

The Demise Begins

- In 1976, over concerns about the toxicity and persistence in the environment of PCBs, Congress enacted Section 6(e) of the Toxic Substances Control Act (TSCA)
- In 1979, PCBs were banned for all uses except "totally enclosed uses", such as transformers, capacitors, vacuum pumps and hydraulic fluids
- In 1998, PCB Disposal Amendments

Where does that leave us today?

- The TSCA PCB regulations (40 CFR Part 761) place prohibitions on the use (manufacture), processing, and distribution in commerce and specify storage and disposal requirements for PCBs and PCB items
- PCB regulations may govern owners, operators, and/or persons conducting cleanup of PCBcontaminated property where the PCB contamination exceeds allowable concentrations under the regulations
- TSCA authority is not delegated to the states; therefore both TSCA and state regulations will apply

PROJECT GENERAL STEPS Site Characterization, Cleanup and Disposal

- Investigate
- Delineate
- Determine cleanup criteria and develop cleanup plan
- Perform cleanup and verify
- Dispose of waste according to regulations
- Document

PROJECT CONSIDERATIONS

- Do I need to look for PCBs
- If I find PCBs, is my site regulated under TSCA
- What are my cleanup options

PCBs in Industrial Applications

- Transformers
- Capacitors
- Hydraulic fluids
- Oil-based paints
- Fluorescent light ballasts
- Lubricating & cutting oils
- Floor finishes
- Fire retardants

- Thermal Insulation materials (foam, felt)
- Caulking & grout
- PVC coatings for electrical wire & components
- Carbonless copy paper
- Inks and dyes
- Adhesives/mastic

DEFINITIONS § 761.3

- PCB remediation waste
- PCB bulk product waste
- Excluded PCB product

PCB Remediation Waste § 761.3

- Material is considered a TSCA PCB Remediation waste if:
 - Disposed prior to April 18, 1978 and is currently at ≥ 50 ppm
 - Original PCB source ≥ 500 ppm beginning on April 18, 1978 and currently any concentration (≥ 1 ppm)
 - Original PCB source ≥ 50 ppm beginning on July 2, 1979 and currently any concentration (≥ 1 ppm)
 - Any concentration if from an unauthorized source
 - Burden of Proof and Presumption of no unreasonable risk

PCB Bulk Product Waste

Definition at § 761.3

"Waste derived from manufactured products containing PCBs in a non-liquid state, at any concentration where the concentration at the time of designation for disposal was ≥ 50 ppm PCBs"

Issues

- The use of PCBs in non-liquid manufactured building products at >/= 50 ppm is prohibited under TSCA.
- Manufactured products containing PCBs have been found in many buildings and structures
- Caulk typically contains PCBs at very high levels %
- The PCBs may migrate to a limited extent to surrounding materials (air, soil, masonry).
- Typical renovation procedures can increase exposures to workers and building residents, including children.

PCBs in Building Materials

- Considerations
 - PCB Bulk Product Waste § 761.62
 - Caulk, paint, mastic, laminates, adhesives
 - PCB Remediation Waste § 761.61
 - Concrete, masonry, brick, window frames, exterior soils, furniture
 - Demolition or Renovation
 - PCB bulk product waste and Reinterpretation Impact

PCB Bulk Product Waste Disposal

Bulk Product Waste (761.62)

examples: caulk, applied dried paints, varnishes, other similar coatings or sealants, Galbestos, building substrates

- Performance-based disposal
- Disposal in Solid Waste Landfill
- Risk-based Disposal Approval
- Daily Cover/Roadbed

PCB Bulk Product Waste Region 1 Sites

- Universities, Schools and Daycare Centers
- Pools
- Federal Government Buildings
- State/Local Govt. Buildings
- Water Systems
- Commercial Buildings
- BFs
- Nuclear Power Plants

Cleanup of PCB Remediation Waste - § 761.61

- Three options for Site cleanup
 - Self-implementing Approach
 - Performance-Based Approach
 - Risk-based Approach

Self-implementing Approach (SIP) § 761.61(a)

- Most appropriate for small-moderate sized sites (< 1-acre)
- Excludes certain sites (surface water/sediments)
- Notification/Certification requirements with USEPA, states, and local environmental agencies
 - 30-day default timeframe not applicable unless SIP requirements are followed in their entirety
- · Prescriptive procedures for sampling and cleanup
 - > Requires compliance with all sampling and analytical procedures
 - In Situ ("as found") sampling with no compositing for characterization
 - Subpart N or Subpart O

PCB Cleanup Levels

(bulk PCB Remediation Waste/Porous Surfaces)

- High Occupancy (> 6.7 hrs/week avg.)
 - ≤ 1 ppm
 - ≤ 10 ppm w/ cap*
- Low Occupancy (<6.7 hrs/week avg.)
 - ≤ 25 ppm
 - ≤ 50 ppm with fence and sign
 - < 100 ppm w/ cap*
- * Cap: minimum 10" compacted soil, or minimum 6" asphalt or concrete

PCB Cleanup Levels

(Non-Porous Surfaces)

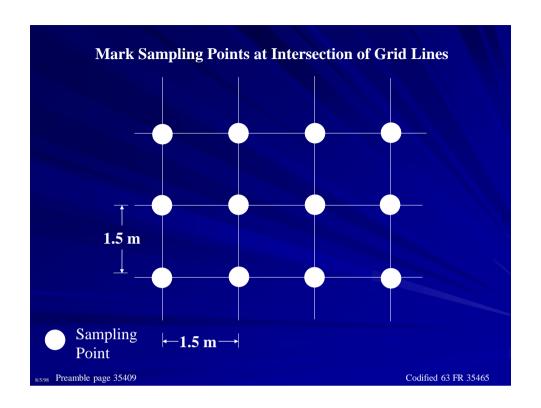
- High Occupancy (> 16.8 hrs/week avg.)
 - $\le 10 \text{ ug}/100 \text{ cm}^2$
- Low Occupancy (<16.8 hrs/week avg.)</p>
 - $< 100 \text{ ug}/100 \text{ cm}^2$

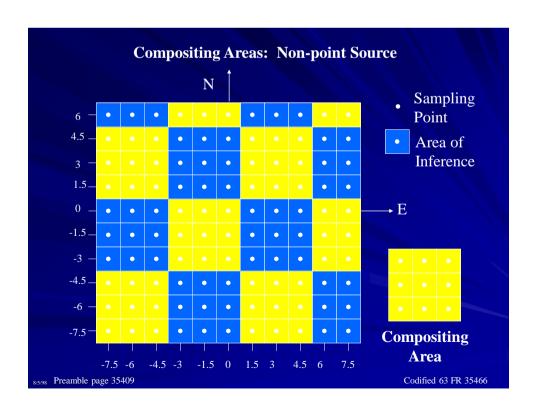
25

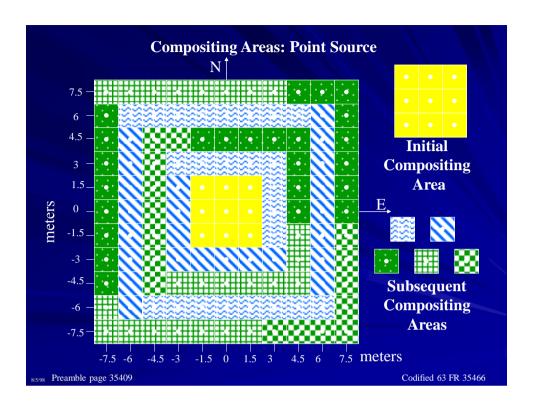
Verification Sampling after Removal

§ 761.61(a)(6) - detailed and prescriptive methods for:

- Sample extraction and analyses
- Number of samples, depths, and locations
- Reporting
- Subpart O (porous) or Subpart P (non-porous)
- ** Compositing provided adequate delineation


Cleanup Verification of PCB Remediation Waste


- Field screening methods may be used in a dynamic sampling approach for initial verification
- Final verification sampling uses a 5' x 5' sampling grid over remediated area (minimum 3 samples) and definitive laboratory analysis methods but may use Subpart Q
- Cleanup continues until established cleanup levels are reached


27

Subpart O - Composite Sampling

- Allowed provided adequate characterization
- Consider whether point-source or non-point source
- 9-sample max per composite

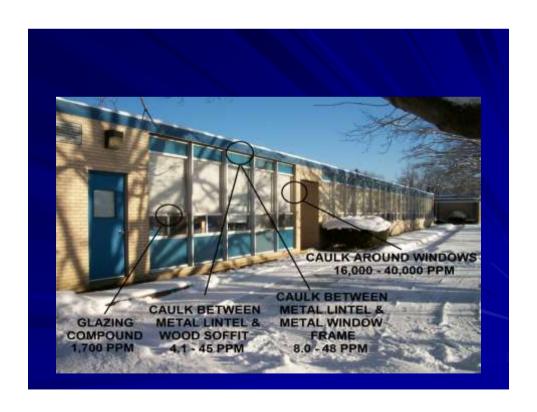
Risk Based Option 40 CFR § 761.61(c)

- Deviation from decontamination, storage, and disposal requirements under 761.61(a)
- Recommended for complex or large sites and all media types
- Requires EPA approval
- Public notification process may be required
- Risk Assessment: state vs. federal
- Possible Long-Term O&M / Financial Assurance

Performance Based Option 40 CFR § 761.61(b)

- Notification not required to perform removal work
- Cleanup to less than 1 mg/kg total PCBs Subpart O
- Dispose of all waste at TSCA-approved facility
- Document cleanup and keep records on file
- Submit § 761.61(a) Notification to EPA

Management in Place

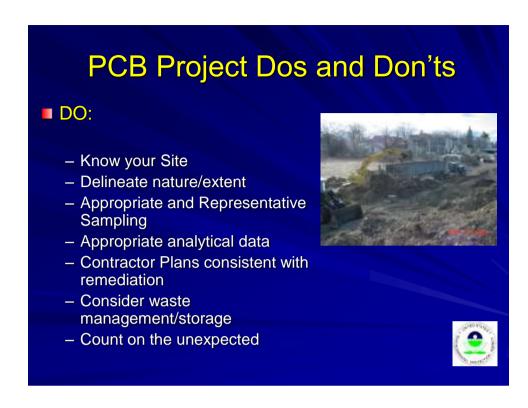

- Not acceptable for PCB bulk product waste (§ 761.62)
- May be acceptable for surrounding materials (§ 761.61)
- Possible short-term interim measure
 - Consultation with EPA
 - Sampling/O&M may be required

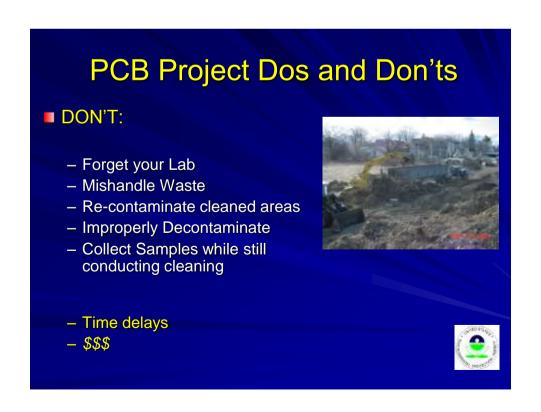
Excluded PCB Products

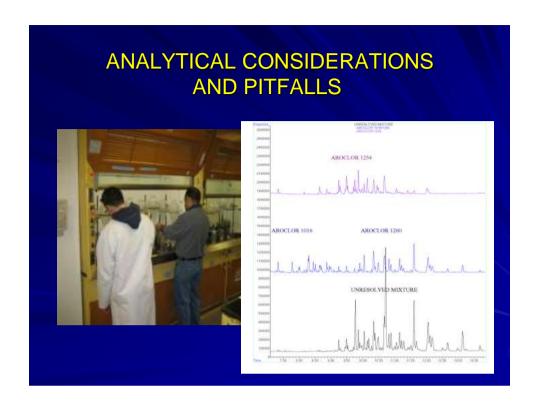
- Must meet all criteria under § 761.3
 - ✓ concentration
 - ✓ sold/distributed in commerce prior to 1984
 - √ no dilution
- May be left in place without further restrictions/requirements
- State requirements may require removal

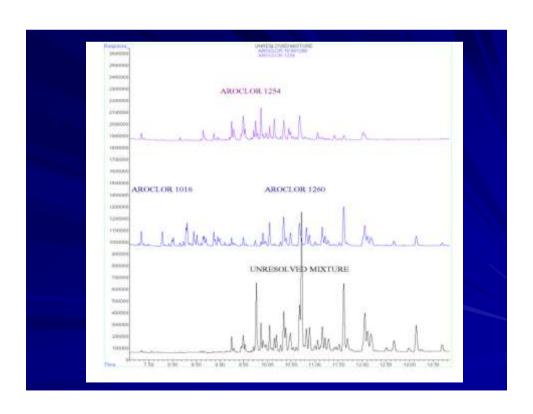
Project Consideration Which PCB option is best for my site?

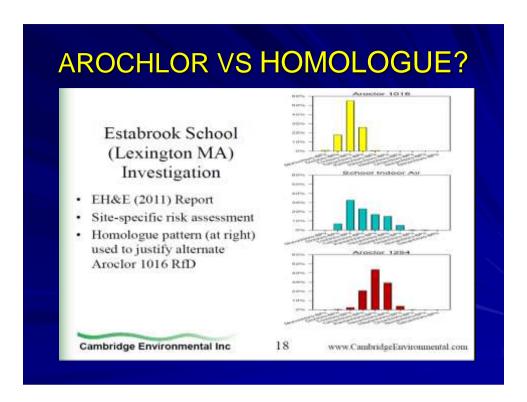
- Schedule
- Site size and End Use
- Contamination type and extent
- Special removal requirements
- Verification sampling
- Public involvement

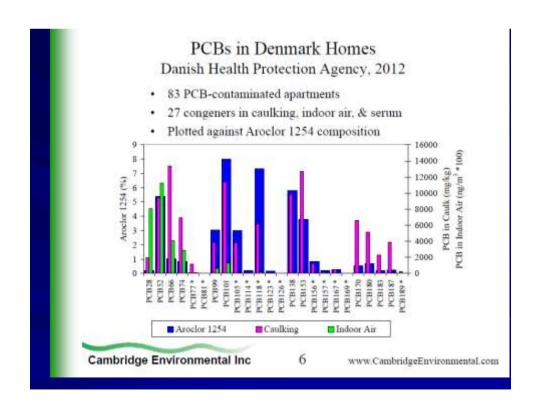


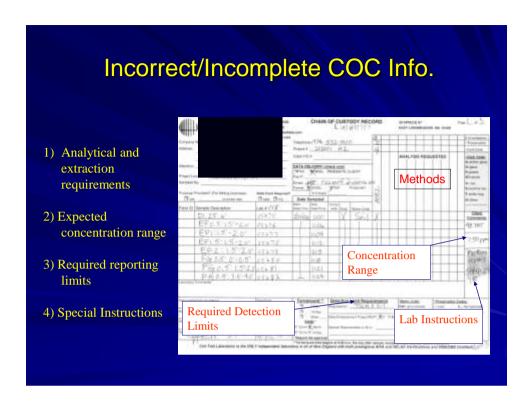

Other Project Considerations


- Excavation/Decon set-up
- Storage limitations (lined rolloffs, containment areas, time restrictions)
- Transportation requirements (vehicles, manifests, PCB activity notification)
- Field Screening and Laboratory TAT
- Waste management / disposal
- Other federal/state/local permits/certs




Lack of Quality Assurance/ Quality Control A properly planned analytical program with adequate QA/QC samples is critical QA/QC Program should include: Field and Lab Duplicates Method blanks Temperature blanks Field Blanks and MS/MSDs Laboratory PEs


LAB COMMUNICATION ISSUES


- Discuss Project Requirements
- Methods
 - Soxhlet extraction (3540) preferred
 - Extraction by sonication (3550) not preferred
 - Inefficient
 - Not applicable to all matrices
 - Not allowed under many state QA programs
 - Analytical: 8082 (8270, 680, 1668)
 - · Alternative methods require correlation study
 - Subpart
 - Reporting limits

PROPOSED / NEW CHANGES

- April 2010 ANPRM PCB Uses
- September 2012 Revisions to Manifesting Regulations (direct final)
- Upcoming Ship Sampling Guidance

Contacts and PCB Info

Kimberly Tisa – USEPA Region 1 PCB Coordinator

617-918-1527 (direct) tisa.kimberly@epa.gov

Katherine Woodward, Project Manager 617-918-1353 woodward.katherine@epa.gov

- Caulk Hotline: 888-835-5372
- http://www.epa.gov/epawaste/hazard/tsd/pcbs
- http://www.epa.gov/region1/cleanup/pcbs/index.htm

