		90	70-130 70-130			
Carbon tetrachloride	8.05	ppbv	10.0		80				
Cyclohexane	9.75 8.82	ppbv	10.0		98	70-130			
1,2-Dichloropropane	8.82	ppbv	10.0		88	70-130			
Bromodichloromethane	8.58	ppbv	10.0		86	70-130			
Trichloroethene	8.99	ppbv	10.0		90	70-130			
1,4-Dioxane	10.2	ppbv	10.0		102	60-160			
n-Heptane	9.52	ppbv	10.0		95	70-130			
4-Methyl-2-pentanone (MIBK)	8.65	ppbv	10.0		86	70-130			
cis-1,3-Dichloropropene	8.86	ppbv	10.0		89	70-130			
trans-1,3-Dichloropropene	8.85	ppbv	10.0		88	70-130			

Analyte(s)	Result	*RDL U	Spike Jnits Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9070029 - General Air Prep									
LCS (9070029-BS1)			Prepared &	& Analyzed:	30-Jun-09				
1,1,2-Trichloroethane	8.77	ppbv	10.0		88	70-130			
Toluene	9.00	ppbv	10.0		90	70-130			
2-Hexanone (MBK)	7.78	ppbv	10.0		78	70-130			
Dibromochloromethane	7.78	ppbv	10.0		78	70-130			
1,2-Dibromoethane (EDB)	8.51	ppbv	10.0		85	70-130			
Tetrachloroethene	8.76	ppbv	10.0		88	70-130			
Chlorobenzene	9.45	ppbv	10.0		94	70-130			
1,1,1,2-Tetrachloroethane	9.49	ppbv	10.0		95	60-160			
Ethylbenzene	10.0	ppbv	10.0		100	70-130			
m,p-Xylene	20.2	ppbv	20.0		101	70-130			
Bromoform	7.19	ppbv	10.0		72	70-130			
Styrene	10.1	ppbv	10.0		101	70-130			
o-Xylene	10.4	ppbv	10.0		104	70-130			
1,1,2,2-Tetrachloroethane	9.74	ppbv	10.0		97	70-130			
Isopropylbenzene	10.0	ppbv	10.0		100	60-160			
1,3,5-Trimethylbenzene	10.3	ppbv	10.0		103	70-130			
4-Ethyltoluene	10.1	ppbv	10.0		101	70-130			
1,2,4-Trimethylbenzene	10.4	ppbv	10.0		104	70-130			
1,3-Dichlorobenzene	10.4	ppbv	10.0		104	70-130			
Benzyl chloride	9.62	ppbv	10.0		96	70-130			
1,4-Dichlorobenzene	10.1	ppbv	10.0		101	70-130			
sec-Butylbenzene	12.2	ppbv	10.0		122	60-160			
4-Isopropyltoluene	10.8	ppbv	10.0		108	60-160			
1,2-Dichlorobenzene	10.4	ppbv	10.0		104	70-130			
n-Butylbenzene	10.3	ppbv	10.0		103	60-160			
1,2,4-Trichlorobenzene	9.96	ppbv	10.0		100	70-130			
Hexachlorobutadiene	8.77	ppbv	10.0		88	70-130			
Surrogate: 4-Bromofluorobenzene	10.1	ppbv	10.0		101	70-130			
Duplicate (9070029-DUP1)	Sour	ce: SA96849-01	Prepared &	& Analyzed:	30-Jun-09				
Propene	BRL	0.500 ppbv		BRL				30	
Dichlorodifluoromethane (Freon12)	5.05	0.500 ppbv		5.11			1	30	
Chloromethane	BRL	0.500 ppbv		BRL				30	
1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500 ppbv		BRL				30	
Vinyl chloride	BRL	0.500 ppbv		BRL				30	
1,3-Butadiene	BRL	0.500 ppbv		BRL				30	
Bromomethane	BRL	0.500 ppbv		BRL				30	
Chloroethane	BRL	0.500 ppbv		BRL				30	
Acetone	12.8	0.500 ppbv		13.5			5	30	
Trichlorofluoromethane (Freon 11)	0.980	0.500 ppbv		1.16			17	30	
Ethanol	6.51	0.500 ppbv		6.39			2	30	
Acrylonitrile	BRL	0.500 ppbv		BRL				30	
1,1-Dichloroethene	BRL	0.500 ppbv		BRL				30	
Methylene chloride	BRL	0.500 ppbv		BRL				30	
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500 ppbv		BRL				30	
Carbon disulfide	BRL	0.500 ppbv		BRL				30	
trans-1,2-Dichloroethene	BRL	0.500 ppbv		BRL				30	
1,1-Dichloroethane	BRL	0.500 ppbv		BRL				30	
Methyl tert-butyl ether	BRL	0.500 ppbv		BRL				30	
Isopropyl alcohol	0.680	0.500 ppbv		0.720			6	30	
2-Butanone (MEK)	1.75	0.500 ppbv		1.90			8	30	
cis-1,2-Dichloroethene	BRL	0.500 ppbv		BRL				30	
		11							
Hexane	0.510	0.500 ppbv		0.430			17	30	

				Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL	Units	Level	Result	%REC	Limits	RPD	Limit	Fla
Batch 9070029 - General Air Prep										
Duplicate (9070029-DUP1)	Sour	rce: SA96849	9-01	Prepared &	: Analyzed:	30-Jun-09				
Chloroform	BRL	0.500 p	pbv		BRL				30	
Tetrahydrofuran	BRL	0.500 p	pbv		BRL				30	
1,2-Dichloroethane	BRL	0.500 p	pbv		BRL				30	
1,1,1-Trichloroethane	0.220	0.500 p	pbv		0.220			0	30	J
Benzene	BRL	0.500 p	pbv		BRL				30	
Carbon tetrachloride	BRL	0.500 p	pbv		BRL				30	
Cyclohexane	1.34	0.500 p	pbv		1.21			10	30	
1,2-Dichloropropane	BRL	0.500 p	pbv		BRL				30	
Bromodichloromethane	BRL	0.500 p	pbv		BRL				30	
Trichloroethene	BRL	0.500 p	pbv		BRL				30	
1,4-Dioxane	BRL	0.500 p	pbv		BRL				30	
n-Heptane	2.00	0.500 p	pbv		1.89			6	30	
4-Methyl-2-pentanone (MIBK)	38.9	0.500 p	pbv		41.3			6	30	
cis-1,3-Dichloropropene	BRL	0.500 p	pbv		BRL				30	
trans-1,3-Dichloropropene	BRL	0.500 p	pbv		BRL				30	
1,1,2-Trichloroethane	BRL	0.500 p	pbv		BRL				30	
Toluene	11.3	0.500 p	pbv		11.2			1	30	
2-Hexanone (MBK)	BRL	0.500 p	pbv		BRL				30	
Dibromochloromethane	BRL	0.500 p	pbv		BRL				30	
1,2-Dibromoethane (EDB)	BRL	0.500 p	pbv		BRL				30	
Tetrachloroethene	BRL	0.500 p	pbv		BRL				30	
Chlorobenzene	BRL	0.500 p	pbv		BRL				30	
1,1,1,2-Tetrachloroethane	BRL	0.500 p	pbv		BRL				30	
Ethylbenzene	2.65	0.500 p	pbv		2.62			1	30	
m,p-Xylene	13.2	0.500 p	pbv		13.4			2	30	
Bromoform	BRL	0.500 p	pbv		BRL				30	
Styrene	0.300	0.500 p	pbv		0.290			3	30	J
o-Xylene	4.69	0.500 p	pbv		4.78			2	30	
1,1,2,2-Tetrachloroethane	BRL	0.500 p	pbv		BRL				30	
Isopropylbenzene	0.530	0.500 p	pbv		0.540			2	30	
1,3,5-Trimethylbenzene	1.70	0.500 p	pbv		1.88			10	30	
4-Ethyltoluene	1.36	0.500 p	pbv		1.45			6	30	
1,2,4-Trimethylbenzene	3.28	0.500 p	pbv		3.61			10	30	
1,3-Dichlorobenzene	BRL	0.500 p	pbv		BRL				30	
Benzyl chloride	BRL	0.500 p			BRL				30	
1,4-Dichlorobenzene	BRL	0.500 p	pbv		BRL				30	
sec-Butylbenzene	BRL	0.500 p			BRL				30	
4-Isopropyltoluene	0.580	0.500 p			0.630			8	30	
1,2-Dichlorobenzene	0.820	0.500 p			0.950			15	30	
n-Butylbenzene	BRL	0.500 p			BRL				30	
1,2,4-Trichlorobenzene	BRL	0.500 p			BRL				30	
Hexachlorobutadiene	BRL	0.500 p			BRL				30	

Notes and Definitions

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Kim Wisk

SPECTRUM ANALYTICAL, INC.

Francing

HANIBAL TECHNOLOGY

Chain of Custody Record/Field Test Data Sheets for Air Analyses

Page of 1

Special Handling:

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.

EDD format	exposition only results E-mail results	Please contact SA	Location: (d)	Company: CA	Requested by: W. 11 1 GAN	Date of Request:	Stop	New Start	Clent							5	7000	1593 G	Can ID Star (L)	Project Manager:	161#:		Ca	62	CEA
	ican angacomnes or so	Preuse contact S.d.'s Air Department Immediately at (800) 789-9115 If you	CAUCACE NA		1500	0.000	Log Log Log Log Log Log Log Log Log Log		Maximum	Ambient Ter					2	J		-30	Outgoing I Canister Pressure ("Hg) (Lab) C	"B /6000	6 1		Concerd ,	62A Hall ST	A
	rsheer any QC usine	imediately or (800)	-		+lopper		7.18	700 S.V. Suri	Mainum	Ambient Temperature (Fahrenheit)	200	100 (C) (C) (C)					2 4	10	Incoming Christer Pressure Flow Rog, Hg) (Lah) ID SCHAFORY USE DN(Y	100		He M. 1975/2 2011/1000	HC		
	t(s) with air m	789-911515						inger er v	un	OH)						7.1	200	306	Flow Controller Readout (mlmin)	1000			٠	2.4	
10	restra	700		Flow Rate/Setting:	# Flow Controllers:	# Summa Canisters:	and and cor	100 (S)	Maximum	Ambi		GIU Gibo		GEO.		3	9	0	LP 16	P.O. No.:	Attn:				зот эмолят
Melt	The state of the s		Date Needed:	Setting:	itrollers:	anisters:	. E	EL)	B	Ambient Pressure (inches of Hg)	1 114 1 114 1 126		100 (c) 100 (c) 100 (c)	mis (%)		Ambient	1ST FLOOR LR	Barement	Sample lift	fbys	3		west Boylston	127 4	CE1
A.	is a	Reling		SOFF	N	0	1. B) 1. [3] 1. [6] 1. [6]		Minimum	inches of Hg)	q 84 man	luig laig					- LR	nie.	mpte (s)	, z		ξ,	Boylo	127 Handwell ST	
1	1	Relinquished by:	Prin	Signed:	and	I at	(U) (U)	(6) (8) (8)	9(8	Spe	20,09 5 (5) 1 (5)					*	-	6/24/09	Sample Date(s)	RQN:	(16) (16)	1,80	for mis	757	jed
	10		Printed: Wu	0	and agree to the terms and conditions as listed on the back of this document."	test that tha	iout b'	6) 1 ()* 1 (po ()	Media Media Media	Special Instructions/QC Requirements & Comments:	20 m 20 m		BIPP LOD	1339		00	00				Sa	-		Pr	Li q
	1		William	rec.	e terms an	t all media	sgr - sgr 18 Enrich	es la CIV	94) 02) 59	ctions/QC	75 p X th 29 N	greg and Log	546 904 Janes			8:11	8:10 1	1 01:8	Time Start 1 (24 hr clock) (2	1 170	Sampler (s):	Location:	te Name:	oject No.:	
	da	N	200	Fall Mark	d conditio	relinquis	100	en d		Require	atorj	usti j	più.			12:20	12:20	12:20	Time Stop (24 hr clock)	HAB	60	Cand	JEM	PT-	100
	fre	_ 1	3	ia tu	ns as liste	shed from			ecie	nents & C	2, sr.;	(17) (17)		deli Se s		28	28	28	Canister Pressure in Field (*Hg)	(trigg)	toone	Supera s	Site Name: Jefferes	Project No.: &I-ooll-ob	
0	1	Received by:			d on the ba	Spectrum A	Loi	D.K.		omments:	OE:	D.				0	0	0	Canister Pressure in Field ("Hg)		>		20	2	
					ck of this a	malviical.	A F S	ia n ia n						11.0		65	65	72	Interior Temp. (F) (Shart)				tense		
					ocument,	inc. have b				101	eris Viitig					70	ध	72	Salterior Temp. (F) (Salge)	ie iai	LES CONTRACTOR	7			
25	13	D		1 80		part money	uit le geliji				ajn. Pais	- (d) god 2				7	1	1	TO-15	2/11	iven	S nei	Carlo	-	A
8	104	Date:		Date:	on South	and in one						C. 1							MODILITIES - 62	- S-	7. 9.111	19:6	JA D	- 1	Analysis
17CI	150	Time		200	n sorang com	I attest that that all media relinquished from Spectrum Analytical, Inc. have book received in good working condition	el i									1	(,	Indoor /Ambio Soil Gas	ent A	ir		-		Matrix
00	N	ne:	-	2	nommon	To the same of the				-									Check box if c	anist	er is	retur	ned u	nuse	

APPENDIX B
Boring Logs and Monitoring Well Construction Details

		00	DDOI) A T F	END/	DON	MENT	A 1 .	4 D) //COE)C	10				
CORPORATE ENVIRONMENTAL ADVISORS, INC. Assessments - Remediation - Emergency Response TEST BORING LOG ROPING NO POWN.															
	- // \	\			nents – R 62A HALL						9779	BORING NO. B(MW	/)-4		
									VERMONT			SHEET NO. 1 OF			
CLIENT: N	NATION	TOP.	GRANGI DRILE	E MUT	UAL INS	SURANO NTAL	CE_COM	PANY				JOB NO. RI-0011-06	<u> </u>		
GROUNDWAT		IOK.	DRILE	V EINA	IKONME	NIAL		CAS.	SAMPLE	CORE	TUBE	TOR ELEVATION DATE STARTED 6/8/	00		
	TIME	WAT	TER DE	PTH	REFER	RENCE	TYPE			JOILE	1002	DATE FINISHED 6/9/	09		
							DIA.	4.25	" 2"			DRILLER J. Fluet			
							WT.	10/15/20	140 LB.	INSPECTOR WHH					
WELL C	CONCT	DUCT	ION	IT	1	CAMP	FALL	<u> </u>	30" DRILL RIG CME-55						
WELL C	ᇤ	_	SAMP				0.1		0.171011	PID					
WELL CONSTRUCTION					NO.	(FT.)	BLOWS 0.5 FO		CLASSIFICATION						
Sakrete Mix	t	انة 		_											
				_											
Medium Chi	ip	777		⊢											
Bentonite				- 1											
823															
Riser: 2" PV	VC			L I											
				-											
				-5'			6		Tan, fine S	AND ===	Gilt	5.0 Moist.			
				F	S-1	1.75	8		run, mae S.	מחם שוים	JIII.	muisi.	0.00		
					557 %		12						<1.0		
			10 100 100		10					7.0					
					c . n	4 -	7 8		Tan, SILT.	Moist.	Collecte	d analytical sample.			
				 	S-2	1.5	10						<1.0		
							15					9.0			
#1 Filter So	#1 Filter Sand								Air hammer	red throu	igh larg	ge boulder from 8.75 to			
	,, , ,,,,,,,				— 10 ^t						10 feet bgs.				
			二對	F											
		ts													
				-											
						<u> </u>					Air bamanarad Ha		ah	norous other lare-	
Screen: 2" with 0.010"	PVC slots			_					Air hammered through numerous other boulders to 20 feet bgs.		nerous other large				
										A000053728	A-160 - 157 (177)				
				-15 ¹											
				- 1											
		1		–											
								on overese							
			二對												
				_											
				-											
				57550											
SIIt	Trap		∇	20								20.0			
					72 WW		15		Grey, coars	e to med	dium to	fine SAND and Silt.			
				-	S-3	1.0	12 19		of spoon.	wet. C	ollected	Rock fragments in tip analytical sample.	139		
							12		3 .			22.0			
									End of bori	ng © 22	2' bgs.	22.0			
								100100000		wee . 3781 25 ⁻ 57	- 2000 ™ 1746				
				-				\dashv							
				_											
				-25 ¹											
				<u> </u>											
				-						Г	CAD EI	LENAME DAMA			
L				لــــــــــــــــــــــــــــــــــــــ							CAU F	LENAME B(MW)-4			

		CORI	POF	RATE	ENV	RON	MENTA	AL /	ADVISOR	RS, IN	IC.	TEST BO	RING I	വദ	
~	$PY\simeq$								ntal Services	•		BORING			
		<u> </u>				The state of the s	ET, CONC	COLUMN TO A SEC.	2007					300	
PROJECT: CLIENT:	JEFFEI	RY RESI	DENC	E, 8 N	IICHOLS	ROAD,	LANDGRO	OVE,	VERMONT		-	SHEET NO.	1 OF		
	CLIENT: NATIONAL GRANGE MUTUAL INSURANCE COMPANY BORING CONTRACTOR: DRILEX ENVIRONMENTAL TOR ELEVATION													5	
GROUNDWA												DATE STARTE		na	
DATE	TIME	WATE	R DE	PTH	REFEI	TYPE				1000	DATE FINISH		09		
		-27/15/				4.25	" 2"				Fluet				
	x :====						WT.		140 LB.			INSPECTOR	WHH		
WELL	RUCTIO	TECT		CAME	FALL	L	30"			DRILL RIG C	ME-55				
WELL.			SAMP		DED	CLASSIFICATION									
Flush mount	PEET!	NO.		BLOWS 0.5 FO			CL	ASSIFIC	CATION		PID				
manhole co Sakrete M			T	-		(1.)	0.5 FO	01							
Medium Ch		7//		-				710							
Bentonite	Bentonite Riser: 2" PVC														
Miser. 2	,,		題												
			揺	_											
_	_		超	-											
		-55													
#1 Filter S	Sand														
#1 111161 2	Juliu		FEE	-5'									5.0		
Screen: 2	", PVC		紐	- I	_	4 12752	2		Grey, SILT. analytical sc	Moist to	o wet.	Very tight. Co	ollected		
Screen: 2" PVC with 0.010" slots				-	S-1	1.25	<u>4</u> 8		analytical sc	impie.				130	
				 ā			7		7.0						
Silf	Trap		<u> </u>						Auger refus	al on la	rge bou	ılder at 7.5 fee			
				<u> </u>					End of bori	ng.					
9				-			E								
				_											
				_10 ¹											
				-10											
				-											
				-				-							
				_											
				-											
				- 45											
				-15 '											
				-											
				-											
				_											
				-											
				—20°											
				-											
				_				\dashv							
				_											
				-											
				一25'											
							01000								
				_						-					
				1 1			ı			1.0	CAD FL	I FNAME BOX	1W)-5		

											p 5/ 1001 25/38/3		
	- A	CORPOR	KAIE	FNAI	RON	MENIA	AL A	ADVISOR	RS, IN	IC.	TEST BORIN	G I	OG
~~	\sim	Gr	roundwat	er – Geo	technica	I and Env	ironmer	ntal Services			BORING NO.		
		•				ET, CONC					DOKING NO.	. D(MW	,
PROJECT:	JEFFE	RY RESIDENC	E, 8 N	ICHOLS	ROAD,	LANDGRO	OVE, V	/ERMONT			SHEET NO. 1	OF	1
CLIENT:		JOB NO. RI-0011-06											
		TOR: DRILE	X ENVI	IRONME	NTAL		0.10				TOR ELEVATION		
GROUNDWA		WATER RE	DTU	l pere	251105	TVDE	CAS.				DATE STARTED 6/8/09		
DATE	TIME	WATER DE	PIH	REFER	RENCE	TYPE	4.25				DATE FINISHED 6/8/09 DRILLER J. Fluet		
						DIA.	4.25	∠ 140 LB.				et WHH	
				-	-	FALL		30"		-	DRILL RIG CME-		
WELL	CONST	RUCTION	EC		SAMP		<u> </u>	1 30			DRILL RIG OME .		
			PEETY)			BLOWS	PED		CI	VGGIEIU	CATION		PID
Flush moun	ted		BF.	NO.	(FT.)				OL	A3311 11	CATION		, ,,,
manhole co	ver		-		(, ,,)	0.0 10	-						
Sakrete M	İx		-										
		1: -											
						- AUSTE	- 0/01-0/02						
N-diversion	L.I.												
Medium Ci Bentonite	пір					- 1000000000000000000000000000000000000	1 1000						
			L										
9444			<u> </u>										
Riser: 2"	PVC		L									5.0	
			├ 5' ├			O" for	100	No Recovery				5.0	
			-	S-1		U TOP	100	Necovery	/·				
7	7			3-1	###								
					Caracin de la comp							7.0	
								Air hammer	red from	5 to '	16 feet bgs. Large bgs.		
								boulder from	m 5 to	12 feet	bgs.		
			<u> </u>										
			-										
			F										
			<u>-10</u>										
#1 Filter	Sand												
			_										
Screen: 2 with 0.01	"_PVC		-										
with 0.01	0" slots		-				-						
			- 1										
1													
			_15 ¹										
SII	t Trap	サヘギ	E L									16.0	
- 5-1, and 5-1			_ [End of bori	ing at 1	6.0 feet	t bgs.		
1			<u> </u>										
			H										
			-										
			-										
			_ ₂₀ ,										8
			L										
			L I										
			-										
			H										
[
1			F										
1						3							
l			-25										
1			L 23										
			L										
1			⊢						г	045 =	HENALE SAMA		
			1			bears as				CAD F	ILENAME B(MW)-	o l	

	- A	CORI	POF	RATE	ENV	RON	MENTA	AL A	ADVISOR	S, IN	1C.	TEST BORIN	1G I	OG
~	**	L			iter – Geo	otechnica	al and Env	rironmer	ntal Services	Reflected ♠ o more	E Visital Rosess	BORING NO		
PROJECT:	recer	DV DECL	DENC	- 9 1			ET, CONC							-
	NATION	NAL GR	ANGI	F MUT	TIAL INS	RUAD,	LANDGRO	DVE, V	/ERMON1			SHEET NO. JOB NO. RI-00	1 OF	
BORING CO	NTRAC	TOR: D	RILE	X ENV	IRONME	NTAL	J					TOR ELEVATION	11 00	,
GROUNDWA	WATER: CAS.									CORE	TUBE	DATE STARTED	6/9/	09
DATE	TIME	WATER	R DE	PTH	REFE	RENCE						DATE FINISHED	6/9/	09
					-		DIA.	4.25				DRILLER J. Flu		
					+		WT.	_	140 LB. 30"			INSPECTOR DRILL RIG CME-	WHH	
WELL	CONST	RUCTIO	N	DEPTH (FEET)		SAMP			30 1		100 - 100 - H	DRILL RIG CME-	-55	-
Flush mounted manhole cover					NO.		BLOWS			CL	ASSIFIC	CATION		PID
		1	M	<u> </u>			The second secon						-31-2-11-12	
Sakrete Mi	x		1.											
		•	1.]	-										
CONTROL MANY 5, 90			777	- 1				-						ĺ
Medium Ch Bentonite	ıip			F [1	122							
Reutonite				_				74.00	meny reasons:				3.5	
									Auger refuse	al. Air	hamme	ered through large		
Riser: 2" P	VC	===							boulder fron	n 3.5 to	7.5 fe	et bgs.		
		==		-5'										
			丰田	-	Į.			-						ĺ
				-										ĺ
				-)									
													7.5	
	7	_[至]	뙏				ý			-1U-0111				
			1	_										
			-	_										
				-]				-+						
				<u></u> 101				-						
		亖	1	-									1	
#1 Filter S	and							\neg					11.5	
		三	됋						Air hammer	ed throu	igh sev	eral large boulders		
		三三	133						to 16.5 feet	bgs.	.10 <u>7.</u>	(5x)		
Screen: 2" with 0.010	' PVC	壁		_				—						
with 0.010	" slots		莊	- 1										
				-										
			-[F				-+						ĺ
		睡	莊	 151										
		量	1											
		瞳=	誀		#1410 EVIVE-10								16.5	
		畦	强	_								Alicense state		
			1	- 1			- 12							
		三	誀	-			2							
		壁	盐											
		===	1											1
Silt	Trap		4	-20									20.0	
				L 23					End of boring	ng at 20).O feet	bgs.		
				_										ĺ
				-										
				- 1				-						
				F									1	
													1	
				_	J									1
				-25	J									
				No transfer	1									
				-										
				-			277			17	CAD FI	ILENAME B(MW)-	_7	